Linkdping Studies in Science and Technology
Thesis No. 1333

Meta-Languages and Semantics for
Equation-Based Modeling and
Simulation

by

David Broman

Linkoping University

INSTITUTE OF TECHNOLOGY

Department of Computer and Information Science
Linkdpings universitet
SE-581 83 Linkdping, Sweden

Linkdping 2010

Copyright notice for Chapter 2 and 6:

© ACM, 2006. This is the author's version of the work. It is posted here by permission of ACM for your
personal use. Not for redistribution. The definitive version was published in Proceedings of the 5th
international conference on Generative programming and component engineering, Portland, Oregon,

USA , 2006, http://doi.acm.org/10.1145/1173706.1173729

ACM COPYRIGHT NOTICE. Copyright © 2006 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page. Copyrights for components of this
work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Publications Dept., ACM, Inc., fax +1 (212) 869-0481, or
permissions@acm.org.

Cover page: The first equation with equality sign, by Robert Recorde, 1557 [60].
Watercolor interpretation of the equation by David Broman, 2010.

ISBN 978-91-7393-335-3
ISSN 0345-7524
Thesis No. 1333
October 1, 2010

Electronic version available at:
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-58743
Printed by LiU-Tryck, Linkdping 2010

http://doi.acm.org/10.1145/1173706.1173729

Abstract

Peaforming computational experiments on mathematical models instead of building and
testing physical prototypes can drastically reduce the develop cost for complex systems
such as automobiles, aircraft, and powerplants. In the past three decades, a new category
of equation-based modeling languages has appeared that is based on acausal and object-
oriented modeling principles, enabling good reuse of models. However, the modeling
languages within this category have grown to be large and complex, where the specifi-
cations of the language’s semantics are informally defined, typically described in natural
languages. The lack of a formal semantics makes these languages hard to interpret unam-
biguously and to reason about. This thesis concerns the problem of designing the seman-
tics of such equation-based modeling languages in a way that allows formal reasoning
and increased correctness. The work is presented in two parts.

In the first part we study the state-of-the-art modeling language Modelica. We analyze
the concepts of types in Modelica and conclude that there are two kinds of type concepts:
class types and object types. Moreover, a concept called structural constraint delta is
proposed, which is used for isolating the faults of an over- or under-determined model.

In the second part, we introduce a new research language callétbtdfeling Kernel
Language (MKL) By introducing the concept of higher-order acausal models (HOAMS),
we show that it is possible to create expressive modeling libraries in a manner analogous
to Modelica, but using a small and simple language concept. In contrast to the current
state-of-the-art modeling languages, the semantidwaf to usethe models, including
meta operations on models, are also specified in MKL libraries. This enables extensible
formal executable specifications where important language features are expressed through
libraries rather than by adding completely new language constructs. MKL is a statically
typed language based on a typed lambda calculus. We define the core of the language
formally using operational semantics and prove type safety. An MKL interpreter is im-
plemented and verified in comparison with a Modelica environment.

This research work has been funded by CUGS (the National Graduate School in Com-
puter Science, Sweden), by SSF under the VISIMOD Il project, by Vinnova under the
NETPROG Safe and Secure Modeling and Simulation on the GRID project, by the ITEA2
OPENPROD project, by Linképing University under the ELLIIT project, and by the
Swedish Research Council (VR).

Department of Computer and Information Science
Linkdpings universitet
SE-581 83 Linkdping, Sweden

To my lovely wife Asa and wonderful childen Tove and Hampus

Acknowledgments

First, | would like to express my gratitude to my supervisor Peter Fritzson, who made
this thesis possible in the first place by believing in me and enrolling me into the PhD
program. You have supported and helped me in many situations during this thesis work.

My greatest thanks to Jeremy Siek who was my host when | was visiting University
of Colorado at Boulder as a guest scholar in 2008 and then became my co-supervisor.
Your help, energy, and friendliness have been invaluable for me while struggling with
semantics, lemmas, and proofs.

I would especially like to thank Thomas Schon, my old friend and research "mentor”,
for giving me inspiration and advice during this thesis work.

Thanks to all the members of Modelica Association who have taken part in the Model-
ica design meetings that | have been attending. These discussions have given many ideas
to this research. | would also like to thank all colleagues at PELAB for interesting, fun,
and sometimes devastating long coffee break discussions. A special thanks goes to Bodil
Mattson Kihlstrém for all your help during these years.

These five years have not just included time for research, but also a large amount of
teaching. | would especially like to thank Kristian Sandahl who has been my colleague re-
garding common teaching efforts in software engineering. Our interesting and sometimes
too long discussions have been giving a lot of energy during these years.

During most of the time of this thesis work, | have been living in Stockholm but
working in Linkdping. Several people have helped me to make this life easier. Thanks to
Thomas Sjoland and Bjorn Lisper for arranging a room at KTH in Kista, Mikael Zayenz
Lagerkvist for interesting discussions, and my grandmother Ingrid Broman who has been
an almost too friendly host in Linkdping.

I would also like to thank the following people for many interesting discussions dur-
ing the last years: Johan Akesson, Sébastien Furic, Dirk Zimmer, Hans Olsson, Thomas
Doumenc, and Michael Tiller. | would especially like to thank Henrik Nilsson for all
rewarding discussions and for inviting me over to Nottingham.

Parts of the final draft of this thesis have been proofread by Jeremy Siek, Thomas
Schon, Henrik Nilsson, Walid Taha, Sibylle Schupp, and Hilding EImgvist. I'm grateful
for all comments and suggestions which substantially have improved this work. | would
especially like to thank Peter Fritzson for his painstaking effort of reading the whole draft.

Thanks to all my friends and family for all the support you have given me. Thanks
to my mother Eva, father Olof, mother-in-law Britt-Marie, and father-in-law Rune for all
invaluable help you have given me and my family during the last months. Especially, |
would like to express my deepest gratitude to my lovely wife Asa, who has encouraged
me during this time. Without your help, love, and energy, this thesis would never have
been completed. | also want to thank my wonderful children Tove and Hampus. During
my parental leaves in the fall 2008 and the fall 2010 you have really reminded me that
there are other more important things in life than modeling languages.

Finally, | would like to thank the Ethiopian goatherd who according to a legend first
discovered coffee. Without this vital beverage, this thesis would never have been finished.

Linkdping, August 30, 2010
David Broman

Vi

1

Contents

Introduction 1
1.1 Modelingand Simulation 2
1.1.1 Example of a Mechanical System 3
1.1.2 Importance of Modeling and Simulation 6
1.2 Equation-Based Object-Oriented Languages 6
1.2.1 Domain-SpecificLanguage 7
1.22 Objects e 8
1.2.3 Mathematical Equations and Acausality 9
1.3 ProblemArea 12
1.3.1 SafetyAspects 12
1.3.2 Expressiveness and Extensibility Aspects 14
1.4 ResearchQuestions i 14
1.4.1 Understanding the Semantics of the Modelica Language 15
1.4.2 Early Detection of ModelingErrors 15
1.4.3 Expressive and Extensible Formal Semantics 15
144 SCOPE e 16
1.5 Thesis Outline and Contributions 16
151 Partl-The ModelicaLanguage 16
1.5.2 Partll - The Modeling Kernel Language 17
1.5.3 Partlll - Related Work and Concluding Remarks 18
154 PublishedPapers 18
155 Originof Contributions 20
1.5.6 ReadingGuidelines. 21
1.6 ResearchMethod 21

Contents

The Modelica Language 23
Introduction to Modelica 25
2.1 Equation-Based Modelingin Modelica. 26
2.2 The Modelica Compilation and Simulation Process 29
2.3 Chapter Summary and Conclusions. 31
Specifying the Modelica Language 33
3.1 Introductionand Motivation oL, 34
3.1.1 Unambiguous and Understandable Language Specification 34
3.1.2 Previous Specification Attempts 34
3.1.3 Abstract Syntax as a Middle-Way Strategy 35
3.2 Specifyingthe Modelicalanguage 36
3.2.1 Transformation Aspectd¥hatis Actually the Result of an Exe-
cution? 36

3.2.2 Checking AspectsWhatis actually a Valid Modelica Model? . . 37
3.2.3 Specification Approachesgfow can we State What it's all About? 39

3.3 An Abstract Syntax Specification Approach 40
3.3.1 Specifying the ElaborationProcess 40
3.3.2 Specifyingthe AbstractSyntax. 41
3.3.3 The Structure of an AbstractSyntax 42
3.3.4 A Connector S-AST Example with Meta-Variables 42

3.4 Chapter Summaryand Conclusions. 44

Growing the Modelica Language 45

4.1 Different Ways of GrowingaLanguage 46
411 TheWaysof GrowthMatrix 46
4.1.2 Growth by Adding New Language Features 46
4.1.3 Growth by Adding Syntactic Sugar a7
4.1.4 Growth by New Meanings of Annotations or Built-in Functions . 49
4.1.5 Growth by New User Defined Abstractions 50
4.1.6 RestrictingthelLanguage 50

4.2 TheRightWaytoGrow i 51
4.2.1 Stakeholders of an Object-Oriented Equation-Based Modeling Lan-

QUAJE . . . e 51
4.2.2 Language Designers’ Perspective 51
4.2.3 EndUsers Perspective 52
4.2.4 Library Users’ Perspective 52
4.2.5 Tool Vendors’ Perspective L 53

4.3 Chapter Summary and Conclusions.. 53

Types in the Modelica Language 55

5.1 Types, Subtyping and Inheritance 56
5.1.1 Language Safety and Type Systems 56
5.1.2 Subtyping 58
5.1.3 Inheritance 59

5.1.4 Structural and Nominal Type Systems 61

Xi

5.2 Polymorphism. 63
52.1 Subtype Polymorphism. 64
5.2.2 Parametric Polymorphism 65
5.2.3 Ad-hoc Polymorphism 65

5.3 ModelicaTypes e 67
5.3.1 Class Typesand ObjectTypes 67
5.3.2 PrefixesinTypes 71
5.3.3 Completeness ofthe Type Syntax 74

5.4 Chapter Summaryand Conclusions. 74

Over- and Under-Constrained Systems of Equations 75

6.1 Problemand Motivation L L 76

6.2 FeatherweightModelica 77
6.2.1 Syntaxand Semantics 78
6.2.2 Type-Equivalenceand Subtyping 78

6.3 The Approach of Structural ConstraintDelta 80
6.3.1 Algorithms for Computing’a andEx 81
6.3.2 Extendingthe Type Systemwiffn 87

6.4 Prototype Implementation L. 87
6.4.1 Constraint Checking of Separately Compiled Components 88
6.4.2 Error Detection and Debugging L. 90

6.5 Chapter Summary and Conclusions. 91

The Modeling Kernel Language 93
Introduction to Functional Programming in MKL 95

7.1 Functional Programmingin MKL 96
7.1.1 Higher-Order Functionsand Currying 97
7.1.2 Tuples, Lists, and Pattern Matching 101
7.1.3 Equality, Abstract Data Types, and Modules 103

7.2 Lambda Calculus and Operational Semantics 105
7.2.1 UntypedLambdaCalculus 105

7.3 Chapter Summary and Conclusions. 108

Modeling in MKL 109

8.1 Basic Physical ModelinginMKL 110
8.1.1 ASimple Electrical Circuit. 111
8.1.2 Models and Equation Systems, 113

8.2 Higher-Order AcausalModeling 115
8.2.1 Parameterization of Models with Models 116
8.2.2 Recursively DefinedModels 117
8.2.3 Higher-Order Functions for Generic Model Composition 119

8.3 Dynamic Data Structures and Polymorphism. 121
8.3.1 Model Composition over Listsof Models 121
8.3.2 Parametric Polymorphism, 122

8.4 Chapter Summaryand Conclusions. 123

Xii Contents
9 Intensional Analysis of Models 125
9.1 ModelsandUnknowns, 126
9.1.1 Unknowns 126
9.1.2 ModelType 126
9.1.3 Modelsas Data Structures 128
9.2 Intensional Analysisof Models 129
9.2.1 Pattern MatchingonModels 129
9.2.2 Analyzing Systems of Equations 131
9.3 Chapter Summary and Conclusions. 135
10 Semantics of MKL 137
10.1 Syntax e 137
10.2 Type System and Model Lifting 139
10.2.1 TypeConsistency v v v i e 140
10.2.2 TypeSystem e 141
10.2.3 ModelLifting 143
10.3 Cast Insertion and Dynamic Semantics 144
10.3.1 Castlnsertion 145
10.3.2 Dynamic Semantics 146
10.3.3 CastsS 148
10.4 Type Safety 148
10.5 Extendingthe Core 151
10.5.1 Other ExpressionsandtheBotType 151
10.5.2 PatternMatching 152
10.5.3 Lifting and Binary Operators 152
1054 Equality 152
10.6 Chapter Summary and Conclusions. 153
11 Elaboration Semantics 159
11.1 Overview of Elaboration 159
11.1.1 Type CheckingofModels 160
11.1.2 Collapsing the Instance Hierarchy 161
11.2 Connection Semantics 161
11.2.1 A Minimal Circuitin Modelica 161
11.2.2 AMinimal Circuitin MKL 164
11.2.3 Formalization of the Connection Semantics 168
11.2.4 Composition, and Multiple States 170
11.2.5 Executable Specification 173
11.3 Extracting Model Information 177
11.3.1 Hierarchy Namingvs. Probing 177
11.3.2 Modelingwith ProbesinMKL 178
11.3.3 Elaboration Semanticsof Probes 180
11.4 Chapter Summary and Conclusions. 181

12 Implementation, Verification, and Evaluation 183
121 Implementation 183
12.1.1 File Includerand SymbolTable 184
12.1.2 Desugaring v v i e e e e e e 184
12.1.3 Type Checking and Model Translation 185
12.1.4 Program Evaluation after Translation 185
12.2 UsesofModels 186
12.2.1 Exporting the DAE to Flat Modelica 186
12.2.2 Simulatingthe DAE, 187
12.3 Verification 189
12.4 Discussion and Evaluation 191
12.4.1 Safety ASpects 191
12.4.2 Expressiveness and Extensibility Aspects 193
12.4.3 Performance ASpects o 195
12.5 Chapter Summaryand Conclusions. 196
[l Related Work and Concluding Remarks 199
13 Related Work 201
13.1 Equation-Based Modeling Languages 201
13.1.1 Modelicaand Predecessors 201
13.1.2 ExtensionstoModelica., 202
13.1.3 VHDL-AMS 202
13.1.4 Verilog-AMS 203
13.1.5 gPROMS e 203
13.1.6 HybridChi 203
13.1.7 Functional Hybrid ModelingandHydra 204
13.1.8 Sol e 204
13.1.9 Acumen 205
13.1.10ComparisontoMKL 205
13.2 ModelicaSemantics Lo 205
13.2.1 Natural Semantics 205
13.2.2 Instance Creation 206
13.2.3 ModelicaTypes o v v i i e 206
13.2.4 BalancedModels oo 206
13.2.5 Structural CheckingofModels 207
13.3 MKLSemantics 207
13.3.1 FormalSemantics. 207
13.3.2 Metaprogrammingin EOO Context 208
13.3.3 Metaprogramming in General Purpose Languages. 209
14 Concluding Remarks 211
141 Conclusions 211
14.1.1 Understanding the Semantics of the Modelica Language 212
14.1.2 Early Detection of ModelingErrors 212

Xiv

Contents

14.1.3 Expressive and Extensible Formal Semantics 213
14.2 FutureWork 214
14.2.1 Extensional Metaprogramming. 214
14.2.2 Hybrid and Structural Dynamic Systems 214
14.2.3 Code Generationand Time Aspects 215
14.2.4 Structural ConstraintDelta 215
14.2.5 Polymorphism, Type Classes, and Algebraic Data Types 216
14.2.6 EfficientCompilation. 216
14.2.7 More ComplexModeling. 216
14.2.8 Uses Beyond Simulation 216
A Syntax of MKL 217
Al Concrete Syntax 217
A.1.1 Notational Conventions. 217
Al2 Comments 217
A.1.3 Lexical Structure 217
A.l.4 ReservedWords 218
Al5 Top-Level 218
AL6 TYypes 218
AL7 EXPressions 219
A.1.8 PatternMatching 220
A.2 AbstractSyntax 221
A2.1 TYPES . . e 222
A2.2 EXPressions 223
A23 Values. 223
B Built-in Abstract Data Types 225
B.1 Array 225
B.2 Set. 226
B.3 Map 226
B.4 DAESoIver 228
C Big-step Semantics of MKL Core 229
D MKL Library 231
D.1 Base e 232
D.2 Modeling 233
D.3 Electrical 233
D.4 AnalogElectrical 233
D.5 Mechanical 234
D.6 RotationalMechanical 235
D.7 Elaboration 236
D.8 MechatronicElaboration 239
D.9 Simulation. 239
D.10 ExportModelica 241
D.11 Performance Test SourceCode 243
D.11.1 MechSys 243

XV

D.11.2 CircuitHierarchy
Bibliography

Index

XVi Contents

Introduction

HIS thesis concerns the problem of designing and defining the semantics of equation-
based modeling languages. Such languages, used for mathematical modeling of

the dynamics of complex physical systems (e.g., automobiles, aircraft, and powerplants),
have in the previous decade gained considerable attention from both industry and academia.
This language category is based on the concepts of object-orientation and acausal mod-
eling using equations. This enables good reuse of model components resulting in con-
siderably reduced modeling effort [48]. One such language is Modelica [104], which
is an attempt to unify concepts and notation from several earlier languages originating
from research projects and industrial initiatives, as well as developing a new language
design to address modeling problems. Other examples of languages in this category are
gPROMS [13, 115] for chemical engineering and VHDL-AMS [40, 72] a hardware de-
scription language (HDL) with analog and mixed-signal extensions.

