
Thesis Proposal

Type Safety of Equation-Based Object-Oriented Languages

David Broman
Department of Computer and Information Science

Linköping University, Sweden

davbr@ida.liu.se

Abstract
During the past two decades, a new kind of object-oriented
language based on differential-algebraic equations has emer-
ged. Examples of such languages are Modelica, gPROMS,
and VHDL-AMS. This kind of language, which we call
equation-based object-oriented (EOO), enables new pos-
sibilities of modeling and simulation of complex dynamic
physical systems. However, the unusual language semantics
results in new challenges regarding static detection of model
errors. In this thesis, we are investigating the use of type sys-
tems for static detection of such errors, as well as defining
the language semantics in terms of a small kernel language.
The formal semantics of such a kernel language is to be de-
fined and the soundness of the type system is to be proven.

1. Introduction
Computer aided modeling and simulation of complex phys-
ical systems, using components from several domains, such
as electrical, mechanical, and hydraulic, have in recent years
witnessed a significant growth of interest. General-purpose
simulation tools, e.g. Simulink [22], using block diagrams
and causal connections have dominated the area for years.
However, during the past two decades a new generation of
languages has evolved. This language category is based on
object-oriented concepts and acausal modeling using equa-
tions. This enables better reuse of components resulting in
considerably reduced modeling efforts [13]. One such lan-
guage is Modelica [24], which is an attempt to unify con-
cepts and notation from several research projects and in-
dustrial initiatives. Other examples are gPROMS [26] and
VHDL-AMS [11]. We call this kind of language equation-
based object-oriented.

1.1 Outline

The remaining part of the introduction will give a funda-
mental overview of EOO languages when used for modeling
and simulation, which is necessary for the understanding of
the research problem outlined in this proposal.

In Section 2 the general problem area is outlined and mo-
tivations for its relevance are given. Section 3 elaborates on
different approaches to attack the problem area and reviews
related work. Section 4 begins by stating our hypotheses on
how to approach the overall problem. This is followed by de-
limitations and more detailed descriptions of the problems
implied by the hypotheses. The section ends with expected
contributions of our work. Section 5 describes the proposed
research method, by stating needed working steps includ-
ing motivations on why these steps are necessary to justify
our hypotheses. Section 6 outlines our plan to complete this

thesis and gives the status of the current work, including
a short summary of current publications. Finally, Section 7
concludes the proposal.

1.2 What is an EOO Language?

All kinds of object-oriented (OO) languages have some form
of object. Many mainstream OO languages are class-based
(e.g. Java and C++), meaning that an object is created as
an instance of a class. Nevertheless, there are many concepts
related to object-oriented languages and there is no clear
consensus what actually defines the core concepts of OO
languages [2].

In a traditional OO language, the behavior of an object is
implemented using methods and data is exchanged between
objects using message passing or method invocation. The
fundamental difference in what we define to be an EOO
language is that the behavior of an object is described by
equations.

EOO languages are primarily used for capturing the be-
havior of physical systems, i.e., systems in the real world are
modeled using equations grouped into classes and objects.
Hence, instead of using the term program, we will use the
word model to describe the executable artifact in an EOO
language.

To conclude, we define the concept of EOO language as
follows:

Definition 1 (EOO language). Equation-based Object- Ori-
ented (EOO) languages provide the following fundamental
concepts:

• Class - a blueprint for creating objects
• Object - can be created according to classes
• Subtyping - if an object A supports the same interface

as an object B, then A can be used in the context where
B is expected.
• Inheritance - the ability to define a new class by reusing

behavior from another class.
• Equations - defines invariant relation between objects.

Equations can have several different forms. If a model con-
tains differential equations, using time derivatives dx

dt
, it is

said to be a dynamic model, which is time-dependent. Con-
versely, if a model only contains algebraic equations, such as
x2 + y2 = z2, it is a static model.

In many domains the resulting equation system contains
both ordinary differential equations and algebraic equations.
This kind of equation system is called Differential-Algebraic
Equation (DAE)-system [20].

1 2007/3/22



1.3 Modeling and Simulation with Modelica

EOO languages are currently primarily used for modeling
and simulation (M&S). Nevertheless, there exist attempts
to use it for other applications, such as system identification
and optimization.

The first part of this section describes the most funda-
mental concepts and constructs in an EOO language when
used for M&S. We will primarily use Modelica as the target
language for our discussions, since it is an open standard
with a growing and active community. However, we believe
that the concepts and problems are applicable to other re-
lated languages as well.

The second part of this section describes the compilation
process, where a model is taken as input and a simulation
data is the resulting output.

Language Concepts and Constructs

The Modelica language and its modeling environment con-
sist of many fundamental concepts and constructs. In the fol-
lowing listing, we briefly describe the most important ones.

Graphical vs. Textual modeling. Consider the model of
a simple electrical circuit given in Figure 1. The model
can both have a textual representation (left side) and
a graphical representation (right side). Tools, such as
Dymola [12] and MathModelica [21], make it possible
to modify both these representations concurrently and
relatively consistently.

Hierarchical Composition. Instances of classes (in Mod-
elica defined with keyword model ) can be hierarchical
composed. For example in Figure 2, model Inductor is
defined, while in Figure 1 model Circuit holds a ele-
ment named L, which is an instance of class Inductor .

Continuous-time vs. Discrete-time. If a model only
have variables that evolves continuously over time, it
is said to be a continuous-time model. These models are
described using DAEs. Conversely, if a model changes its
values only at discrete points in time, it is said to be a
discrete-time model. Moreover, if a model contains both
discrete- and continuous-time variables, it is said to be a
hybrid model.

Causal vs. Acausal modeling. In a block oriented simu-
lation environment, such as Simulink [22], the intercon-
nected blocks must be stated using a directed data flow
with input and outputs. However, this causal modeling
approach does not reflect the topology of the physical
system [13]. Using an acausal (sometimes referred to as
non-causal) modeling approach, the equations are instead
stated in their natural form as differential-algebraic equa-
tions. With the latter approach, the direction of data flow
is unspecified at the modeling stage.

Connections and Flow variables. Connections between
instances are stated by using connect -equations; de-
picted in Figure 1. These equations connect ports (in
Modelica called connectors), and represent several equa-
tions. For instance, connect(L.n, C.n) represents two
equations: L.n.v = C.n.v and L.n.i + C.n.i = 0 .
The first equation expresses that the voltage at the con-
nection ends are the same, whereas the second equation
corresponds the Kirchhoff’s current law saying that the
current sum to zero at a node. The latter concept is
achieved with the flow variable concept, which is part
of the Modelica semantics.

Inheritance and Modifications. Equations and elements
in one class can be reused when defining another class, us-

model Circuit
Resistor R1(R=10);
Capacitor C(C=0.01);
Resistor R2(R=100);
Inductor L(L=0.1);
VsourceAC AC;
Ground G;

equation
connect (AC.p, R1.p);
connect (R1.n, C.p);
connect (C.n, AC.n);
connect (R1.p, R2.p);
connect (R2.n, L.p);
connect (L.n, C.n);
connect (AC.n, G.p);

end Circuit;

Figure 1. Modelica model of a simple electrical circuit.

connector Pin
Real v;
flow Real i;

end Pin;

model TwoPin
Pin p, n;
Voltage v;
Current i;

equation
v = p.v - n.v;
0 = p.i + n.i;
i = p.i;

end TwoPin;

model Inductor
extends TwoPin;
Real L = 0.1;

equation
L* der(i) = v;

end Inductor;

Figure 2. Source code of
the Inductor model and
its base class TwoPin .

Figure 3. The structure of
a Modelica compiler.

ing the concept of inheritance. For instance, in Figure 2,
the Inductor inherits behaviour from model TwoPin .
Moreover, it is also possible to modify declaration equa-
tions, such as Real L=0.1 in model Inductor , or even
replacing class instances. For example, if a large model
of a car is created, it is possible to replace the gearbox
without effecting the other parts of the model.

Modelica is a large and complex language, consisting of
many more constructs, such as inner-outer components,
arrays, matrices, expandable connectors etc. For a more
comprehensive overview, see [14].