However, these languages are large and very complex, where the concrete syntax is
formally defined using grammars, but the semantics informally described using natural
language. The lack of formal semantics makes these languages hard to interpret unam-
biguously and precisely reason about. A major challenge regarding designing such a
complex modeling language is to find a good trade-off betwaeguage safetfi.e., pro-
tect model abstractions by detecting and isolating errors and fapésiprmancége.g.,
fast model simulation)expressivenesg§.e., ease of expressing complex models and/or
tasks), andextensibility (i.e., mechanisms to add new language features). The topic of
this thesis is the problem of designing and defining language semantics with respect to
some of the trade-offs mentioned above.

The rest of the introduction chapter is organized as follows:

e We first give the background of mathematical modeling and simulation together
with an overview of how equation-based object-oriented (EOO) languages fit into
the picture of domain-specific languages (DSLs) (Section 1.1 and 1.2).

1

2 1 Introduction

e We discuss the problem area (Section 1.3) and state the research questions. (Sec-
tion 1.4).

e We present an outline of this thesis together with a summary of the main contribu-
tions of the work. We list publications that are part of this thesis and describe the
origin of the contributions (Section 1.5).

e Finally, we discuss our scientific viewpoint of the work and the research method
used (Section 1.6).

1.1 Modeling and Simulation

Modeling is today a very active area of research in computer science as well as in most
disciplines of engineering. The termodelis used in various settings meaning com-
pletely different things, which may unfortunately lead to confusion and misunderstanding
regarding the subject. During the recent decades, modeling of software has become very
popular; especially in industry. One of the main driving forces is the Model Driven Ar-
chitecture (MDA) [96] initiative and the popular graphical modeling framework of the
Unified Modeling Language (UML) [113, 114].

This thesis doesot concern modeling or languages used for modeling of software
or software systems. Instead, we are primarily interested in languages in pfysftal
systemscan be described using models. In particular, we are concerned with languages
that can support modeling within in a combination of different physical domains, e.g.,
electrical, mechanical, and hydraulic domains.

To be able to reason about the process of modeling and simulation, some definitions
of terms have to be clarified. The following definition was first coined by Marvin Minsky
in 1965 [35, p. 5]

“A model (M) for a system (S) and an experiment (E) is anything to which E
can be applied in order to answer a question about S”

According to this definition, a model can be seen as an abstraction of the system, where
some details of the real system is left out. The definition does not imply that the model
has to be of a certain kind (e.g., a mathematical formula or computer program), only
that experiments should be possible to apply to it to answer questions about the system.
However, in this thesis the term model meamsathematical modelescribing dynamic
and static properties of a continuous-time system, i.e., a system evolving continuously
as a function of time. Several modeling languages also address discrete-time modeling,
which however is not covered by this thesis and left as future work.

Many physical systems can be describeddoginary differential equations (ODES)
of the form

F(t,x,ﬁc,u) =0, (1.2)
or in explicit state-space form

T = f(t,a:,u), (1.2)

1.1 Modeling and Simulation 3

torque inertiat spring inertia2
/\(il L il L
w BRI LT
3, ? ’ 1

Figure 1.1: A simple model of a rotational mechanical system representing a drive
shaft with a torque.

wherex € R"™ is the unknown state vector to be solved forc R™ the vector of input
signals, and the independent variable representing time.

An ODE has ggeneral solutiofbut when studying a model for a specific application
it is desirable to find ainique solutiorby also giving thenitial conditions The ODE
together with the initial conditions is anitial value problem

i = f(t,z,u) (1.3)
x(to) =T (14)

wherezy € R™ is the initial conditions. Note that the dimensions of the vectgrandx
are equal.

1.1.1 Example of a Mechanical System

Let us consider a simplified example of a drive shaft for a truck, i.e., the part of a power-
train used for transmitting the rotational torque between axles. A graphical model of the
shaft is outlined in Figure 1.1 and an example where such a shaft could be used in reality
is illustrated in Figure 1.2. The model represents two inertias connected in series, with a
spring in between. To the left, a torque is driving the shaft.

Because the inertial bodies are rigid, the angléad) is the same on each side of
the body, here defined @5 andy,. However, the torque (N m) is different between
each component. For exampigis affected both by the driving torque to the left and the
conserved energy in the spring.

We define the angular velocities (rad/s) andv, together with the equations, =
$1 andwy = P5. By using Newton’s law of motion in the rotational domain, we know
that the angular acceleratian(radis?) is proportional to the torque of the shaft, where
the proportionality constant is the inertia (N m/s?). Hence, we have the equations
Ji w1 =71 + mandJs - we = 73 + 74 respectively. Because the right hand side of the
shaft is not connected, we hawge= 0. The torque affected by the spring is proportional
to the angular difference; — 1, where the proportional constanfN m/rad) is called the
spring constant. This adds the equatior= c- (2 — ¢1) to the system of equations. We
also know that the spring torque is the same on each side of the spring, but with different
sign, i.e.,» = —73. Finally, we also have the input torquegiving u = 7.

We now have a system of equations with 8 equations and 8 unkngwng4, wi,
wa, T1, T2, T3, T4), Where four unknowns appears differentiatéd, (o2, w1, ws).

1 Introduction

Figure 1.2: The figure shows Tandem axles RST 2370 A B-Ride Bogie (Volvo
Trucks). The shaft between the axles is an example of a rotating shaft that is part
of a powertrain for transmission of the torque. Used with permission.

We can rewrite our example as follows:

$1
P2
w1
wa
T1
T2
T3

T4

Here the last four equations (1.9-1.12) are ca#légbbraic equations

w1

w2

T + T2
Ji

T3+ Ty
Jo

U

¢ (g2 — 1)
—c (p2 — 1)

0

(1.5)
(1.6)

(1.7)

(1.8)

(1.9)
(1.10)
(1.11)
(1.12)

Recall the definition of an ODE (1.1) where all variables except the independent vari-
able appears differentiated. In the mechanical example above, variables 73, 74
do not appear differentiated. These variables are callgebraicmeaning that they are
free from derivatives. Hence, our system of equations is not an ODE, but a system of

1.1 Modeling and Simulation 5

3.5

N
o
T

0, (rad/s)
N

=
&
T

0.5r

0 5 10 15 20
time (s)

Figure 1.3: Plot of the angular velocity, of the shaft example.

differential algebraic equations (DAEJhe general form of a DAE is
F(t,z,@,y,u) =0, (1.13)

wheret is the independent variable of timea vector of variables that appear differenti-
ated,y a vector of algebraic variables, and vector of input signals.

In this simple example, the algebraic equations can be directly eliminated by substitu-
tion into equations (1.7) and (1.8), thus forming an ODE. However, this is not possible in
the general case and there are sophisticated methods described in the literature for solv-
ing DAEs numerically and symbolically [83, 118]. Differential-algebraic equations is the
kind of equation system used in equation-based languages discussed in this thesis, such
as Modelica, for describing continuous-time behavior.

We have in this example shown how we describe a mathematical model of a mechan-
ical system. We can now use our model to answer questions about the system, using
experiments. This can be performed ussigiulation or as stated by Granino Korn and
John Wait according to Cellier [35, p. 6],

“A simulation is an experiment performed on a model”

Hence, we can simulate our example model to study the behavior of the physical system.
Assuming that we know the parameters of the systdm {2, andc) and that we
have a known input signal, we can simulate the system using a numerical integration
algorithm to solve the system of differential equations
Figure 1.3 shows an example where the angular velagitihas been be plotted for
the interval0 to 20 s. The plot shows how the shaft starts to oscillate due to flexibility
introduced by the spring.

1in the example, we assigh = 10 kg m?, Jo = 2 kg m? andc = 5 N m/rad. We also let the input signal
u be a constant value of 2 N m. These values do not represent a shaft for a powertrain in reality; it is used for
the purpose of showing a clear oscillation.

6 1 Introduction

1.1.2 Importance of Modeling and Simulation

Why is modeling and simulation of physical systems important? Before we discuss this
question, let us definte process of modelingy quoting Cellier and Kofman [37, p. 8]:

“The process ofnodelingconcerns itself with the extraction of knowledge
from the physical plant to be simulated, organizing that knowledge appropri-
ately, and representing it in some unambiguous fashion.”

Modeling and simulation is perhaps one of the most common techniques for answering
guestions by scientists and engineers. While scientists are focused on understanding and
observing the world, engineers primarily want to design new artifacts. In both cases
modelingis a central process for abstracting, extracting, and organizing the knowledge
for further analysis.

There are many reasons why modeling and simulation is beneficial. For example:

e |t is typically muchcheapero perform experiments on the model compared to
performing them directly on the real system. For example, when developing a
control system for a landing gear of an aircraft, several engineers can test their
control system simultaneously by simulating a model of the landing gear, instead
of using direct access of a physical prototype.

e It might betoo dangerou$o do the experiments in reality. When testing “what-
if” scenarios on a nuclear power-plant, it is safer to do these experiments on a
mathematical model compared to a real plant.

e The systemmay not existi.e., the model is a prototype that is evaluated and tested
during development. Most product development cycles still need physical proto-
types for evaluation, but by using a combination of virtual prototypes of mathemat-
ical models the development time can potentially be dramatically shortened.

e Some unknown variablese not accessibl@ the real system, but can be observed
in a simulation. For example, measuring the temperature inside certain areas of an
engine can be physically impossible without affecting the engine’s behavior.

e Itis easy to usend modify models, to change parameters and perform new experi-
ments (simulations). For example, it is much easier to experiment with and change
the size of wind turbines on a model than on physical prototypes.

However, as pointed out both by Cellier [35] and Fritzson [51], the ease of use is also
the main danger and drawback with modeling and simulation. There is a risk to ignore
the fact that the model is only valid under certain conditions, and that the model is in fact
an abstraction of the reality and not the reality itself. Consequently, care must be taken
regarding which simulations are suitable to apply on a model, so that the results reach the
desired level of accuracy.

1.2 Equation-Based Object-Oriented Languages

In the previous section we gave an introduction to continuous-time system modeling and
simulation. Designing languages for continuous-time systems is not new and one of the

1.2 Equation-Based Object-Oriented Languages 7

earliest initiatives was th€ontinuous System Simulation Language (CSSpgcified

in 1967 [11]. Derivations of CSSL are all based on state-space descriptions where the
underlying mathematical description is an ODE [35]. General-purpose simulation tools,

e.g., Simulink [92], using block diagrams and causal connections, have now dominated
the area for many years. Block diagrams make it possible to graphically model ODEs and
the software tool is then used for performing the numerical simulation.

In the 1960's, the first object-oriented language was designed with the initial purpose
of discrete event-based modeliagd simulation. This language, Simula [44], founded
the fundamental concepts of object-orientation and object-oriented languages. The fun-
damental principles adbject-oriented modeling languadgies continuous-time modeling
and simulation have been around for about 30 years. According to Cellier [36], this started
with the pioneering work explored in two separate PhD theses by Hilding EImqvist [47]
and Tom Runge.

Several languages have been developed during the years with the common properties
of physical modeling using equation systems. Today the state of the art within multi-
domain physical modeling (e.g., containing mechanical, electrical, hydraulic, thermal,
fluid, and control components) is Modelica [104]. Other examples of languages with
similar modeling and simulation capabilities are gPROMS [13, 115] for chemical engi-
neering and VHDL-AMS [40, 72] a hardware description language (HDL) with analog
and mixed-signal extensions.

However, not until recently has a common name for this category of languages ap-
peared. We call this language categeguation-based object-oriented (EOO) languéages
The exact meaning of this name can be a subject for discussion, but we propose the fol-
lowing definition:

Definition 1.2.1 (Equation-based object-oriented (EOO) language).

An equation-based object-oriented (EOO) language is a domain-specific language used
for modeling the interaction between objects, by utilizing mathematical equations to pro-
vide an acausal description of behavior.

This informal definition includes the following vague terms:

e Domain-specific language
e Objects
e Mathematical equations and acausality

In the rest of this section, we will discuss and clarify these terms.

1.2.1 Domain-Specific Language

A domain-specific language (DSL) can, according to van Deueseal.[148, p. 26], be
defined as follows:

“A domain-specific languad®SL) is a programming language or executable
specification language that offers, through appropriate notations and abstrac-
tions, expressive power focused on, and usually restricted to, a particular
problem domain.”

2The term was coined by the author of this thesis and first publicly used at a poster session at the conference
on programing language design and implementation (PLDI) in 2006 [22].

8 1 Introduction

The vague defining term of this definition is the tegroblem domain In [148], van
Deursenet. al. implicitly defined the term by giving examples of existing DSLs within
areas such as software engineering, systems software, multi-media, telecommunication,
and miscellaneous domains such as simulation, robot control and solving partial differen-
tial equations. Other authors, such as Czarnecki and Eisenecker [43, p. 34], define this as
follows:

“Domain: An area of knowledge

e Scoped to maximize the satisfaction of the requirements of its stake-
holders

e Includes a set of concepts and terminology understood by practioners
in the area

¢ Includes the knowledge of how to build software systems (or parts of
software systems) in that area”

From this point of view, we can for example regard both Modelica, gPROMS, and VHDL-
AMS as domain-specific languages, with their expressive power focused on modeling of
physical systems. However, according to van Deursenal.[148], DSLs are usually
small languages with a restricted set of notations and abstractions. In fact, DSLs are
sometimes referred to di#tle language4147], compared to largeyeneral-purpose lan-
guages (GPLs)Can we regard Modelica with an informal language specification of 250
pages [104] as a small language? Moreover, Modelica is commonly referred to as a multi-
domain modeling language. How can this be regarded as a domain-specific language?