The Compilation Process

To be able to understand the research problem, we will first
give a brief overview of the compilation process.

A Modelica compiler can generally be divided into two
parts; depicted in Figure 3. In the first part, scanning and
parsing results in a abstract syntax tree. The Abstract
Syntax Tree (AST) is then type-checked and elaborated
into a flat system of equations. This gives us the following
definitions:

2 2007/3/22



Figure 4. Relations between possible errors and faults in M&S-environment.

Definition 2 (Flat system of equations). A flat system of
equations is a set of declared variables of primitive types
together with a set of equations referencing these variables.

Definition 3 (Elaboration). Elaboration is the task of pro-
ducing a flat system of equations from the AST of a model.

In the second part, different symbolic manipulation and
optimizations are performed on the equation system. The
symbolic transformation module then generates a program,
normally C code. This program is then linked together
with a numerical solver, such as DASSL [29], which is used
for solving the equation system. Finally, this executable is
executed, which produces the simulation result.

2. Problem Area
EOO modeling and simulation is a rapid way of modeling
systems, by reusing well defined components. If the compo-
nents do not exist, they can be created by using the declara-
tive notation of equations. However, it is not always possible
to simulate an EOO model, since the model may be incor-
rectly specified. Furthermore, even if a simulation result is
generated, it does not imply that this is the correct result.

We will in the following section outline the overall prob-
lems and challenges regarding error handling in EOO lan-
guages and its environment.

2.1 Detecting Errors - Isolating Faults

By following the terminology defined in IEEE Standard 100
[25], we define an error to be something that is made by
human beings. As a consequence of an error, a fault exists
in an artifact, such as an EOO model, source code or a
language specification. Another word for fault would be bug
or defect. If a fault is executed, this results in a failure, i.e.,
it is possible to detect that something has gone wrong.

People make mistakes, i.e., commit errors when modeling
a system or creating a software. This can result in incorrect
simulation results, or even no results at all. To produce
products (e.g. aircraft, cars, and factory machines) based
on incorrect simulation results, can be very expensive or
even result in devastating consequences. Hence, it is of great
importance to efficiently handle errors in a sound manner.

To mitigate the fact that people make errors, we see three
major challenges regarding error handling:

1. Detect the existence of an error early. If a simula-
tion fails, it is trivial to detect that an error must exist.
However, if a simulation job takes 48 hours to complete,
it is not desirable to wait 46 hours before the error is de-
tected. Furthermore, when a simulation produce a result,
how do we then know that this result is correct?

2. Isolate the fault implied by the error. If we have
detected that an error must exist, how do we then know
where the actual fault is located? Is it located in the main
model, in some model library, or even in the simulation
tool itself? For example, if an engine is modeled, resulting
after elaboration in an equation system containing 20000
equations, but 20001 unknowns, it is trivial to detect that
this is a fault. However, it is a non-trivial task to isolate
the fault so that the error can be resolved.

3. Guarantee that faults do not exist. If we can detect
an error by using e.g. testing and then isolate the fault
using some kind of debugging technique, how do we know
that there do not exist any other errors? Consequently,
would it be possible to give guarantees that some kind of
faults cannot exist in a model, e.g. that a specific type of
errors will always be detected?

2.2 Errors and Faults in an M&S-Environment

There are many different sources of errors in an M&S en-
vironment. Consider Figure 4, which outlines relations be-
tween sources of errors and faults.

The center box illustrates the simulation tool, which takes
an EOO model as input (left side) and produces a simulation
result if the simulation was successful, or a simulation failure
report if an error occur during simulation. In the model,
there are three actors that can produce errors that affect
the tool’s output.

System Modeling Errors

A system modeling error can result in that the EOO model
contains a EOO model fault, which obviously affects the sim-
ulation result. Some modeling errors can result in failures al-
ready in the elaboration phase (e.g. illegal access of elements
in objects), while other result in simulation failures during
simulation (e.g. numerical singularities). Moreover, an engi-
neer can make mistakes while modeling a system, which still
gives simulation result, but perhaps wrong values. One such
area where errors easily are introduced is inconsistency with
respect to physical units and dimensions. For example, in
September 1999, the NASA Mars Climate Orbiter Mission
lost contact with the spacecraft during the Mars orbit ma-
neuver. This failure was eventually traced back to a software
flaw when converting between English and metric units [33]

Language Design and Specification Errors

Almost all commonly used languages evolve over time, which
results in high demands on the language design effort and
the work to produce precise, consistent, and error free lan-
guage specifications. The Modelica language is no exception,
which has resulted in a large and complex language with an

3 2007/3/22



informal specification [24] using plain text. This fact can
lead to language design errors, since it is hard to grasp the
semantics of the language. Moreover, if the language design
effort intends to give guarantees that a certain kind of mod-
eling error should be detected, it is obviously necessary that
the specification is precise and easy to reason about.

Tool Implementation Errors

In addition, language specification faults and unclear se-
mantics may lead to tool implementation errors. If only one
tool exists for the language, the importance of implemen-
tation errors compared to the specification might be ignor-
able. However, if there exist several tools, tool implementa-
tion errors may lead to incompatible models or even non-
deterministic simulation results.

While all different sources of errors may affect the output
result from a tool, it is obviously even more challenging to
detect and isolate the faults during the tool and language
development life-cycles.

3. Related Work
Error handling in an M&S environment is a large and com-
plex subject that involves several scientific disciplines, e.g.,
computer science, scientific computing, electrical and me-
chanical engineering. In this section, we will briefly survey
three areas which are particular interesting from a computer
science perspective.

3.1 Precise Language Specifications

There exist several languages which fall into the category of
EOO languages used for modeling and simulation of physical
systems. Besides Modelica, such languages are e.g. gPROMS
[26] and VHDL-AMS [11].

Most of these languages have specifications where the
syntax is formally specified using some variant of BNF,
while the elaboration and simulation semantics is informally
specified using plain text.

This holds also for the Modelica specification, where even
the explicit notation of types are indirectly specified, due to
the fact that the language make use of a structural type sys-
tem [4]. Early versions of the language was partially speci-
fied using natural semantics in a compiler generation system
called Relational Meta Language (RML) [28]. This work [19]
has during the last 9 years evolved into the OpenModelica
project [15], with the goal to be a complete Modelica com-
piler, but not a formal specification. Lately, efforts have been
made to specify parts of the elaboration process [23] using
an algorithmic approach, excluding the type system.

gPROMS [26] does not have any official language spec-
ification, since it was commercialized as a product in the
year 1997 [31]. However, Barton’s PhD thesis [3] describes
an early version of the language informally.

VHDL-AMS is designed to be a superset of VHDL, to
support simulation of continuous-time and hybrid systems
[11]. The language specification, which has an informally
described semantics, became an IEEE standard in 1999 [16].

3.2 Well-Constrained Models

A necessary but not sufficient requirement of an EOO model
is that it has the same number of unknowns as equation after
elaboration. It is trivial to detect this after elaboration, but
challenging to isolate in which class the missing or extra
equation should be located. Bunus PhD thesis [6] suggests a
static debugging approach to this problem, where equations

are annotated during elaboration, and then the under-, over-
, and well-constrained parts of the equation system are
identified. The tool will then gives suggestions of equations
that should be added or removed.

3.3 Dimension- and Unit-checking

Dimension and unit checking is far from a new research
area. Many library-based approaches exist for imperative
programming languages, such as a package approach for Ada
[17] and a template approach in C++ [34]. In Kennedy’s
thesis [18], an extension of a core calculus of ML with
support for type inference over dimension types is given.
Lately, dimension and unit checking has also been addressed
in a nominally typed object-oriented language [1].

Besides the work on gPROMS [27, 32], few attempts has
been tried to incorporate dimensional and / or unit checking
in EOO languages. In addition, even though Modelica today
supports syntax for stating units of variables, no sound
solution exists that guarantees the absence of unit errors.

4. Thesis Statement
In the following section, the research hypotheses of the thesis
are given, delimitations are stated, and some of the problems
and questions resulting from the hypotheses are discussed.