As with all informal definitions, it depends on the interpretation of the terms - in
this case the word domain. We regard for example Modelica and VHDL-AM&rge
domain-specific languages with regards to the domain of modeling physical systems. This
holds especially when comparing to a GPL, in which arbitrary computational tasks can be
described. Moreover, we may also regard particular libraries defined in these languages
as specialized sub-domain-specific languages, e.g., the Modelica Bond Graph library [38]
or the Fluid library [105]. With this view, the Modelica design group that is designing the
language are thdomain expert®f physical modeling and the designers of a particular
library the sub-domairexperts for a particular physical domain.

1.2.2 Objects

The termobject-orientedn EOO is not used with exactly the same meaning as for the
commonobject-oriented programming (OORNguages. In for example Smalltalk [64]

an object is an instance of class that can send or receive messages. In C++ [75, 139], be-
havior is described by invoking methods associated with an object. Somewhat simplified,
we might say that an object in OOP can be described be the following equation

objecbop = data + methods

Similar to OOP languages, objects in EOO languages are used for describing the com-
bination of data and behavior. In contrast to OOP, the behavior of the objects in EOO
languages is described by mathematical equations instead of methods or message pass-
ing. Hence, one view of an object in EOO would be

1.2 Equation-Based Object-Oriented Languages 9

objecktoo = data + equations

Many EOO languages, such as Modelica and Omola [6] use language mechanisms from
OOP languages (for example inheritance and subtyping-polymorphism), but we do not
regard this as a necessary condition for being an EOO language. There are many concepts
related to OOP languages and as shown by Armstrong [7] there is no clear consensus of
what actually defines the core concepts of OO languages.

Recall Figure 1.1 showing a graphical Modelica model of a rotational mechanical
system. Objects are in Modelica referred tocasmponentsThis mechanical model has
four components (objects): a torque, two inertias, and a spring. We say that objects are
instances 0EOO model{or Modelica models Moreover, an EOO model can compose
and encapsulate one or more model instances. For example, the olnjectsi al and
i nerti a2 are instances of a common EOO model representing the general behavior of
an inertia. When the objects are created, they are given different inertia v&{sg] /-
respectively.

Objects are connected vjaorts (called connectorsn Modelica). In Figure 1.1, the
objecti nt erti al is connected td or que andspri ng. The objeci nterti a2 is
connected to thepr i ng on its left hand side and isnconnectean the right hand side.

In state-of-the-art EOO languages, objects are used only for hierarchically compose
EOO models, i.e., objects are not created dynamically during simulation. However, this
is an active area of research callducturally dynamic systeni62, 155].

We shall note one thing regarding terminology. As stated in the beginning of Sec-
tion 1.1, we use the ternmodelwith the general meaning of a mathematical model, i.e.,

a system of equations. When it is clear from the context, the teoale/may either refer
to an EOO model or the underlying equation system represented by the EOO model.

1.2.3 Mathematical Equations and Acausality

The foundation of EOO languages is that behavior is described declaratively using math-
ematical equations. Even though most EOO languages describe behavior using DAEs
(e.g., Modelica and VHDL-AMS), the behavior could also be describegdial dif-
ferential equations (PDE)r by equational constraints for model-based diagnosis [30].
The main point is that the equations are acausal (also called non-causal), meaning that
the causality of how to solve the equations is not decided at modeling time. Acausality
should be present at two levels of abstraction:

e at the equation-level
e at the object connection level

We say that a system of equations is acausal, if the order in which the unknowns are
solved is not decided at modeling time. Consider for example the equation of Ohm’s law

v=~R-1,

10 1 Introduction

(@)

omegal

Divide 1 Integrator 3

Constant2 Integrator 1

taut

Integrator 2

omega2
omega2

Divide Integrator Scope

Constant

tau3

(b)

spring

torque inertiat

> A

D1
T

Pa1 Pa2
Td1 Ta2

Figure 1.4: Model (a) is a causal block diagram model of the mechanical system in
Figure 1.1. Model (b) shows how the model in Figure 1.1 has been reused and the
original spring replaced with a parallel spring-damper.

whereuw is the voltage R the resistance, andhe current. Depending on which variable
is unknown, it can be translated into three different assignment statements

v:=R-1,
i:=v/R,
R:=v/i,

Acausality at the object connection level is the second central part of acausality of EOO
languages. Recall the mechanical system in Section 1.1.1, where we used the graphical
model as illustration for the rotational system when performing the equational modeling
by hand. However, Figure 1.1 is actually the graphical representation of an executable
Modelica model. One of the main benefits with an acausal model such as this one is that
the topology corresponds to how objects in the physical world would be connected. This
is referred to aphysical modeling51]. A causal model of the same mechanical system is
given in Figure 1.4a. The causal model consistblotkswith defined input and output.
Compared to the acausal model, the physical topology is lost.

Now, assume that we reuse the model in Figure 1.1 and replaces the spring object with
a spring-damper object. The resulting model is shown in Figure 1.4b. Because the model

1.2 Equation-Based Object-Oriented Languages 11

is acausal, a simulation tool can automatically generate aneggiation system for the
updated model. However, if the block model is changed to include a spring-damper, the
large parts of the diagram needs to be rearranged, because the block diagram is dependent
on the causality of the underlying equation system.

The key to acausal physical models is in the basic physical principteredervation
of energy stating that the total amount of energy in a closed system is constant over time;
it can neither be created nor destroyed. To support this principle, acausal ports have both
a potential variablgalso calledacros3 and aflow variable(also calledthrough. This
principle of potential/flow variables is applicable in several different physical domains,
e.g., [104]:

Domain | Potential Variables | Flow Variables
Electrical Analog Electrical Potential | Electrical Current
Translational Mechanics 1) Distance Force

Rotational Mechanics 1D | Angle Torque

Heat Transfer Temperature Heat Flow Rate
Magnetic Magnetic Potential | Magnetic Flux

If two or more ports are connected, the potential variablessateequal, whereas the
flow variables are summed-to-zero. In the electrical domain the sum-to-zero principle
corresponds to Kirchhoff’s current law. For example, consider the connections between
thespri ng, thedanper, and thei nerti a2 object in Figure 1.4b. The following
equality equations are generated for the potential variables:

Ps2 = P2
Pd2 = P2

Note that no redundant equation is generated betwegeandy,,. Finally, the sum-to-
zero equation is generated:

Ts2 +Tgo + 173 =0

The phase of generating equations from the description of connections between ports is
referred to asconnection semanticsThis phase is in turn part of thelaboration pro-
cess$, where an EOO model is translated into a set of equations. The other two essential
phases in this elaboration process @y checkingdeciding which models that are con-
sidered correct according to a defined type system)cafidpsing the instance hierarchy
(translating components into a system of equations).

The generated equations from the elaboration process forms the resulting DAE of the
EOO model. The process of a general translation from a DAE to an ODE (or to a so called
index-1 DAE) is the result of extensive research and involves symbolic manipulation of

3In this thesis, we call the procestaboration In the Modelica specification 3.2, this process is caflatten-
ing because it creates a flat system of equations. Sometimes, this translation is also referiestamizstion
However, we think that both these terms are misleading. The former, because the final equation system does
not need to be flat - it can still be represented in a hierarchical structure. The latter, because it is typically per-
formed at compile time and is not allocating memory analogous to instance creating in standard programming
languages.

12 1 Introduction

the equation system. Key aspects of this process are the uaatefiBles algorithm [118],
block lower triangular form (BLT) [70, 71], dummy-derivatives [94], and tearing [49].
The details of this translation falls outside the scope of this thesis, but are central to the
performance and accuracy of implementations of Modelica software tools.

1.3 Problem Area

This thesis concerns the problem of designing and defining the semantics of equation-
based modeling languages. Bgmanticsve mean the meaning of a model. This includes
both the static semantics (translating an EOO model into an equation system and rejecting
illegal models) and dynamic semantics (to use the equation system, i.e., for numerical
simulation). A major challenge regarding the design of such complex languages is to find
a good trade-off between different quality and design aspects of the language. In this
section we give an overview of the problem area with regards to the following aspects:

e Safety aspectsto protect model abstractions by detecting and isolating errors and
faults.

e Expressiveness and extensibility aspectsakeing it easy to express complex mod-
eling tasks and to provide mechanisms for extending the language with new fea-
tures.

1.3.1 Safety Aspects

It is not always possible to simulate an EOO model because the model might have been
incorrectly specified. Furthermore, even if a simulation result is generated, this does
not imply that the result is correct, i.e., that the simulation result corresponds to the real
system. We will in the first section outline the overall problems and challenges regarding
safety aspects of EOO languages and their environments,

By following the terminology defined in the IEEE Standard 100 [107], we define an
errorto be something that is made by human beings. As the consequence of an error, a
fault exists in an artifact, such as an EOO model, source code, or a language specification.
Another word for fault would be bug or defect. If a fault is executed, this results in a
failure, i.e., it is possible to detect that something went wrong.

People make mistakes, i.e., make errors when modeling systems. This can result in
either incorrect simulation results, or no results at all. To produce products (e.g., aircraft,
cars, and factory machines) based on incorrect simulation results, can be very expensive
or even result in devastating consequences. Hence, it is of great importance to efficiently
handle errors in a safe manner.

There are many different sources of errors in a modeling and simulation environment.
Consider Figure 1.5, which outlines relations between sources of errors and faults. The
center box illustrates the simulation tool, which takes an EOO model as input (left side)
and produces aimulation resultf the simulation was successful, osanulation failure
reportif an error occurs during simulation. In the model, there are three actors that can
produce errors that affect the tool’'s output.

1.3 Problem Area 13

% Simulation
Result
System Modeling Error

» EOO-Model Input Tool Output
» —>
EOO-Model Fault Tool Implementation
Fault Simulation
% Failure Report
e

Language ool

Specification Implementation

Language Design or Specification Error‘
- Error

Language Specification Fault

Figure 1.5: Relations between possible errors and faults in a modeling and simula-
tion environment.

System Modeling Errors. A system modeling errozan result in an EOO model con-
taining anEOO model faultwhich obviously affects the simulation result. Some
modeling errors can result in failures already in the elaboration phase (e.g., illegal
access of elements in objects or wrong number of equations), while others result in
simulation failures during simulation (e.g., numerical singularities). Moreover, an
engineer can make mistakes while modeling a system, which still gives simulation
results, but perhaps incorrect values. In this thesis, we are mainly concerned with
modeling errors that can result in a failure during the elaboration phase, i.e., before
simulation.

Language Design and Specification Errors.Aimost all commonly used languages
evolve over time, resulting in high demands on the language design effort and the
work to produce precise, consistent, and error free language specifications. The
Modelica language is no exception, which has resulted in a large and complex lan-
guage with an informal specification using plain text. This fact can leé&iguage
design errordecause it is hard to grasp the complete semantics of the language.
For example, it could be a fault in the specification of the type system if models
containing faults can be executed, although they should have been rejected by the
type checker. Moreover, if the language design effort intends to give guarantees
that a certain kind of modeling error should be detected, it is obviously necessary
that the specification is precise and easy to reason about. Hence, one of the main
challenges is to be able to define this kind of languages in a precise way, using
formal semantics.

Tool Implementation Errors. In addition, language specification faults and unclear se-
mantics may lead t@gool implementation errorslif only one tool exists for the
language, the importance of implementation errors compared to the specification
might be ignorable. However, if there exist several tools, tool implementation er-
rors may lead to incompatible models or even non-deterministic simulation results.
For example, Modelica has a complex semantics for name lookup that has in our ex-
perience lead to considerable effort to make the OpenModelica [53, 117] compiler
compatible with other commercial tools of Modelica, primarily Dymola [45].

To mitigate the fact that people make errors, we see three major challenges regarding error
handling:

14 1 Introduction

1. Detectingthe existence of an error early.If a simulation fails, it is trivial to detect
that an error must exist. However, if a simulation takes 48 hours to complete, it is
not desirable to wait 46 hours before the error is detected.

2. Isolating the fault implied by the error. If we have detected that an error must
exist, how do we know where the actual fault is located? Is it located in the main
model, in some model library, or even in the simulation tool itself? For example,
if an engine is modeled and then translated into a system of equations containing
20000 equations and 20001 unknowns, it is trivial to detect that this is a fault.
However, it is a non-trivial task to isolate the fault so that the error can be resolved.

3. Guaranteeing that faults do not exist. If we can detect an error by using e.g.,
testingand then isolate the fault using some kindd#buggingtechnique, how
do we know that there do not exist any other errors? Consequently, would it be
possible to give guarantees that some kind of fault cannot exist in a model, e.g.,
that a specific type of errors will always be detected?

1.3.2 Expressiveness and Extensibility Aspects

State of the art EOO languages, such as Modelica, are expressive regarding the ability
to define new models within existing libraries. However, new libraries of the Modelica
standard library (MSL) are often released together with a new version of the Modelica
language that supports new language constructs required for the new library. Examples
include the handling of over-determined connectors used in the multi-body library and
stream connectors for the Fluid library. This leads to a continuously growing the size
and complexity of the language. The challenge is to make the EOO languages-

sive enough so that the language does not need to be extended when a new libraries are
released.

Software tools and compilers carsethe EOO models for different purposes. One
such purpose, which today is the most common use, is to analyze the equation system,
transform it, generate executable code, and simulate the system. However, there are sev-
eral other potential uses of mathematical models, such as optimization problems [79],
model reduction, generation of real-time simulation code, and exporting data to standard-
ized model formats [34]. The problem is that an EOO language has to be extended with
additional language constructs to support the new use, leading to either a number of new
languages with specific extensions, or to an EOO language that is even larger and more
complex. Hence, the challenge is to make the EOO langeatgzsibleso that the lan-
guage does not have to be updated if a model is used in a new manner.

1.4 Research Questions

From the description of the problem area in Section 1.3, a number of research questions
are formulated below. We categorize the questions within three areas:

e Understanding the Semantics of the Modelica Language
e Early Detection of Modeling Errors
e Expressive and Extensible Formal Semantics

1.4 Research Questions 15

1.4.1 Understanding the Semantics of the Modelica Language

Both the dynamic and static semantics of the Modelica language are informally described
using natural language and source code examples. Because the language has grown to be
very large and complex, it is hard in the short term to define a formal semantics for the
complete language; leading to the following question:

Research Question IHow can an informal language specification be restructured to be
less ambiguous and still understandable?

A common way of statically detecting and isolating errors in a language is to use type
checking. However, in Modelica, the concept of types is only implicitly described using
informal natural language. Hence, our second question in the study concerns Modelica
types.

Research Question 2Nhat is the actual meaning of types in Modelica and how does
this compare to the class concept in the language?

1.4.2 Early Detection of Modeling Errors

If a model is incorrectly described and contains more equations than unknowns (over-

determined) or fewer equations than unknown (under-determined), it is easy to detect the
error after elaboration by just counting the number of equations and variables. However,

it is much harder to isolate the error to a specific model instance. Earlier approaches have
tried to analyze the flat system of equations after elaboration, and then tracing back the
faults to the original models [29], leading to the following question:

Research Question 3ls it possible to define an approach to detect under- and over-
constrained errors in the modeéforeelaboration, enabling the user igplatethe fault
to a certain model instance?

1.4.3 Expressive and Extensible Formal Semantics

State of the art EOO languages are large and complex with the semantics informally
described. Programming language researchers have for decades formalized languages
based on small and expressive calculi, where the lambda calculus [12] is the prominent
one.

Research Question 4ls it possible to formally define an EOO language as an exten-
sion of a typed lambda calculus that gives the expressive power of state of the art EOO
languages?