4.1 Research Hypotheses

Theory about types, type systems, static type checking, and
programming languages is a well established and mature
research area, where significant results have been established
during the last decades [8, 9, 30]. However, this theory has
been sparsely used in EOO related languages, especially for
detecting and isolating faults in models. This observation
leads to our first hypothesis of this thesis proposal.

Hypothesis 1. By making use of a type system and static
type checking, we can detect physical unit and constraint
errors in an EOO model at an early stage in the compilation-
simulation process, and thus precisely isolate the fault(s).

Hence, we believe that by making use of types, we can
attack the first two challenge areas presented in Section 2.1.
However, this still does not give any guarantees for absence
of errors. For that reason, we state the following:

Hypothesis 2. By proving type safety of the EOO language,
we can by applying static type checking on a model guarantee
that no faults arising from unit or constraint errors exist in
the model.

As stated earlier, Modelica has become a large and complex
language, where the semantics is informally described. To be
able to prove type soundness (type safety), the language se-
mantics must be specified formally using operational seman-
tics [30, 35]. However, to formally specify the entire Modelica
language seems to be a very hard problem.

Hypothesis 3. By designing a kernel language that models
the core concepts of the elaboration phase of Modelica, where
the elaboration semantics and the type system are specified
formally using operational semantics, it is possible to prove
the absence of unit and constraint faults for a model in the
kernel language.

Since the above hypotheses only gives guarantees for models
defined in the kernel language, we state the following last
hypothesis.

4 2007/3/22



Hypothesis 4. By transforming a Modelica model into the
kernel language (where the utilized constructs in the model
can be expressed in the kernel language), we can guarantee
the absence of unit and constraint faults in the Modelica
model by type-checking the transformed model in the kernel
language.

However, the above hypothesis assumes that the transfor-
mation of the model is correct.

Hypothesis 5. The kernel language is expressive enough to
model the essence of the Modelica semantics and still small
enough to make it possible to reason about. Furthermore, the
transformation rules from Modelica to the kernel language
can be concisely and clearly expressed.

Failure of this last hypothesis does not necessarily mean
that the core language is not expressive enough. Instead,
we argue that this can show weaknesses and inconsistency
in the Modelica language semantics. Hence, our approach
can also enable improved language design of the Modelica
language.

Due to the wide scope and strong claims of our hypothe-
ses, the following delimitations are given to narrow down the
scope of the research proposal for the thesis.

4.2 Delimitations

• Only continuous-time language constructs are consid-
ered, i.e., hybrid simulation is excluded from the primary
study.
• Only structurally non-singular models can be detected

and faults isolated at the model level. Numerically non-
singular systems cannot be detected until simulation
time.
• Several advanced (and questionable) features of the Mod-

elica language may be excluded from the kernel language,
such as expandable connectors.
• Only the semantics of the elaboration phase is intended

to be included in the kernel language, i.e. the simulation
semantics is excluded.

4.3 Problems and Outstanding Questions

From the hypotheses stated in the previous section, we will
here elaborate on the problems implied by the hypotheses.

Defining the Kernel Language

The first main problem of this work is to define a minimal
kernel language that is small enough to make it possible to
reason about and perform proofs upon, and still expressive
and complete enough to capture the essence of Modelica’s
elaboration semantics.

One design problem is related to the choice of terms in
the kernel language. For example, should there exist dif-
ferent terms for modification, redeclaration, inheritance or
should it be one construct that models all these concepts?
How do we define inner and outer components, that require
instance hierarchy scoping, while other constructs are lexi-
cally scoped? Can all similar constructs such as connector ,
model , class , and record be unified into one term in
the kernel language. Which constructs are part of the type
system, and which are part of the untyped language (e.g.
replaceable )?

Other issues relate to the problem of specifying the se-
mantics using operational semantics, for example, how do
we specify the connect semantics with flow variables in a
consistent way, without the need of too many rules?

Furthermore, it is a challenge to design the static type
system so that it is not too conservative, i.e. that the type
checker rules out too many legal terms.

There are many questions to be answered and decisions
to be taken to be able to model the rather unusual semantics
of the elaboration phase in a compact and consistent way.

Extending the Type System to Detect Errors

According to our hypotheses, we intend to extend the types
of the kernel language to be able to detect constraint errors,
i.e. if the model is over- or under-constrained during type
checking. The question is what we should extend the type
with? What information is needed to be carried by the types
of object and classes? Is it possible to guarantee more than
that a model has the same number of equations as unknowns,
e.g. to guarantee that a model is structurally non-singular
[7]? If we can detect at the class level that a model is for
example under-constrained, can we then state where in the
model the fault is located?

Much of the theory concerning unit checking is already
established, but the difficulty depends on the requirements
that are put on the system. Should it be possible to define
new units in the language? Do we limit the dimensions to be
represented by integer? Should parametric polymorphism be
allowed over dimensions and types? Our work in unit and
dimensional checking has not yet been started. Hence, these
requirements are still to be specified.

4.4 Expected Contributions

The main contributes of this thesis are expected to be:

• A minimal and expressive formally specified kernel lan-
guage that models the essence of the elaboration process
in an EOO language.
• An approach to detect and isolate constraint errors at

the class level, without the need for elaboration.
• An industrially suitable solution to guarantee the absence

of unit errors in Modelica models.
• The first (to the best of our knowledge) type soundness

proof of the elaboration process in an EOO language.
• A better theoretical foundation of the semantics of EOO

languages, that aid improved language design of EOO
languages in general and Modelica in particular.
• Improve the understanding of types in the Modelica

language.

5. Method
In the following section we describe the method used to
justify our hypotheses.

5.1 Steps

Our method can be divided into the following five separate
steps which are to be iterated until the hypotheses are
considered to be reasonable justified.

Step 1 - Define Kernel Language. Develop the mini-
mal and expressive kernel language with a clear sepa-
ration between the untyped dynamic semantics and the
static type system.

Step 2 - Extend the Type System. Extend the type
system to handle constraint and unit / dimension er-
rors.

Step 3 - Prove Type Safety. Prove the type safety of the
extended language using the progress and preservation
theorem [30, 35].

5 2007/3/22



Step 4 - Implement Prototype. Implement a prototype
of the kernel language for both the static and dynamic
semantics. Implement the transformation from a Model-
ica model into the kernel language’s AST. The output
from the prototype should be a flat system of equations
that can then be simulated in a standard Modelica tool.

Step 5 - Validate Prototype. This is the final and most
critical step to be able to justify our hypotheses. The aim
is to select a number of relevant Modelica models from
the industry and then inject faults. In the positive test
cases, it is checked that:

1. The model passes the kernel language’s type checker.

2. The generated flat system of equations is simulated
by another Modelica tool and the simulation result
is compared to a simulation of the original Modelica
model.

In all the negative test cases, the type checker should
reject the model and give a response of where the fault
is located.

5.2 Method Validation and Criticism

This experimental approach of justifying the hypotheses are
naturally very sensitive to the number of test cases, number
of test models, and the relevance and quality of the models.
Consequently, failure to do these choices right would result
in less convincing research results.

However, we claim that the method to justify hypotheses
1 must have a more inductive then deductive characteris-
tic [10]. This due to the fact of the subjective statement
”precisely isolate the fault(s)”. The soundness of hypothe-
sis 2 and 3 is proven for the kernel language in step 3 the
method. Hypothesis 4 follows by proving the soundness of
the kernel language. However, the challenge is to not make
it too conservative, i.e., that valid Modelica models are re-
jected.

6. Status and Plan
In the following section, a short summery of the status
of current work is given and the plan for future work is
outlined.

6.1 Status of Current Work

Our initial work focused on the understanding of the elab-
oration semantics and the type system of Modelica. It was
shown that a clear definition of what a type really is in
Modelica was missing in the specification. Hence, this work
elaborates on the type concept in Modelica and a concrete
syntax of types was proposed [4].

Our second area of work concerned the problem of detect-
ing and isolating constraint faults early in the elaboration
phase [5]. The concept, which we call structural constraint
delta, can determine if a model is under- or over-constrained
without the need to elaborate the model to a flat system of
equations. In contrary to work by Bunus & Fritzson [7], the
isolation of the fault is not performed on the system of equa-
tion, but at the type level. The approach makes use of static
type checking and consists of a type inference algorithm. A
prototype has been implemented for a subset of the Mod-
elica language, and successfully validated on several small
examples.