As described in the problem area description in Section 1.3, a major problem for language
extensibility is that new modeling demands often require changes in the language specifi-
cation of the EOO language. This requires both new language revisions and that different
vendors need to update their modeling and simulation products. This process is both time
consuming and error prone and limits the possibility for the domain experts to express
their modeling needs.

16 1 Introduction

Research Question 5Can we design a modeling kernel language where domain experts
can extend both modeling constructs for an EOO language, as well as the semantics for
using the models?

1.4.4 Scope

The research questions stated in the previous sections are broad and therefore the follow-
ing scope is given for the thesis:

e For domain experts of EOO languages who are developing libraries, the concrete
syntax is of essential importance. However, in this thesis we do not make any
attempt of analyzing how or which syntax is most convenient for domain experts.

e EOO languages typically have both a textual and a graphical representation. Even
though we acknowledge the need and benefits of graphical syntax, we are only
analyzing the textual representation in this thesis.

e Performance aspects of the proposed solution are only analyzed at a high level of
abstraction because our prototype is implemented as an interpreter and not as a
compiler.

e We investigate the formal semantics of expressing models, for elaborating struc-
tured models down to equation systems, and for analyzing the equation system.
The semantics for the model compiler backend concerning symbolic manipulation
and solving the DAEs are outside the scope of the thesis.

e We are primarily concerned with the continuous-time aspects of EOO languages
and we will not discuss hybrid models (the mixture of continuous-time and discrete-
time models) in this thesis.

¢ We will not attempt to formally define an existing EOO language, e.g., Modelica.

1.5 Thesis Outline and Contributions

The thesis is divided into two main parts. Part | relates to the Modelica language and in
Part Il we propose a new research language calletkeling Kernel Language (MKL)

In the following, we give an overview of the contents of the thesis as well as a state-
ment of the main contributions. For each of the contributions, a note is given for where
the contribution is discussed and detailed, as well as a pointer to which research question
the contribution relates to.

1.5.1 Partl-The Modelica Language

Part | is dedicated to studying the Modelica language - both with regards to interpreting
and understanding the current semantics of the language, as well as proposing extensions
and improvements to the language. In Part | we make the following main contributions:

1.5 Thesis Outline and Contributions 17

e We discuss different strategies for specifying the Modelica language as well as
suggesting approaches that make it easier to extend and grow the language in the
future. This work does not present any specific technical contribution, but instead
presents a categorization and discussion about the Modelica specification (Chapters
3 and 4, Research Question 1).

e We give to the best of our knowledge, the first description and interpretation of the
type concept in Modelica to the level of precision that makes it clear that Modelica
has two categories of types: class types and object types. The corresponding paper
was published in 2006 [27] and has influenced the improved description of the
Modelica specification (Chapter 5, Research Question 2).

e We propose an approach for determining if a model is under- or over-constrained
without elaborating its subcomponents. The main insight is the idea of annotat-
ing the constraint value on types. We call the apprastainctural constraint delta
denoted”'a, and define an algorithm for a subset of the Modelica language. How-
ever, this approach is not limited to Modelica and should be useful in other EOO
languages as well. The work was published in 2006 [28] and somewhat influenced
the design of balanced models, part of the Modelica 3.0 standard from 2007 (Chap-
ter 6, Research Question 3).

1.5.2 Part Il - The Modeling Kernel Language

Part Il concerns the problem of creating a formally defined language that is both expres-
sive and extensible (Research Question 5 and 4).

The proposed research language MKL is not intended as a new end-user EOO lan-
guage. Itis a kernel language in which domain experts and language designers can define
EOO language constructs within MKL libraries. Also, the main objective is not to trans-
late available EOO languages to MKL. Instead, we see MKL as a research language for
exploring new language constructs and principles, which can then later perhaps find their
way into available EOO languages.

In Part Il we make the following specific contributions:

e We explore the concept that we chlbher-order acausal models (HOAMshich
is the combination of higher-order functions and acausal models. We show that
HOAMs enable great expressive power with few required language concepts (Chap-
ter 8, Research Question 4).

e We show how the MKL language is capable of performing intensional analysis on
models, i.e., inspect and traverse the equation system (Chapter 9, Research Ques-
tion 5).

e We define a formal operational semantics and related static type system for the
core of MKL. The language is an extension of a typed lambda calculus and forms
the foundation of the MKL language. We prove type safety of the core language.
(Chapter 10, Research Question 5).

e We formally define the elaboration semantics of an EOO language, i.e., the trans-
lation process from an EOO model to an equation system. We describe both an

18 1 Introduction

approach for the connection semantics as well as a solutichdégoroblem of ex-
traction simulation results. (Chapter 11, Research Question 4).

e We explain our prototype implementation of MKL, define the semantics of simu-
lating a model using an external DAE solver, as well as exporting the DAH&b a
Modelica modeli.e., a model with only equations and no components. Finally, we
verify, discuss, and evaluate our solution. (Chapter 12, Research Question 5).

1.5.3 Part Il - Related Work and Concluding Remarks

In the final part, we do not make any new contributions. Instead our work is compared
to related work (Chapter 13). Finally, we state the conclusions of the thesis and outline
future work (Chapter 14).

1.5.4 Published Papers

The research results given in this thesis are partially based on the following published
papers and reports:

Journal Paper

e David Broman and Peter Fritzson. Higher-Order Acausal Models. Simulation
News Europe 19(1):5-16, ARGESIM, 2009

Peer Reviewed Conference and Workshop Papers

e David Broman and Peter Fritzson. Higher-Order Acausal Model®rbazeedings
of the 2nd International Workshop on Equation-Based Object-Oriented Languages
and Tools pages 59-69, Paphos, Cyprus, LIU Electronic Press, 2008 (superseded
by the journal version)

e David Broman and Peter Fritzson. Abstract Syntax Can Make the Definition of
Modelica Less Abstract. IProceedings of the 1st International Workshop on
Equation-Based Object-Oriented Languages and To@ages 111-126. Berlin,
Germany. Linkdping University Electronic Press. 2007

e David Broman, Kaj Nystrém, and Peter Fritzson. Determining Over- and Under-
Constrained Systems of Equations using Structural Constraint DeltBroreed-
ings of the Fifth International Conference on Generative Programming and Com-
ponent Engineering (GPCE’06)pages 151-160. Portland, Oregon, USA. ACM
Press. 2006

e David Broman, Peter Fritzson, and Sébastien Furic. Types in the Modelica Lan-
guage. InProceedings of the Fifth International Modelica Conferengeages
303-315. Vienna, Austria. 2006

1.5 Thesis Outline and Contributions 19

Invited Paper

David Broman. Growing an Equation-Based Object-Oriented Modeling Language.
In Proceedings of MATHMOD 09Vienna, pages 1316-1324, Vienna, Austria,
2009

Technical Reports and Thesis

David Broman. Safety, Security, and Semantic Aspects of Equation-Based Object-
Oriented Languages and Environmentscentiate thesis Thesis No 1337. De-
partment of Computer and Information Science, Linkdping University, December,
2007

David Broman. Flow Lambda Calculus for Declarative Physical Connection Se-
mantics. Technical Reports in Computer and Information Science Nbainkoping
University Electronic Press. 2007

Papers and Reports not Included in the Thesis

The following papers and reports are of related interest, but not directly included in this
thesis. The papers were authored or co-authored during the period of this thesis work.

Peter Aronsson and David Broman. Extendable Physical Unit Checking with Un-
derstandable Error Reporting. Froceedings of the 7th International Modelica
ConferenceComo, Italy, 2009

David Broman. Should Software Engineering Projects be the Backbone or the Tall
of Computing Curricula?. Iroceedings of the 23th IEEE Conference on Software
Engineering Education and Trainirigages 153-156, Pittsburgh, USA, 2010

Peter Fritzson, Adrian Pop, David Broman, and Peter Aronsson. Formal Semantics
Based Translator Generation and Tool Development in Practid@rdoeedings of

the 20th Australian Software Engineering Conference ASWEC 208%es 256-

266, Gold Coast, Queensland, Australia, IEEE Computer Society, 2009

David Broman, Peter Aronsson, and Peter Fritzson. Design Considerations for
Dimensional Inference and Unit Consistency Checking in ModelicaPrbrceed-

ings of the 6th International Modelica Conferenpages 3-12, Bielefeld, Germany,
2008

Peter Fritzson, David Broman, and Frangois Cellier. Equation-Based Object-Ori-
ented Languages and Tools. Report on the 2nd Workshop EOOLT at ECOOP 2008.
Object-Oriented Technology. ECOOP 2008 Workshop Readidume 5475 of
LNCS, pages 18-29, Springer-Verlag, 2009 (Invited)

Peter Fritzson, David Broman, Francois Cellier, and Christoph Nytsch-Geusen.
Equation-Based Object-Oriented Languages and Tools. Report on the Workshop
EOOLT 2007 at ECOOP 200'Dbject-Oriented Technology. ECOOP 2007 Work-
shop Readelolume 4906 of LNCS, pages 27-39, Springer-Verlag, 2008 (Invited)

20 1 Introduction

e Peter Fritzson, Francois Cellier, and David Broman (Eds.). Proceedings of the 2nd
International Workshop on Equation-Based Object-Oriented Languages and Tools.
Cyprus, July 2008. ISSN 1650-3686, LIU Electronic Press

e Kristoffer Norling, David Broman, Peter Fritzson, Alexander Siemers, and Dag
Fritzson. Secure Distributed Co-Simulation over Wide Area Network&réiceed-
ings of the 48th Conference on Simulation and Modelling (SIMS’0@pteborg,
Sweden, Link&ping University Electronic Press, 2007

e Peter Fritzson, Peter Aronsson, Adrian Pop, Hakan Lundvall, Kaj Nystrom, Levon
Saldamli, David Broman, Anders Sandholm. OpenModelica - A Free Open-Source
Environment for System Modeling, Simulation, and TeachingPtaceedings of
the 2006 IEEE Conference on Computer Aided Control Systems Dadigmich,
Germany, 2006 (Invited)

e David Broman and Peter Fritzson. Ideas for Security Assurance in Security Criti-
cal Software using Modelica. IRroceedings of the Conference on Modeling and
Simulation for Public Safetypages 45-54, Linkdping, Sweden, 2005

e Peter Fritzson, Peter Aronsson, Hakan Lundvall, Kaj Nystrém, Adrian Pop, Levon
Saldamli, and David Broman. The OpenModelica Modeling, Simulation, and De-
velopment Environment. IRroceedings of the 46th Conference on Simulation and
Modeling pages 83-90, Trondheim, Norway, 2005

1.5.5 Origin of Contributions

The most significant part of the research work and contributions in this thesis originates
entirely from the author of the thesis. However, because several of the published papers
included in this thesis have co-authors, we detail the exact origin of the contributions
below.

Part | - The Modelica Language

The work on how to specify the Modelica language [24] and strategies for growing
equation-based languages [19] are done solely by the author with Peter Fritzson as sup-
porting supervisor.

The work onModelica typeq27] was carried out by the author, where both Peter
Fritzson and Sébastien Furic co-authored the publication. They contributed as discussion
partners and through proofreading the manuscript.

The idea and formalization of the work on tls&uctural constraint deltf28] was
carried out solely by the author. Co-authors Kaj Nystrom and Peter Fritzson contributed
as discussion partners, as proofreaders, and with shorter sections in the original paper.

Part Il - The Modeling Kernel Language

The published work in this part concerhgher-order acausal models (HOANZ5, 26].
The co-author Peter Fritzson has been supervisor of the work, contributing with feedback
and proofreading.

1.6 Research Method 21

The semantics of the MKL language has been developed solelyebguthor of the
thesis, where Jeremy Siek has been supporting co-supervisor.

The implementation, validation, and written manuscript are performed entirely by the
author of the thesis.

1.5.6 Reading Guidelines

We will now give some brief guidelines for reading the thesis. The aim of this thesis is
to have a broad audience, where readers might come from either different engineering
fields or from the field of computer science. The two main parts of the thesis (Part | about
Modelica and Part Il about MKL) are self contained and can be read independently of
each other. For each of the parts, there is an introduction chapter which is recommended
reading before proceeding with the other chapters.

Readers from different engineering fields with an interest in modeling and a back-
ground of e.g., Modelica might be especially interested in Chapter 5 about types in Mod-
elica, as well as the ideas of higher-order acausal models, presented in Chapter 8.

Readers with a background of designing modeling languages in general and Modelica
in particular might be interested in Chapter 4 about growing an EOO language. Part Il
presents language concepts that are not directly related to Modelica, but can be of interest
for further extensions of such a language. Chapters that can be of particular interest
are: introduction to functional programming in MKL (Chapters 7), modeling with higher-
order acausal models (Chapter 8), using and inspecting the content of models (Chapter 9),
and description of elaboration semantics (Chapter 11).

Readers with a computer science background would perhaps be mostinterested in Part
II. If the reader has a more theoretical programming language background, Chapter 10
with formal operational semantics and type safety proofs could be of interest.

1.6 Research Method

There are several different paradigms on how to perform research within engineering and
computer science. The ACM Task Force on timee of computer sciencgiggests three
different paradigms for performing research within the discipline of computing [42]:

1. Theory. In this paradigm, the discipline is rooted in mathematics, where the ob-
jects of study are defined, hypotheses (the theorems) are stated, and proofs of the
theorems are given. Finally, the result is interpreted.

2. Abstraction (modeling)The second paradigm is rooted in experimental scientific
methods. First, a hypothesis is formulated, followed by the construction of a model
and/or an experiment from which data is collected. Finally the result is analyzed.

3. Design.The third paradigm is rooted in engineering and consists of stating require-
ments, defining the specification, designing and implementing the system, and fi-
nally testing the system. The purpose of constructing the system is to solve a given
problem.

22 1 Introduction

Theory is the fundamental paradigm in mathematical sciehealistraction paradigm in
natural science, and design in the discipline of engineering. We agree with the statement
that is pointed out by Denningt. al.[42], that all three paradigms are equally important
and that computer science and engineering consist of a mixture of all three paradigms. In
this work, we have used different paradigms for the different parts of the work.

In the work ontypes in the Modelica languad@€hapter 5), the type concept of Mod-
elica is studied and interpreted and a concrete syntax of types for Modelica is described.
The closest paradigm used in this work is design, where the designed artifact is the gram-
mar for types and the interpreted prefix definitions. The correctness of the grammar is
verified using the parser generator tool ANTLR [119]. In this case, the Modelica specifi-
cation itself can be seen as the requirements specification and the produced artifact is an
interpretation of this specification.

In the work onstructural constraint deltgChapter 6) we define a new approach and
an algorithm for determining over- and under-constrained systems of equations. This
research can be assigned to both the theory and the design paradigms. From the theory
point of view, if a theorem was formulated for the correctness of the algorithm, a proof
would justify the correctness of the algorithm. On the other hand, from a design point
of view, the requirement of detecting and isolating the error before elaboration can be
seen as a specification, and an implementation of the algorithm as the system. Because
Modelica’s semantics is not formally defined, it is not possible to conduct any proof of
the correctness of the algorithm in relation to the elaboration semantics. Hence, we use a
test procedure where the correctness of the algorithm is tested using different test models,
where the model is executed in the commercial Modelica tool Dymola version 6 [45],
and compared to an implementation of the algorithm given in Chapter 6. We should note
that this test only checks the correctness of the algorithm, and does not verify that the
approach of the structural constraint delta actually helps the user to detect the error and
isolate the fault.

Finally, our work of being able to design EOO language constructs imibeeling
kernel language (MKL)Part Il) has been verified using basic engineering principles
of testing as well as conducting proofs of the language’s properties. For the testing and
verification, a set of models have been implemented in both Modelica and using a standard
library in MKL. The MKL models have then been translated into flat Modelica code. The
results of simulating both the translated and the native Modelica model have then been
compared. Also, the models have been simulated using MKL, where the simulation result
has been compared with Modelica simulations. For the theory part, we have proved type
safety for a core language of MKL. This gives us higher confidence of the correctness
of our approach, but can of course not guarantee the correctness of the correspondence
between the formal semantics and the implementation.