This work was a first attempt to attack the problem of
under- and over-constrained system of equations using a
type system. However, in contrary to this thesis proposal, no

formal semantics was used. Consequently, no type soundness
proof was given.

6.2 Plan for Future Work

Currently, our work is focused on defining the untyped part
of the kernel language. This should then be extended by a
type system followed by proof of its type soundness. Our
aim is to present a licentiate thesis containing this work on
the kernel language together with the two earlier published
papers in the year of 2007.

The next goal is to incorporate unit checking into the
kernel language, with a first prototype in the early 2008.
The aim is further to incorporate and validate the concept of
structural constraint delta in the formal semantics. Finally,
the plan is to defend the PhD thesis at the end of 2009.

7. Conclusion
We have described the background and problem area of
detecting errors and isolating faults in an equation-based
object-oriented language used in a modeling and simulation
environment.

The single most important expected contribution of our
work would be a minimal and expressive formally specified
kernel language that models the essence of the elaboration
step in an EOO language. With this language we expect to
show that it is possible guarantee that certain kind of faults
are always possible to detect and isolate in a model.

We believe that this work will in the future be able to
support larger portions of EOO languages in general and
the Modelica language in particular, so that ultimately the
whole language can be specified and proven for type safety.

References
[1] Eric Allen, David Chase, Victor Luchangco, Jan-Willem

Maessen, and Jr. Guy L. Steele. Object-Oriented Units
of Measurement. In OOPSLA ’04: Proceedings of the
19th annual ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications, pages
384–403, New York, USA, 2004. ACM Press.

[2] Deborah J. Armstrong. The quarks of object-oriented
development. Communications of the ACM, 49(2):123–128,
2006.

[3] Paul Inigo Barton. The Modelling and Simulation of
Combined Discrete/Continuous Processes. PhD thesis,
University of London, 1992.

[4] David Broman, Peter Fritzson, and Sébastien Furic. Types
in the Modelica Language. In Proceedings of the Fifth
International Modelica Conference, Vienna, Austria, 2006.

[5] David Broman, Kaj Nyström, and Peter Fritzson. Deter-
mining Over- and Under-Constrained Systems of Equations
using Structural Constraint Delta. In Proceedings of the
Fifth International Conference on Generative Programming
and Component Engineering (GPCE’06), Portland, Oregon,
USA, 2006. ACM Press.

[6] Peter Bunus. Debugging Techniques for Equation-Based
Languages. PhD thesis, Linköping University, 2004.

[7] Peter Bunus and Peter Fritzson. Automated Static Analysis
of Equation-Based Components. SIMULATION, 80(7–
8):321–245, 2004.

[8] Luca Cardelli. Type Systems. In The Computer Science
and Engineering Handbook, chapter 97. CRC Press, second
edition, 2004.

[9] Luca Cardelli and Peter Wegner. On Understanding Types,
Data Abstraction, and Polymorphism. ACM Comput. Surv.,
17(4):471–523, 1985.

6 2007/3/22



[10] Alan Chalmers. What is this thing called Science? Open
University Press, Berkshire, United Kingdom, 1999.

[11] Ernst Christen and Kenneth Bakalar. VHDL-AMS - A
Hardware Description Language for Analog and Mixed-
Signal Applications. IEEE Transactions on Circuits
and Systems II: Analog and Digital Signal Processing,
46(10):1263–1272, 1999.

[12] Dynasim. Dymola - Dynamic Modeling Laboratory with
Modelica (Dynasim AB). http://www.dynasim.se/ [Last
accessed: 8 March 2007].

[13] Hilding Elmqvist, Sven Erik Mattsson, and Martin Otter.
Modelica - A Language for Physical System Modeling,
Visualization and Interaction. In Proceedings of the IEEE
International Symposium on Computer Aided Control
System Design, 1999.

[14] Peter Fritzson. Principles of Object-Oriented Modeling and
Simulation with Modelica 2.1. Wiley-IEEE Press, New York,
USA, 2004.