Part |

The Modelica Language

23

Introduction to Modelica

M ODELICA is a standardized language aimed primarily for modeling and simulation
of complex physical systems. The first language specification 1.0 [101] was re-
leased in September 1997. Since then, the current specification 3.2 [104] has evolved to

be a specification of a language that has a large number of complex constructs.

During these past 13 years, the Modelica user community has grown to become
fairly large. Modelica has been used successfully in industry andvibéelica stan-
dard library (MSL)has evolved to include domains such as electrical, mechanical, hy-
draulic, fluid, thermal and control. The dominating Modelica tool has for a long time
been the commercial tool Dymola [45]. However, during recent years, alternative tools
have emerged; both open source (e.g., OpenModelica [53, 117], Scicos [73, 106], and
JModelica.org [5, 78]) and commercial environments (e.g., MathModelica System De-
signer [91], MOSILAB [112], SimulationX [76], LMS Imagine.Lab AMESim [89], and
MapleSim [90]).

Modelica Association [100] is responsible for both the language specification as well
as the Modelica standard library. The author of this study has been a member of the
Modelica language design group since 2005. The work presented in this part has been
developed 2005 to 2010 contains both discussions and analysis of the current language
specification (Chapters 3-5) as well as proposed extensions (Chapter 6). This part of the
thesis consists of the following chapters:

e Chapter 2 - Introduction to Modelica. In this introductory chapter we first give a
brief informal overview of the Modelica language from a modeling point of view.
This is followed by a description of Modelica’s compilation and simulation process.

e Chapter 3 - Specifying the Modelica LanguageThis chapter concerns the prob-
lem of having a large and informal language specification. We discuss different
aspects of formulating the Modelica language.

25

26 2 Introduction to Modelica

e Chapter 4 - Growing the Modelica Language. We discuss how the Modelica
language can be planned for growth, i.e., how the language can be extended over
time.

e Chapter 5 - Types in the Modelica Language. We investigate and analyze the
concept of types in the Modelica language as well as proposing a concrete syntax
for describing Modelica types.

e Chapter 6 - Over- and Under-Constrained Systems of Equationdn this chapter
we propose a technique for detecting and isolating over- and under-constrained
systems of equations in EOO languages. We test the described approach, called
structural constraint deltan a subset of the Modelica language. However, the
approach s not limited to Modelica and is applicable for EOO languages in general.

2.1 Equation-Based Modeling in Modelica

In this section we illustrate some important and fundamental concepts in modeling with
Modelica. A comprehensive description of the language is given by Fritzson [51].

The basic structuring element in Modelica is tlass There are several restricted
class categories with specific keywords, suchmadel , r ecor d (a class without equa-
tions), andconnect or (a record that can be used in connections). A class contains
elementswhich can be other class definitions, extends elements (for inheritance of other
classes), ocomponentginstances of classes).

The main difference compared to traditional OO languages is that instead of methods,
Modelica primarily usegquationgo specify behavior.

As a brief introduction to Modelica, we present a model of a simple electrical cir-
cuit (Figure 2.1). On the left hand side the textual representation of the circuit is given

nodel Circuit 1 4
Resi stor R1(R=10); p p
Capacitor C(C=0.01);
Resi stor R2(R=100); R1=10 R2=100
I nductor L(L=0.1); b
Vsour ceAC AC; n n
G ound G AC=220 2 5
equation
connect (AC. p, RL.p); n P P
connect (R1.n, C. p); 20,01 oy
connect (C.n, AC n); ’ o
connect (RL. p, R2.p);
connect (R2.n, L.p); 5 " o "
connect(L.n, C.n); 7
connect (AC.n, G p); j: G

end Circuit; =

Figure 2.1: Modelica model of an electrical circuit.

2.1 Equation-Based Modeling in Modelica 27

and on the right hand side the graphical representation. ajpi@a Modelica modeling
environment lets the user model the system in either the graphical or the textual view.

Now, let us consider the textual representation. The first six lines of code represent
the component®f the model. These have a direct correspondence to the components in
the graphical view. In the first component declaration

Resi stor R1(R=10);

the indentifielResi st or is a class referenc®1 is a component name, af-10 is a
modification that sets the resistariRequal to10.

The last seven lines that are part of thgeuat i on section are calledonnect -
equations. These equations are used for connectomgectorgalso called ports) to-
gether. For example, the equatiamsnnect (AC. p, R1.p) andconnect (R1. p,

R2. p) state that connectoAC. p, R1. p, andR2. p are connected together. Such a set

of connected connectors is calle@@nnection setNote that because models are hierar-
chically defined, names to particular components are specified using a dot-notation, e.g.,
R1. p is the positive connector of componéRit.

Now consider the following example of a connector used for acausal connections in
the electrical domain:

connector Pin
Real v;
flow Real i;
end Pin;

wherev is the potential variable representing voltage aride flow variable for electrical
current. The connection s¢AC. p,R1. p,R2. p} is then during the elaboration phase
translated into two equality equations for the potential variables:

AC p.v
Rl. p.v

R1l. p.v;
R2. p. v,

and one sum-to-zero equation for Kirchoff’s current law:
AC.p.i + RL.p.i +R.p.i =0;

Variables in connectors can also have the prefixgsut or out put stating that these
variables are used fmausal connections

Now, let us consider how the models of the components in Figure 2.1 are defined. A
first observation can be made that all these components have two ports (except for the
ground component that has one port). Thus it is useful to define a “Bagd®i n model
as follows:

28 2 Introduction to Modelica

nodel TwoPin "Supercl ass of nodel conponents with two pins”
Pin p, n;
Vol t age v;
Current i;

equation
% p.v -
0 p.i +
i p.i;

end TwoPi n;

n.v;
n.i;

1

This component has two connectprandn defined as an instance of the connector class
Pi n. The variablev defines the voltage drop over the component using the equation
V = p.Vv - n.v.Thevariablé isthe currentinto the pip.
To define a model for an electrical capacitor we can now extend our bas@wafaBsn
and add a declaration of a variable for the capacitance and one equation expressing the
capacitor’s behavior:

nodel Capacitor "ldeal electrical capacitor”
ext ends TwoPi n;
Real C "Capacitance";

equati on
Crder(v) =i;

end Capacitor;

The keywordext ends denotes inheritance from one or more base classes. Elements
and equations are inherited from the parent. The equ&iaer (v) = i contains the
expressiorder (v) meaning the derivative of.

When extending or declaring an element, we can alsoraddification equations
The simplest form of modification is binding a value to a variable:

Resi st or R1(R=100);

It is also possible to alter the internal structure of a component when declaring or ex-
tending it, using redeclarations. Thedecl ar e construct changes the class of the
component being replaced. There are two restrictions on this operation:

1. The component we are replacing must be declareepsaceabl e.

2. The replacing class’s type must be a subtype of the type of the component being
replaced.

Consider now the following example

nodel A
repl aceabl e Resi stor R1(R=100);
end nodel A

nodel B
extends A(redecl are TenpResistor Rl);
end B;

where we define a mod@ by extending from modeh and at the same time change
resistorR1 to be aTenpResi st or.

2.2 The Modelica Compilation and Simulation Process 29

This short introduction to Modelica only describes a very $ipailt of the Modelica
language. However, there should be enough details to understand the rest of Part | of the
thesis. The language contains many more constructs that are outside the scope of this
thesis. Some of these constructs are:

e Arrays, vectors, and matrices.

e Side-effect free functions and algorithm sections.

e When- and if-equations for expressing hybrid models.

e Conditional components for selecting components during elaboration.
e Packages for structuring source code into modules.

e Overloading of operators.

e Stream connectors.

e Mapping of models to execution environments (used in for example hardware-in-
the-loop simulations.).

See Fritzson [51] and the Modelica specification 3.2 [104] for descriptions of these and
other advanced constructs in Modelica.

2.2 The Modelica Compilation and Simulation
Process

Figure 2.2 outlines a typical compilation and simulation process for a Modelica software
tool. The input (left hand side of the figure) to the process is a Modelica model, which
can compose and reference a large set of additonal Modelica models. The first phase that
is carried out is standard lexical analysis and parsing. Output from this stegbstact
syntax tree (AST) This phase can, depending on the implementation, be performed in
several stages, where each stage simplifies and normalizes the form of the AST.

The second phase of the process isdlaborationwhere the AST is transformed into
a hybrid DAE. A hybrid DAE consists of variable declarations, the differential-algebraic
equation system (for continuous-time behavior), algorithm sectionsyhed-clauses
for triggering discrete-time behavior. During this phase the model is also checked for
errors, such as conformance of types.

Compile time Run time
Modelica AST . . .
model — ——»| Hybrid DAE | ——» | Executable | ———» glmullfmon
Lexical Elaboration Equation Simulation esu
Analysis and Transformation &
Parsing Code generation
Compiler front-end Compiler back-end

Figure 2.2: Outline of a typical compilation and simulation process for a Modelica
language tool.

30 2 Introduction to Modelica

The two first phases, lexical analysis and parsing followed lalgaration, is often
referred to as the compiléront-end Semantics discussed in this thesis is focused on this
part.

The next phase of the compiler, thack-endlis first transforming and manipulating
the equation system to make it solvable. Key aspects of this process are the use of Pan-
telides algorithm [118], block lower triangular form (BLT) [70, 71], dummy-derivatives
[94], and tearing [49]. Typically the DAE is reduced to an index one problem and then
solved with a DAE solver such as DASSL [121] or the IDA solver within the SUNDI-
ALS solver suite [68]. The equation system could also be translated and sorted to form
an ODE, to be solved with a numerical integration method, such as Runge-Kutta. Typ-
ically, the right-hand side of the equation system (for an ODE) or the residual function
(for an DAE) is translated to executable code, where the typical target language is C. Fi-
nally, these generated functions together with a main program is linked together with a
numerical solver and then compiled into an executable file.

The process of phases two and three is typically performed at compile time. The last
step, when the model is simulated (executed) is often referred to as the run time semantics
of the process. Output from this process is typically a file containing simulation data for
the state variables. The data is then later visualized usgmggzhical user interface (GUI)

The process of elaboration, where a EOO model is translated into an equation system,
can informally be described to perform at least the following three main activities:

e Type checking of modelsCheck that parameterized models conform to the type
rules of the language and that basic operations and function calls are type correct.
For example, a function having one argument cannot be applied to two arguments
and a plus operator cannot have a string as its left operand and an integer as its right
operand, etc.

e Collapsing the instance hierarchpuring this activity, new unknowns and equa-
tions are created for sub-components of a model. For example, if a model contains
two resistorsR1 andR2, whereR1 is parameterized with 10 ohm, aR& with 50
ohm, two equations are created = 10 * i1 andu2 = 50 x i 2. More-
over, unknowns, such as the voltage drop over the components must be different
for the components. Hencel andu2 must be different unknowns.

e Connection semanticsAcausal ports contain flow and potential variables, where
the former must sum-to-zero at connection points and the latter must have the same
potential at the connection point. This activity generates equations and unknowns
to enable acausal modeling.

We postpone the discussion about type checking of Modelica models to Chapter 5 and 6
and the discussion of connection semantics to Chapter 11.

We will now present a very simple example to give an intuition of how the instance
hierarchy of a model is collapsed. The example only illustrates the basic principles for
composed models, together with Modelica’s inheritance mechanism. In a compiler that
handles the full Modelica language this is one of the most substantial parts due to number
of constructs in the language and its complicated look-up mechanism.

Consider the following Modelica models:

2.3 Chapter Summary and Conclusions 31

nodel B nodel C nodel A
Real vy; Real z=10; extends C(z=5);
Real x; Real t; B b;

equation equation end A;
y=der (Xx); t=z*2;

end B; end C

The task is to elaborate mod&l This means that from the code in modelwe should
extract the corresponding system of equations. Examining ndgela find that it extends
(inherits from)C. Our action is then to simply copy the contents of mo@ehto our
working copy of modeA. The modification equation to varialeein the extends clause
replaces the declaration equation to variablan C. All modifications are resolved as
equations so the overriding modificatior5 is put in the equation section. The result so
faris:

nodel A
Real z;
Real t;
B b;

equation
z=5;
t=z+2;

end A

We do not have to do anything about declarations of variablespwétiefined typege.g.,

Real , | nt eger, andBool ean). However, the componeit must be elaborated be-
causeB is not of a predefined type. We investigate the mdlehd find that it contains

the declarationReal y andReal x. These declarations and all equationsin the model
B will now be inserted in our working mod@lwith the prefixb. as we have now entered
the namespace of the componéntThe elaboration is now complete because there are
only predefined types left in our working model. The final result of this basic elaboration
(excluding type checking and connection semantics) is

nodel A
Real
Real
Real
Real

equation
b. y=der (b. x);
z=5;
t=z+2;

end A;

oo N

X
-y,

2.3 Chapter Summary and Conclusions

We have in this chapter given a brief overview of the Modelica language. We have pre-
sented modeling examples within the electrical domain and explained the overall struc-
ture of the Modelica compilation and simulation process. Finally, we have given a short
overview of the elaboration phase in Modelica.

32

2

Introduction to Modelica

Specifying the Modelica Language

HE Modelica language specification defines a formal concrete syntax, but the seman-
tics is informally described using natural language and with examples. This makes

the language’s semantics hard to interpret unambiguously and to reason about, which
affects both tool development and language evolution. Even if a completely formal se-
mantics of the Modelica language can be seen as a natural goal, it is a well-known fact
that defining understandable and concise formal semantics specifications for large and
complex languages is a very hard problem. In this chapter, we will discuss different as-
pects of formulating a Modelica specification; both in termsvbit should be specified
andhow it can be done. Moreover, we will further argue that a "middle-way" strategy can
make the specification both clearer and easier to reason about. An idea for a proposal is
outlined where the current informally specified semantics is complemented with several
grammars, specifying intermediate representations of abstract syntax. We believe that this
kind of evolutionary strategy is easier to gain acceptance for, and is more realistic in the
short-term, than a revolutionary approach of using a fully formal semantics definition of
the language. This chapter is organized as follow:

e We introduce and motivate the need for a middle-way strategy for specifying the
Modelica language (Section 3.1).

¢ Different ways of specifying a Modelica specification are discussed and analyzed
(Section 3.2).

e We explain the idea of specifying abstract syntax for improving the specification
(Section 3.3).

33

34 3 Specifying the Modelica Language

3.1 Introduction and Motivation

In this section we first discuss different alternatives of specifying a language specification
and then briefly describe previous attempts of specifying subsets of Modelica. Finally, we
introduce the idea of using several intermediate languages as middle-way strategy.

3.1.1 Unambiguous and Understandable Language Specification

The natural goal of a language specification is tazbembiguousso that tool implemen-

tors interpret the specification in exactly the same way. At the same time, it is important
that the specification isasy to understarfdr the intended audience. Unfortunately, it is

not that easy to meet both of these goals when describing a large and complex modeling
language such as Modelica. There are several specification approaches with different pros
and cons. Hence, the overall problem is to find an approach that satisfies the specification
goals in the best possible way.

If the language is described usiigrmal semanticse.g., structured operational se-
mantics [126], the language semantics can in some cases be proved to have certain prop-
erties, such as type safety [124, 151]. However, to understand and interpret a formal
language specification requires a rigorous theoretical computer science knowledge. Fur-
thermore, even if great effort has been spent during the recent decades in formalizing
mainstream programing languages, only a few, e.g., Standard ML [98], are actually fully
formally specified. Accordingly, it turns out to be a very hard task to specify an under-
standable and concise formal specification of an existing complex language.