[15] Peter Fritzson, Peter Aronsson, Adrian Pop, H̊akan Lund-
vall, Kaj Nyström, Levon Saldamli, David Broman, and
Anders Sandholm. OpenModelica - A Free Open-Source
Environment for System Modeling, Simulation, and Teach-
ing. In IEEE International Symposium on Computer-Aided
Control Systems Design, Munich, Germany, 2006.

[16] IEEE 1706.1 Working Group. IEEE Std 1076.1-1999, IEEE
Standard VHDL Analog and Mixed-Signal Extensions. IEEE
Press, New York, USA, 1999.

[17] Paul N. Hilfinger. An ADA Package for Dimensional
Analysis. ACM Trans. Program. Lang. Syst., 10(2):189–
203, 1988.

[18] Andrew Kennedy. Programming Languages and Dimen-
sions. PhD thesis, University of Cambridge, 1996.

[19] David K̊agedal and Peter Fritzson. Generating a Modelica
Compiler from Natural Semantics Specifications. In Pro-
ceedings of the Summer Computer Simulation Conference,
1998.

[20] Peter Kunkel and Volker Mehrmann. Differential-Algebraic
Equations Analysis and Numerical Solution. European
Mathematical Society, Züric, Switzerland, 2006.

[21] MathCore. MathModelica System Designer: Model based de-
sign of multi-engineering systems. http://www.mathcore.
com/products/mathmodelica/ [Last accessed: 8 March
2007].

[22] MathWorks. The Mathworks - Simulink - Simulation
and Model-Based Design. http://www.mathworks.com/
products/simulink/ [Last accessed: 6 March 2007].

[23] Jakob Mauss. Modelica Instance Creation. In Proceedings
of the 4th International Modelica Conference, Hamburg,
Germany, 2005.

[24] Modelica Association. Modelica - A Unified Object-Oriented
Language for Physical Systems Modeling - Language
Specification Version 2.2, February 2005. Available from:
http://www.modelica.org [Last accessed: 29 March
2006].

[25] IEEE Standards Information Network. IEEE 100 The
Authoritative Dictionary of IEEE Standards Terms. IEEE
Press, New York, USA, 2000.

[26] M. Oh and Costas C. Pantelides. A modelling and Simulation
Language for Combined Lumped and Distributed Parameter
Systems. Computers and Chemical Engineering, 20(6–
7):611–633, 1996.

[27] Daniel Persson. Dimensional Analysis and Inference for
gPROMS. Master’s thesis, Mälardalen University, 2003.

[28] Mikael Pettersson. Compiling Natural Semantics. PhD
thesis, Linköping University, 1995.

[29] Linda R. Petzold. A Description of DASSL: A Differen-
tial/Algebraic System Solver. In IMACS Trans. on Sci-
entific Comp., 10th IMACS World Congress on Systems
Simulation and Scientific Comp., Montreal, Canada, 1982.

[30] Benjamin C. Pierce. Types and Programming Languages.
The MIT Press, 2002.

[31] PSE. E-mail correspondence with Process Systems Enter-
prise Limited, July 7, 2006. Company webpage: http:
//www.psenterprise.com/ .

[32] Mikael Sandberg, Daniel Persson, and Björn Lisper. Au-
tomatic Dimensional Consistency Checking for Simulation
Specifications. In SIMS 2003, page 6, September 2003.

[33] Arthur G. Stephenson, Lia S. LaPiana, Daniel R. Mulville,
Peter J. Rutledge, Frank H. Bauer, David Folta, Greg A.
Dukeman, Robert Sackheim, and Peter Norvig. Mars
Climate Orbiter Mishap Investigation Board Phase 1
Report. Technical report, NASA, 1999. Available from:
ftp://ftp.hq.nasa.gov/pub/pao/reports/1999/
MCO_report.pdf [Last accessed: 10 November 2005].

[34] Zerksis D. Umrigar. Fully static dimensional analysis with
C++. SIGPLAN Not., 29(9):135–139, 1994.

[35] Andrew K. Wright and Matthias Felleisen. A Syntactic Ap-
proach to Type Soundness. Information and Computation,
115(1):38–94, 1994.

7 2007/3/22