Alternatively, if the language semantics is described usiatyral language<.g.,
plain English text describing the semantics, it might be easy for software engineers to
understand the specification. Many languages are described in this way, for example
Java [65], C++ [75], and Modelica [102]. However, ease of understanding does notimply
that different individuals interpret the specification in the same way. It is a well known
fact that it is very hard to write unambiguous natural language specifications, and perhaps
even harder to verify their consistency.

3.1.2 Previous Specification Attempts

Several previous attempts have been made to formalize and improve the specification of
the Modelica language. The most obvious one is the further development of the official
language specification itself, conducted by the Modelica Association. The work that re-
sulted in version 3.0 of the language specification contained substantial restructuring and
a more detailed description of the semantics of the language. However, it is not planned
to include any formal descriptions.

Three earlier attempts for improving the specification of the Modelica language have
previously been conducted. The first one, started already in 1998 by Kagedal and Fritz-
son [84, 85] tried to describe the language usdvagural Semanticg81]. As the specifi-
cation grew over time it has evolved into the OpenModelica compiler [117]. The second
attempt by Mauss [95] described the instance creation of the elaboration, but not the type
checking. Finally, our work on Modelica types [27] (described in the next Chapter), tries
to clarify the type concept in Modelica, but does not involve the actual type checking

3.1 Introduction and Motivation 35

algorithm. A more in depth discussion of related work is givetha end of the thesis in
Section 13.2.

A common denominator for all these isolated formal specification attempts is that
they have been conducted in parallel with the official language specification. Even if a
proposed alternative specification covers large portions of the language, it will not be used
as a specification by the community if it is not replacing the official specification. If there
are two specifications of the same concept, how do we then know which one is valid if
they are not consistent? Nevertheless, these formal specification attempts are still very
important to promote understanding and discussion about the informal semantics. It is of
great importance that these works gradually find their way into the official specification.
The problem is how to make this possible in practice because all attempts so far only
model subsets of the real language.

3.1.3 Abstract Syntax as a Middle-Way Strategy

Improving the natural language description of the Modelica specification is an obvious
way of increasing the understandability and removing ambiguity. However, previous work
on formalization of the complete semantics of subsets of the language has shown to be
complex and resulting in very large specifications. Hence, there is a concrete and practical
need to find a "middle-way" strategy to improve the clarity of the complete language, not
just subsets. This strategy must be simple enough to not require in depth theoretical
computer science knowledge of the reader, but still precise enough to avoid ambiguities.

When a compiler parses a Modelica model, the result is transformed irstbsdract
syntax tree (AST)4, 124]. The abstract syntax can be specified usirmrtext-free
grammar

The internal representation of an AST is often seen as a tool implementation issue,
and not as something that is defined in a language specification. Nevertheless, in this
chapter we sketch the idea that an intermediate representations between the transforma-
tion steps (recall Figure 2.2) should be described by specifying its abstract syntax. Note
that this abstract syntax @nly intended as an abstract concept specified in a language
specification and read by humans. It is not intended for implementation.

However, specifying different forms of abstract syntannotreplace the semantic
specification needed in the transformation process because the syntax only describes the
structureof a Modelica model, while the semantics states rtieaningof it. Hence,
in the short term, this specificatiasomplementshe current informal specification, by
clarifying exactly what both the input and the output structure of a transformation are.

By following this evolutionarystrategy, the semantic description may then be gradu-
ally specified more formally. However, this is not straight forward when considering the
whole Modelica language. The main purposes of including abstract syntax definitions in
the specification can be summarized to be:

1. Specifying Valid Input. Increase the clarity of what valid Modelica actually is, i.e, to
make sure that different tools reject and accept the same models.

2. Specifying Expected Output. Remove confusion of what the actual outcome of exe-
cuting a Modelica model is.

36 3 Secifying the Modelica Language

3. Promoting Language Simplification. The Modelica language has been identified to
be sometimes more complicated than necessary (e.g., relations between the gen-
eral class and restricted classes). An abstract syntax formulation can be used as a
guidance tool for identifying the most useful reformulations needed.

Part of the first item is already specified using the concrete grammar. To increase the level
of detail that can be specified of the abstract syntax, we will later on suggest an informal
approach to include context-sensitive information in the abstract grammar specification.
This rules out parts of the informal semantics used for rejecting invalid models. How-
ever, large parts of the rejecting semantics must still be described using another semantic
specification form.

3.2 Specifying the Modelica Language

Defining a new language from scratch with an unambiguous and understandable language
specification is a difficult and time consuming task. Developing and enhancing a language
over many years and still being able to keep the language backwards compatible and the
specification clear, is perhaps an even more challenging mission. In the previous section,
we described this problem with the current specification, motivated the need for improve-
ment, and briefly introduced a proposed strategy. In the beginning of this section, we will
focus on the questiowhat should actually be specified in the Modelica specification. At
the end of the section, we will discubsw this specification can be achieved by survey-
ing some different specification approaches and compare how they relate to the abstract
syntax approach.

At a high level, the syntax and semantics of Modelica can be divided into two main
aspects:

e Transformatiopi.e., the process of transforming a Modelica source code model
into a well defined result. Depending on the purpose, the result can either be an
intermediate form of a hybrid DAE, or the final simulation result.

e Checking i.e., rules describing what a valid Modelica model actually is. These
rules should unambiguously describe when a tool should reject the input model as
invalid.

Both these aspects are important for a clear-cut result, so that tool vendors can create
compatible tools.

3.2.1 Transformation Aspects - What is Actually the Result of an
Execution?

In the introduction section of the Modelica specification 3.2 [104], it is stated that the
scope of the specification is to define the semantics of the translation to a flat Hybrid

3.2 Specifying the Modelica Language 37

DAE and that it does not define the result of a simulation. A nmmatitécal notation of the
hybrid DAE is given, but no precise and complete output is defined.

However, many constructs given in the specification are not transformed to more prim-
itive constructs during this translation to a Hybrid DAE. Hence, the semantics of these
constructs (e.g., when-equations, algorithm sections), are implicitly defined, even if the
specification states that this should not be the case.

Therefore questions arise: what is actually the transformation process? What is the
expected result of the execution? We would argue that the answer to these questions
would differ depending on who you ask because the current specification is open for
interpretation.

Static vs. Dynamic

In the previous description of the compilation and simulation process, it was assumed
that the process wampiledand notinterpretedThis is not a specification requirement,

even ifitis common that tools are implemented as compilers. The definitions of static and
dynamic semantics are often confusing in relation to compile-time and simulation-time.
Some people will argue that the dynamic semantics is only the simulation sub-process and
that the elaboration and equation transformation as well as the code generation phases are
the static semantics. However, in Modelica it is possible to define a recursive model that
refers to itself, thus resulting in an infinite loop during the elaboration process. In such a
case, it questionable if the elaboration process can be called static.

From the above discussion, it is clear that we need to have a precise definition of the
input and the output of the elaboration process. Whether the two last sub-processes should
be part of the specification is an open design issue, but it is obviously important that the
decision is made if it should be completely included or removed.

3.2.2 Checking Aspects - What is actually a Valid Modelica
Model?

In the current specification, it is hard to interpret what valid Modelica input is, i.e., it is
difficult for a tool implementor to know which models that should be rejected as invalid
Modelica. A restrictive abstract syntax definition can help clarifying several issues.

Besides specifying the translation semantics of a model, a language specification typ-
ically describes which models that should be treated as valid, and which should not. By
aninvalid modelwe mean an transformation that should result in an error report by the
tool. In order for different tool vendors to be able to state that exactly the same models
are invalid,whenandhowto detect model faults must be clearly and precisely described
in the language specification. Unfortunately, this is not as easy as it might seem.

Basically, rules in a specification for stating a valid model can be specified by using
one of the following strategies, or a combination of both:

e Specify rules that indicate valid models. All models that do not fit to these rules are
assumed to be invalid.

e Assume that all models are valid. Explicitly state exceptions where modefmare
valid.

38 3 Secifying the Modelica Language

The current Modelica specification mostly follows the lattep@ach. Here the concrete
syntax constrains the set of legal models at a syntactic level. Then, informal rules given
in natural language together with concrete examples state when a model can be legal or
illegal.

The problem with this approach is that it is very hard for a tool vendor to be sure that
a tool is compliant with the specification.

Time of checking

Detecting that a model is invalid can take place at different points in time during the
compilation and simulation phase. Even if this can be regarded as a tool issue and not a
language specification detail, the checking time has great implications on a tool’s ability
to guarantee detection of invalid models.

Figure 3.1 outlines a simplified view of the earlier described compilation and simula-
tion process, where the three sub-processes of equation-transformation, code generation
and simulation are combined into one transformation step. Also, the lexical analysis and
parsing steps are omitted from the figure.

Hybrid DAE

Elaboration Transformation &
Simulation

NN
Simulation

N

Modelica
model Result

Figure 3.1: Possible points in time when the checking can occur.

The figure shows fiveTl - T5) conceptual points in time where the checking and re-
jection of models can take place. Starting from the erfjllustrates the final step of
checking that the simulation result data is correct according to some requirements. This
checking can normally not be conducted by a tool, but only by humans who have the
domain knowledge.

The checking at poinT4 takes place during simulation of the model. This is what
many would refer to adynamic checkindpecause it is performed during runtime. Errors
which can occur here are for example numerical singularities after events or array out-
of-bound errors. Because Modelica does not have an exception handling mechanism, it
is implicitly assumed that the tool exits with an error statement. Checking pairis
performed after the elaboration phase. This can for example concern controlling that the
number of equations equals the number of unknowns.

Even if it is not stated in the Modelica specificatidr?, is our interpretation of the
specification where the type checking takes place. Here, the naming of this kind of check-
ing is often a source of confusion. If the elaboration phase is regarded statlvesernan-
tics, some people call thistatic type checkingHowever, because the elaboration phase
is the major part of the semantics described in the specification, and it involves complex
transformation semantics, this can be viewed as something dynamic from an interpretive
semantics point of view, or as something static from a translational semantics point of
view. Using an interpretive semantics styl€, would involvedynamic type checking

Following this argumentation, therl would represenstatic type checking.e., the
types in the language are checkidforeelaboration. This reasoning is analogous to

3.2 Specifying the Modelica Language 39

dynamic checking in languages such as PHP and Common LISPaced static type
checking in Haskell, Standard ML, or Java. Even if the Modelica specification does not
currently support this kind of static checking, it has a major impact on the ability to detect
and isolate for example over- and under-constrained systems of equations or to enable
separate compilation.

3.2.3 Specification Approaches - How can we State What it’s all
About?

When it is cleawhatto specify, the next obvious questiontiswto specify it. There are
several specification approaches, and we have briefly mentioned some of them earlier in
this chapter.

As evaluation criteria, it is natural to use the specification goalsiderstandability
and unambiguity Furthermore, it is also of interest to estimate thressivenessf
the approach, i.e., how much of the intended specification task can be covered by the
approach.

In the following table, a number of possible specification approaches are listed, with
our judgements of the evaluation criteria.

Approach | Understandability | Expressiveness Unambiguous
Natural language description High-Medium High Low
Formal semantics Low Medium High
Abstract Syntax Grammar Medium Medium High
Concrete Syntax Grammar Medium Low High

Test suite High High Medium
Reference Implementation Medium High High

Table 3.1: Possible specification approaches with our judgements of the evaluation
criteria.

A natural language specification can be understandable and expressive, depending on the
size and quality of the text, but easily leads, as we have discussed earlier, to ambiguous
specifications. Using a formal type system together with formal semantics [124] is here
seen as having low understandability because it requires high technical training. It is
however very precise and fairly expressive.

The expressiveness of the abstract syntax is stated as higher than the concrete syntax
because we can introduce context dependent information in the grammar using meta-
variables. An example of this will be given in the next section.

We have also included approaches such as the use of a test suite and reference im-
plementation. The approach to use a test suite as a specification can be an interesting
complement to abstract syntax and informal semantics. However, it is very important to

1Understandability is of course a very subjective measurement. In this context, we have chosen to also
include the level of needed knowledge to understand the concept, i.e., a concept requiring an extensive computer
science or mathematical background results in lower understandability rating.

40 3 Specifying the Modelica Language

state which description that has precedence if ambiguiteesliacovered. Finally, a ref-
erence implementation can also be seen as a specification, even if it could be hard to get
a good overview over it if the language is large and complex.

3.3 An Abstract Syntax Specification Approach

In the following section we will briefly discuss the idea to use abstract syntax as part
of the Modelica specification. Initially, the different abstract syntax representations are
outlined in relation to the transformation process described in Section 3.2.1, followed by
a discussion about the specification and representation of the syntax.

3.3.1 Specifying the Elaboration Process

An Abstract Syntax Tre€AST) can be seen as a specific instance of an abstract syntax.
Transformation processes inside a compiler can be defined as transformations from one
intermediate representation to another. ASTs are a natural form of intermediate represen-
tation.

Consider Figure 3.2, where the elaboration process is shown with surrounding ASTs.
The first step in the process is the ordinary scanning and parsing step, which is formally
defined in the specification using lexical definitions and concrete syntax definitions using
Extended BNF.

Complete AST (C-AST)

This step transforms into the first tree call@dmplete AST (C-AST)which is a direct
mapping of the concrete syntax. Although this is a natural step in a compiler implemen-
tation, it is of minor interest from a specification perspective.

Simplified AST (S-AST)

From the C-AST, a simplification transformation translates the C-AST into a simplified
form calledSimplified AST (S-AST)This transformation’s goals are:

e Desugaring The process of removing so callsgntactic sugamhich is a conve-
nient syntactic extension for the modeling engineer, but with no direct implication
on the semantics. Example of such desugaring of a model is to collect all equation

. N
mgg::l?i?e C-AST S—AST HDAE-AST
mods ———» | Gomplete AST » | Simplified AST | | Hybrid DAEAST |
Scanning & Desugering & Elaboration Equation
Parsing

Simplifications Transformation &
Code generation

Formally Formally

Specified Specified Formally

Specified

Figure 3.2: Modelica’s compilation process divided into intermediate representa-
tions in the form of abstract syntax trees (ASTS).

3.3 An Abstract Syntax Specification Approach 41

sections into one list because the Modelica syntax allowsrakaégorithm and
equation sections to be defined in a model.

e Normalizing TransformationsMinor transformations and operations that help the
S-AST to be a canonical form which is more suitable as input to the elaboration
process. For example assigning correct prefixes to subelements.

e Checking model validity. One of the purposes with S-AST is that it is more re-
strictive than the C-AST. Hence, some C-AST constructs are not valid S-AST. This
restriction gives the possibility to ensure certain model properties, which in the
current Modelica specification are described using informal natural languages. For
example, which kind of restricted classes is the record class allowed to contain as
its elements?

The S-AST can be seen as a simplified internal language analogouslybartienguage

of Standard ML [98]. However, initially, we do not see a similar short and precise way of
specifying the transformation from C-AST to S-AST because of the size and complexity
of the language.

Hybrid DAE AST (HDAE-AST)

Besides S-AST, the output of the elaboration phase called Hybrid DAE AST (HDAE-
AST) is proposed to be specified formally in the specification. The HDAE-AST must not
just be a high-level mathematical description of an Hybrid DAE, but an explicit syntax
description describing a complete specification of what the actual output of the elaboration
phase is. This does not only include equations and variables, but function definitions,
algorithm sections, when-equations and when-statements. Even if this information is
possible to derive from the current specification, it would be a great help for the reader to
actually know what the output is, not just assume it.

Note that our approach suggests that the language specification should initially include
a precise description of the possilsigucturesof the ASTSs; specifying input and output
to the transformation process. The semantics of the transformation must still be described
using another approach that initially could still be an informal description.

3.3.2 Specifying the Abstract Syntax

The specification of the syntax must be described using some kigdaohmar The
syntax can be specified usingantext-freegrammar, e.g. in Backus-Naur Form (BNF).
However, we propose a more abstract definition of a grammar, where ceetanvariables
range over names and identifiers.

For example, by stating that a meta-variaBleranges ovenames(identifiers with
possible dot-notation) referencingr&cor d, we have introduced a contextual depen-
dency in the grammar. The grammar declaratively states the requirement that this name
must after lookup be a record, without statimgw the name lookup should be performed.

42 3 Specifying the Modelica Language

The latter must of course also be described in the specifigdtidgrnn this way the differ-

ent issues are separated. Consequently, this grammar is not intended to be used directly
by a parser generator tool such as Yacc, but as a high-level specification which is less
open for interpretation.

3.3.3 The Structure of an Abstract Syntax

Depending on the purpose and language for an abstract syntax, the structure of the syntax
itself can be very different.

When specifying a simple functional languages, itis common that the grammar of the
abstract syntax only has one non-terminal, namelgran [124]. Hence, all evaluation
semantics is performed on this node type only, and all terms can be nested into each other.
This gives a very expressive language, but the constraining rules ensuring the validity of
an input program must be given in another form. This form is normally a fotyue
systemdescribing allowed terms.

Another method is to describe the abstract syntax with many non-terminals; more
than needed for a production compiler. In for example the Modelica case, the different
restricted classesrodel , bl ock, connect or, package, andr ecor d would not
be represented as one non-termidlalss but as different non-terminals. This structure
would be more verbose, but also give the possibility of more precisely describing relations
between restricted classes.

Somewhere inbetween those two extremes is for exampl8@IBE representation
used in the earlier RML specification [84] and the current OpenModelica implementation.
For the specification purpose, we suggest to use the most verbose alternative, i.e. the
second alternative using many non-terminals. The rational for this choice is basically that
this more restrictive form gives more information about what the actual input and output
of the elaboration processes are.

3.3.4 A Connector S-AST Example with Meta-Variables

To give a concrete example where a grammar for S-AST can improve the clarity com-
pared to the current informal specification, we take the restricted classect or as
an example. In the Modelica specification it is stated that for a connétmrequa-
tions are allowed in the definition or in any of its componenis/hat does this mean?
That no equations are allowed at all? Are declaration equations allowed, for example
Real x = 47? Obviously, it is not allowed to have instances of models that contain
equations, but is it allowed to have models that do not contain equations? Is it only al-
lowed to have connectors inside connectors, or can we also have records in connectors,
since these are not allowed to have equations either? These questions are not easy to
answer with the current specification, because it is open for interpretation.

Consider Figure 3.3, where an example of the non-terminal foomnect or is
listed using a variant of Extended BRIFAs usual, alternatives are seprated using the |
symbol, and curly bracketd. .. }) denote that the enclosing elements can be repeated
zero or more times.

2The following example grammar is not intended to exactly describe the current Modelica specification. The
aim is only to outline the principle of such grammar in order to describe the abstract syntax approach.

3.3 An Abstract Syntax Specification Approach 43

connector ::= Connect or (
{Ext ends(C; conModi fication) }
{Decl| Con(modifiability outinner Cq connector) }
{Decl| Rec(modifiability outinner Rq record) }
{ConpCon(conconstraint Cy cq conModi fication) }
{CompRec(conconstraint R, rq recModification) }
{Conpl nt (conconstraint xq) }
{CompReal (conconstraint flowprefiz yq) }

)
access == Public|Protected
modifiability = Repl aceabl e |Fi nal
outinner = CQuter |l nner |Quterlnner | Not Quterlnner
conconstraint = | nput | Qut put || nput Qut put
flowprefixz == Fl ow| NonFl ow

Figure 3.3: Example of a grammar for the connector non-terminal. Non-terminals
conModification and recModification is not defined in the figure and can be assumed
to define the connector and record modifications respectively.

The grammar is extended with a more abstract notationetavariablesvhich range
over names or identifiers. Metavariabl€s and R, range over identifiers declaring a
new connector respectively record; and R, range over connector and record names
referencing an already declared connector or record. Metavariahles, x4, andyy
range ovecomponentdentifiers having the type of connector, record, Integer, and Real.
All bold strings denote a node in the AST. If the AST is given in a concrete textual
representation, these keywords are used when performing a pre-order traversal of the tree.

In the exampleconnectorcan hold zero or mangxt ends nodes, referencing the
meta-variable”,., denoting all names that reference a declared connector. Hence, using
this meta-variable notation, this rule states that a connector is only allowed to inherit from
another connector.

Furthermore, the example shows that a connector is allowed to have two kinds of
local classes: Connector and Record (nddes! Con andDecl Rec). ConpCon and
ConpRec state that a connector can have both connector and record components.

For each of the different kinds of elements, it is stated exactly which prefixes that are
allowed. This description is more restrictive than the concrete syntax, which basically
allows any prefix. In the current specification these restrictions are stated in natural lan-
guages, spread out over the specification. For example, on one page it is'gaatables
declared with the flow type prefix shall be a subtype of Redalich a text is superfluous
when the grammar for S-AST is specified (note tflatvprefix is only available in the
ConpReal node).

44 3 Specifying the Modelica Language

3.4 Chapter Summary and Conclusions

In this chapter we have briefly discussed the idea of finding a middle way between an
informal language specification described in natural language and a formal definition.
The main idea is to describe several intermediate languages for the Modelica simulation
process, and to give an abstract syntax for each intermediate language.

We presented the ideas in this chapter in 2007 [24] as an attempt to seek new ways
of improving the Modelica specification. The target audience was the Modelica design
group and others interested in the design of the Modelica language. However, until this
date no further work has been conducted to formalize the specification in this way.

Growing the Modelica Language

QUATION-BASED OBJECTFORIENTED(EOO) modeling languages are typically rather

complex. In the hypothetical ideal case, a language can be defined once and subse-
quently for all future fulfill all demands a user might require regarding expressiveness,
performance, and safety. Unfortunately, this is never the case. Language theory is one of
the core areas within computer science, and history has shown that language design is a
very difficult task and that there is no simple solution to design a language that covers all
problem domains at once. In a famous talk by Guy L. Steele, he discusses the essence of
designing a language for the future [136, 138]:

“If | want to help other persons to write all sorts of programs, should | design

a small programming language or a large one? | stand on this claim: | should
not design a small language, and | should not design a large one. | need to
design a language that can grow. | need to plan ways in which it might grow

- but I need, too, to leave some choices so that other persons can make those
choices at a later time.”

The design space and problems of growing an equation-based object-oriented (EOO)
modeling language have much in common with the design of a general purpose program-
ming language. However, there are also several aspects where EOO languages differ,
raising new questions and design problems.

This chapter discusses and analyzes how EOO languages in general can be designed
for growth, and in particular how this relates to the evolution of the Modelica language.
We do not present any technical contribution, but a systematic categorization of how a
language can grow. The rest of the chapter is organized as follows:

e The design space of how an EOO language can grow is outlined using a new matrix
model that categorizes different ways of growth (Section 4.1).

45

46 4 Growing the Modelica Language

e The trade-offs for different ways of growth are discussed and analyzed from various
stakeholder’ perspective (Section 4.2).

4.1 Different Ways of Growing a Language
A language can grow in many different ways and directions. However, in the end, itis all

about changing the language’s syntax and/or semantics. In this section, we categorize and
exemplify different ways of growing a language.

4.1.1 The Ways of Growth Matrix

The relationship between syntax and semantics regarding language growth is illustrated
in Figure 4.1.

Extending the Semantics

yes no
yes “growth by adding “growth by adding
new language features” syntactic sugar”
Extending
the Syntax
“growth by new “growth by new
no meanings of annotations user defined
or built-in functions” abstractions”

Figure 4.1: Categorization of different ways of growth depending on whether the
language is extended by syntax and/or semantics.

This matrix shows the different ways of growth, whether a language is extended with its
syntax or semantics, both, or none of them. The following sub-sections describe these
ways of growth by giving examples from the Modelica language.

4.1.2 Growth by Adding New Language Features

The most obvious one is given in the upper left corner of Figure 4.1, i.e., extending both
the syntax and the semantics. This is the ordinary way of adding a new language feature,
where the new language construct is added to the syntax grammar and the new semantics
for this construct is defined.

For example, lookup of variables in Modelica can be according to lexical scope and
scope defined by instance hierarchy. The latter was added by defining new syntax where
variables could be defined to b@ner orout er . For example, consider Figure 4.2:

Inside modelN two instances of modéMare created, namelyl andn®. Besides the
syntactic extension needed for this language feature extension, the meaning of a variable
declared as nner andout er must be defined.

4.1 Different Ways of Growing a Language 47

nodel M nodel N
outer Real x; i nner Real x;
. M, nP;
end M C
end N,

Figure 4.2: Example of the rules for using inner/outer.

Both the dynamic and the static semantics must be defined. The dynamic seman-
tics can be seen as the meaning of the actual scoping. From the specification [104], the
definition is:

“An element declared with the prefix outer references an element instance
with the same name but using the prefix inner which is nearest in the enclos-
ing instance hierarchy of the outer element declaration.”

For example, when componemt is elaborated, it is discovered thatdefined inMis
anout er element. Hence, it looks up the variable with same name (in thiscpse
nearest in the instance hierarchy, which is xhdeclared as nner in modelN. Hence,

N. x, N. mL. x, andN. n2. x are the same variable. The static semantics define the type
system, e.g., iN. x is an integer buM x is a real, a conflict exists.

4.1.3 Growth by Adding Syntactic Sugar

Another approach of growing a language is to extend the syntax, but to leave the semantics
as it is (the upper right corner of Figure 4.1). This way of extending a language is often
referred to as addingyntactic sugailWhat does this mean?

Basically, the idea is that neither the dynamic nor the static semantics are changed. In-
stead, only the grammar for the concrete syntax is extended, but not the abstract syntax. A
transformation rule from the new syntax to the abstract syntax is then defined. Hence, the
core of the semantics is left unchanged, but a new syntactic form is added (the syntactic
sugar).

Let us explain the idea with a concrete example. Consider the four Modelica models
MLa, MLb, MLc, andMLd given in Figure 4.3.

All four models state a simple initial value problem, with a slight difference in their defini-
tions. Are all these models stating exactly the same problem, i.e., are the model’s meaning
the same?

The simulation result for the first three models are the same, but viidetioes not
compile. In modeMLa andMLc thest art attribute states that the initial condition for
x is 5 at time0. In Modelica specification version 2.0, the procedure for specifying initial
conditions were changed, and the ability to addra ti al equati on section was
added [93]. ExamplebiLb andMLd both show that the initial equation = 5 is used
instead of thest art attribute. Hence, the same meaning for initial conditions can be
specified in different syntactic ways. Would it not be possible to just specify the meaning
of one form, and then add the other form as syntactic sugar?

48

4 Growing the Modelica Language

nodel Mla nodel MLb
Real x(start=5); Real x;
equation equation
der(x) = -x + 2; der(x) = -x + 2;
end Mla; initial equation
X = 5;
end Mlb;
nodel Mlc nodel MLd

Real x(start = 5,
fixed=true);

Real x(fixed =
true);

equation equation
der(x) = -x + 2; der(x) = -x + 2;
end Mlc; initial equation
X = b5;
end MLd;

Figure 4.3: Four almost identical Modelica models stating a simple initial value
problem.

Yes it would be possible, if it was not for the additional special attriiuteed,
which was introduced in the language before the initial conditions. The intuitive meaning
of fi xed is that if it is true, then the correspondisgjar t attribute must hold during
the initialization MLc). This is equivalent to an explicit initial equation (MLiHowever,
if fi xed is false, the start attribute is treated agugessvalue, i.e., the solver can use it
as an initial guess, but it does not need to be the initial value. This is the case in model
Mla because variables in Modelica have as defauked = f al se. Why can we not
compileMLd then? The reason is that the attribfiiexed does not concern the initial
equation here, but thet art attribute. In Modelica, all variables of type real have as
defaultst art = 0. Hence, in the casklld, the initial condition states that must be
both equal to 0 and to 5 at the same time, i.e., the initial condition is over-determined and
cannot be solved.

Now, consider Figure 4.4, which shows three potential ways of modeling a steady
state initialization:

Model M2c is using initial equations for modeling the steady state, which is one of
the motivations of introducing initial equations. However, as can be seen in the first two
models, it can also be modeled by using the start attribute together with a new algebraic
variabledx. ModelsM2b and M2c always give a steady state initialization, hvRa
depends on if the tool chooses to use the start valux ads initial value (which turned
out to not be the case in the tested Dymola [45] environment).

With the current design of Modelica, it is not trivial to define for examplesthar t
attribute as syntactic sugar of initial equations. However, if it was possible, one can argue
that themeaningof the start attribute would be easier to grasp, both for an end user and
a compiler engineer. As shown in Figure 4.4, it is also possible to define steady state
initialization, by using the start attribute together with ordinary equations.

4.1

Different Ways of Growing a Language

49

nodel Ma nodel Mb
Real x; Real x;
Real dx(start=0); Real dx(start=0, fixed=true);
equation equati on
der(x) = -x + 2; der(x) = -x + 2;
der (x) = dx; der (x) = dx;
end Ma; end Mb;
nodel Mec
Real x;
equation
der(x) = -x + 2;
initial equation
der(x) = 0;
end Mc;

Figure 4.4: Steady state initialization modeled in three different ways.

If initial equations were the basic primitive construct (part of the AST) and the start at-
tribute was added later as syntactic sugar, the language would have grown without chang-
ing the semantics. However, as it turned out in the Modelica case, the initial equations
were added afterwards, resulting in that both the semantics and the syntax needed to be
changed.

4.1.4 Growth by New Meanings of Annotations or Built-in
Functions

A somewhat more unusual way to grow a language is to extend the semaritiosit
changing the syntax (the lower left corner of Figure 4.1). Hence, this approach changes
the meaning of programs without the need to update the grammar for the concrete syntax
of the language. How is this possible?

One way of achieving this has been done in the Modelica language using built-in func-
tions, e.g.si n(x),cos(x),floor(x),del ay(expr, del ayTi ne) etc., that all
adhere to the standard function syntax. The semantics of such a functions are informally
described in the specification using natural language. Hence, the semantics is extended
without changing the syntax.

Modelica uses a sophisticated approach for this call@ibtations Annotations can
be used for storing various extra information about models, such as graphics, version
information, or documentation.

In the latest specification, a number of annotations are standardized (i.e., the meaning
(semantics) of them are specified). However, vendor tools are free to add their own an-
notations, as long as the annotations names start with the company’s name. For example,
Figure 4.5 shows an example of a vendor specific graphical annotation:

50 4 Growing the Modelica Language

annotation (
I con(coor di nat eSyst en(ext ent ={{- 100, - 100}, {100, 100}}),
gr aphi cs={__NaneOf Vendor (Circl e(center={0, 0}, radius=10))})

Figure 4.5: A vendor specific annotation for a circle [103].

4.1.5 Growth by New User Defined Abstractions

The lower right corner of Figure 4.1 assumes that neither the syntax nor the semantics is
extended. How is it then possible to grow the language at all?

This is actually a very fundamental and natural way that has been part of programming
language history from the beginning. The key point is that the user can grow the language
by adding new words and meaning without altering the language definition itself. In a
functional language it is done by defining new functions, in object-oriented languages
by adding class definitions or method definitions to existing classes. In many languages,
these new abstractions can be collected lii@ries enabling reuse at a later time.

In Modelica, the user can grow the set of new user defined abstractions by adding
definitions of functions, classes, models, blocks etc. and then encapsulate them into pack-
ages. Hence, growth by new user abstractions is the natural way of programming/model-
ing, where library developers develop libraries that can later on be reused by other users.
Although this principle is natural and obviously beneficial, it is far from trivial to create a
language that enables this growth.

A key point, also emphasized in Steele’s speech [136], is that new definitions defined
in libraries should look like primitives in the language itself. Hence, in the ideal case,
a user of a language should not be able to distinguish if the language has been extended
with new functionality via a library definition, or by changes in the language specification.
One early programming language that achieved this is LISP [137]. In this language, new
definitions defined by users look like primitives and all primitives look like definitions by
users. Hence, LISP is a language truly built for growth by its users.

4.1.6 Restricting the Language

In the previous sections, four different categories for extending the semantics and/or the
syntax were given. In these scenarios, the language grows by providing more expressive-
ness, i.e., that new models or programs can be expressed that were not possible before, or
that the same models can be defined in a more concise manner. However, how does a lan-
guage’s safety aspect grow, i.e., how can the language be improved for detecting errors,
isolating faults in models, and possibly guaranteeing the absence of certain kind of faults
in models?

The safety aspect of a language can actually grow by restricting the language, i.e., by
defining rules that reject models as illegal. This can be defined by restricting the grammar
(the syntax) or by adding semantic rules, e.g., using a static type system to define legal
models (the semantics).

Our previous work on determining over- and under-constrained models by extending

4.2 The Right Way to Grow 51

the static type system of an EOO language [28] is an examplecbfan approach. Parts

of these ideas have later also beenincluded in the latest Modelica specification [103]. This
is one of the major changes in Modelica version 3.0, where Modelica models are required
to be balanced, i.e., to have the same number of equations as unknowns. A more detailed
overview and rationale of balanced models in Modelica is given by Olesaal.[116].

One major implication of growth when restricting the language is backwards compat-
ibility. Unavoidably, models that were earlier legal will become illegal in later language
versions. As long as the illegal models were in fact useless models, e.g., models that
were not possible to simulate, this backwards incompatibility could be acceptable. How-
ever, to reject legal working models are of course more controversial. Regarding balanced
models, it has been argued in the Modelica design group, that it is now possible to check
libraries and detect errors earlier and therefore enable the user to build larger models with
less effort.

4.2 The Right Way to Grow

Which is the right way to grow? The right way to grow a modeling or programming
language is not always the easiest way. The easy way is not always easy for everyone. We
will in this section discuss and analyze the benefits and drawbacks of the various ways of
growth from different stakeholders’ perspective.

4.2.1 Stakeholders of an Object-Oriented Equation-Based
Modeling Language

The design and evolution of a language for modeling and analysis of systems is affected
by several different stakeholders:

e Language Designer®erson(s) inventing and designing the actual language.

e End Users The users who use the language for modeling and analysis. In the
Modelica case, these are usually engineers who create the model mainly using the
graphical component-based drag-and-drop user interface.

e Library Users Engineers and scientists who develop reusable model libraries. Li-
braries are created by editing textual Modelica code. The free Modelica standard
library is one example.

e Tool Vendors Computer scientists and computer engineers who develop the com-
piler and tools for viewing, editing, compiling, and executing models.

Each of these stakeholders have different demands and priorities regarding what is impor-
tant when growing the language.

4.2.2 Language Designers’ Perspective

Unfortunately, language designers tend to want their language to be able to handle every-
thing. One of their main challenges is not what to put in the language, but what to actually

52 4 Growing the Modelica Language

leave out. If a language is designed by one person or a smalpgtioese individual(s)

need to judge, test and take all decisions by themselves. This may lead to a concise design,
but there is a considerable risk that important input from other stakeholder’s, such as end
users becomes limited. On the other hand, if the language is designed by a community
with a committee, input comes from many sources. However, there is a substantial risk
that the different parties involved will lead to many compromises that can make the lan-
guage large and complex. The latter approach with a design community and committee is
the path that the design of Modelica has followed.

When many parties are involved in the language the risk is that new “features” are con-
tinuously added to the specification, i.e., the upper left corner of the matrix in Figure 4.1
where both the syntax and semantics are changed. However, if fewer people are involved
in the process, the language may be designed with a more well-defined core semantics
and large parts are defined by using the approach with syntactic sugar. This is the way
that for example Standard ML is defined [98]. This way of defining a language is hard
and challenging, but can if done right lead to a less ambiguous specification. See [24] for
further discussions regarding this topic.

Finally, one of the language designers incentives, that is often forgotten, is the need
for change. If the language is completed, their role is not needed anymore.

4.2.3 End Users’ Perspective

From an end user’s perspective it is of course very important that the language is easy to
use and understand. Moreover, the semantics that the language actually has must be close
to what a fairly new user of the language expects. A clear core semantics is of course ben-
eficial when using syntactic sugar that clearly states similar constructs’ meaning. Hence,
situations as described previously about initial equations in Modelica should if possible
be avoided.

If a user makes mistakes, i.e., creates errors, it is of high importance that the errors
can be detected and that the faults in the model can be isolated and resolved. However, re-
stricting the language so that working models become unusable (i.e., non backwards com-
patibility) is generally not acceptable. Hence, from an end user’s perspective, language
changes that restrict the language should preferably be done very early in the language’s
history.

End users will of course also be able to solve new problems and use existing models
in different ways. Even though the Modelica language is primarily designed for simula-
tion, there are several other kinds of analysis that are important, such as applications for
automatic control [34] and optimization problems [79].

4.2.4 Library Users’ Perspective

The library user wants expressiveness. In the ideal case, the library user can grow the
language by himself/herself, by adding new functionality which is indistinguishable from
primitive language constructs.

Library users may have conflicting interests with both language designers and tool
vendors because complications and details about the language is not the primary focus for
the user. Hence, library users are typically stakeholders who want to continuously expand

4.3 Chapter Summary and Conclusions 53

and add new complex features into the language, so that it lecomare expressive for
their needs (adding both new syntax and semantics).

4.2.5 Tool Vendors’ Perspective

Tool vendors create tools based on their interpretation of the language specification.
Hence, one of the fundamental needs for a tool vendor is that the specification can be
interpreted unambiguously. The specification must be easy to read, which is the case
for an informal specification written in a natural language. However, it also needs to be
precise and not open for different interpretations.

The approach of using a core semantics and define large parts of the language us-
ing syntactic sugar potentially gives a middle way. For example, the budtdae(b)
operator is defined to be equal to

(b and not pre(b))

Hence, parts that are defined as built-in operators can in fact be treated as syntactic
sugar.

Finally, a perspective that should not be forgotten is the tool vendor's commercial
perspective. i.e., their focus is primarily their sales possibilities, their customers’ needs,
and making their customers dependent on their tools. This is indicated by the fact that
tool vendors often want to be different compared to their competitors. Hence, this can be
a conflict of interest with the language designers because tool vendors might not always
want to be 100% compatible with competitors.

4.3 Chapter Summary and Conclusions

A programming language in general and an equation-based object-oriented modeling lan-
guage in particular cannot be designed once and for all. Hence, there is a need to plan for
the language to grow.

We have in this chapter categorized ways of growing a language, by either extending
the semantics and/or the syntax. Moreover, we have listed how different stakeholders have
different perspectives on what is important when growing a language. The importance of
the different ways of growing can be summarized as follows:

e Growth by adding new language featurBsvays changing both the syntax and the
semantics is the most drastic kind of change of a language and should be minimized
or avoided, especially for mature and widely used languages. The stakeholders
that are most negatively affected of such changes are language designers and tool
vendors, while library users might be the ones that push most for such extensions.

e Growth by adding syntactic sugaExtending only the syntax by using syntactic
sugar and at the same time keeping a core semantics is one of the preferable ap-
proaches to language growth. It gives both a precise language definition for the tool
vendors as well as an understandable language for the user.

e Growth by new meanings of annotations or built-in functiorarowth by only
changing the semantics and not the syntax might first seem to be a very attractive

54

4 Growing the Modelica Language

approach, especially for language designers because fewehare needed in the
specification. However, it can also be dangerous, e.g., in cases where many tool
dependent annotations might make different tools incompatible.

Growth by new user defined abstractioR#ally, growth by user defined abstrac-
tions, i.e., neither the syntax nor the semantics are changed, is the preferable ap-
proach in the long term. However, it is far from obvious how to achieve this, es-
pecially in such a young language research area as equation-based object-oriented
languages.

Types in the Modelica Language

ONE long term goal of modeling and simulation languages is to give engineers the
possibility to discover modeling errors at an early stage, i.e., to discover problems in
the model during design and not after simulation. This kind of verification is traditionally
accomplished by the use tfpesin the language, where the process of checking for such
errors by the compiler is callegipe checkingHowever, the concept of types is often not
very well understood outside parts of the computer science community, which may result
in misunderstandings when designing new languages. Why are then types important?
Types in programming languages serve several important purposes such as naming of
concepts, providing the compiler with information to ensure correct data manipulation,
and enabling data abstraction. Almost all programming or modeling languages provide
some kind of types. However, few language specifications include precise definitions
of types and type systems. This may result in incompatible compilers and unexpected
behavior when using the language.

The purpose of this chapter is twofold. The first part gives an overview of the concept
of types, states concrete definitions, and explains how this relates to the Modelica lan-
guage. Hence, the first goal is to augment the computer science perspective of language
design among the individuals involved in the Modelica language design. The long-term
objective of this work is to provide aids for further design considerations when develop-
ing, enhancing and simplifying the Modelica language. The intended audience is con-
sequently engineers and computer scientists interested in the foundation of the Modelica
language.

The second purpose of this chapter is to study the type conceptin Modelica. The main
contribution of this work is the insight that Modelica has two categories of types: class
types and object types. The rest of this chapter is organized as follow:

e We outline the concept of types, subtypes, type systems, and inheritance, and how
these concepts are used in Modelica and other mainstream languages (Section 5.1).

55

56 5 Types in the Modelica Language

e We give an overview of the three main forms of polymorphism, and how these
concepts correlate with each other and the Modelica language (Section 5.2).

e We introduce the type concept of Modelica more precisely, where we give a con-
crete syntax for expressing Modelica types (Section 5.3).

5.1 Types, Subtyping and Inheritance

There exist several models of representing types, whereéat mode[33] is one of the
most well-known. In this model, there is a univeidef all values, containing all values
of integers, real numbers, strings and data structures such as tuples, records and functions.
Here, types are defined as sets of elements of the unierséere is an infinite number
of types, but all types are not legal types in a programming language. All legal types
holding some specific property, such as being an unsigned integer. Figure 5.1 gives an
example of the universeg and two types: real type and function type, where the latter has
the domainof integer anccodomainof boolean.

In most mainstream languages, such as Java and C++, typesiatly typed by
stating information in the syntax. In other languages, such as Standard ML and Haskell, a
large portion of types can beferredby the compiler, i.e., the compiler deduces the type
from the context. This process is referred taygme inferenceand such a language is said
to beimplicitly typed. Modelica is an explicitly typed language.

Figure 5.1: Schematic illustration of Universé.

5.1.1 Language Safety and Type Systems

When a program is executed, or in the Modelica case: during simulation, different kinds
of execution errors can take place. Itis practical to distinguish between the following two
types of runtime errors [32].

e Untrapped errorare errors that can go unnoticed and later cause arbitrary behavior
of the system. For example, writing data out of bound of an array might not result
in an immediate error, but the program might crash later during execution.

e Trapped errorsre errors that force the computation to stop immediately; for ex-
ample division by zero. The error can then be handled by the runtime system or by
a language construct, such as exception handling.

A programming language is said to bafeif no untrapped errors are allowed to occur.
These checks can be performedcaspile-time checkslso calledstatic checkswhere

5.1 Types, Subtyping and Inheritance 57

the compiler finds the potential errors and reports them to tbgrammer. Some errors,
such as array out of bound errors are hard to resolve statically. Therefore, most lan-
guages are also usingntime checksalso calleddynamic checkingHowever, note that
the distinction between compile-time and runtime becomes vaguer when the language is
intended for interpretation.

Typed languages can enforce language safety by making surevéifiatyped pro-
grams cannot cause type errors. Such a language is often ¢gledafeor strongly
typed. This checking process is callégpe checkingand can be carried out both at run-
time and compile-time.

The behavior of the types in a language is expressediypa system A type sys-
tem can be described informally using plain English text, or formally usypg rules
The Modelica language specification is using the former informal approach. Formal type
rules have much in common with logical inference rules, and might at first glance seem
complex, but are fairly straightforward once the basic concepts are understood. Consider
the following:

I't ey : bool I'kFey: T I'kes:
'+ if e; thenes elsees : T'

T (wif

which illustrates a type rule for the following Modelicé -expression:
if el then e2 else e3

A type rule is written using a number pfemisedocated above the horizontal line and
a conclusionbelow the line. Thdyping judgement’ + e : T means that expressian
has typel” with respect to a static typing environméhtHence, the rule (t-if) states that
guarde; must have the type of a boolean and thatinde; must have the same type,
which is also the resulting type of thé -expression after evaluation. This resulting type
is stated in the last part of the conclusion, i:€L,

If the language is described formally, we can attempt to proveithe soundness
theorem[151]. If the theorem holds, the type system is said tosbendand the lan-
guagetype safeor or justsafe The concept of type safety can be illustrated by Robin
Milner's famous statement "Well-typed programs cannot go wrong" [97]. Modern type
soundness proofs are based on Wright and Felleisen’s approach where type systems are
proven correct together with the language’s operational semantics [151]. Using variant
of this technique, informally stated, type safety holds if and only if the following two
statements hold:

e Preservation If an expressior has a typel” ande evaluates to a value, thenv
also has typé'.

e Progress If an expressior has a typd then eithee evaluates to a new expression
e’ ore is a value. This means that a well typed program never gets "stuck”, i.e., it
cannot go into a undefined state where no further evaluations are possible.

Note that the above properties of type safety correspond to our previous description of
absence of untrapped errors. For example, if a division by zero error occurs, and the se-
mantics for such eventis undefined, the progress property will not hold, i.e., the evaluation

58 5 Types in the Modelica Language

gets "stuck"”, or enters an undefined state. However, if dynaemtantics are defined for
throwing an exception when the division by zero operation occurs, the progress property
holds.

For the imperative and functional parts of the Modelica language, the safety concept
corresponds to the same methodology as other languages, such as Standard ML. However,
for the instantiation process of models, the correspondence to the progress and preserva-
tion properties are not obvious.

Table 5.1 lists a number of programming languages and their properties of being type
safe [32, 99]. The table indicates if the languages are primarily designed to be checked
statically at compile-time or dynamically at runtime. However, the languages stated to be
statically type checked typically still perform some checking at runtime. Although many
of the languages are commonly believed to be safe, few have been formally proven to be
Sso.

Language Type Safe | Checking
Standard ML | yes static
Java yes static
Common LISP| yes dynamic
Modelica yes static
C/C++ no static
Assembler no -

Table 5.1: Believed type safety of selected languages.

One can argue whether Modelica is statically or dynamically checked, depending on how
the terms compile-time and runtime are defined. Furthermore, because no exception han-
dling is currently part of the language, semantics for handling dynamic errors such as
array out of bounds is not defined in the language and is therefore considered a compiler
implementation issue. Hence, the Modelica languageotay be regarded to be safe if

the tool unconditionally detects all errors and terminates the computation with an error
message.

5.1.2 Subtyping

Subtyping is a fundamental language concept used in most modern programming lan-
guages. It means that if a tygehas all the properties of another tyfe then.S can

be safely used in all contexts where typds expected. This view of subtyping is often
calledthe principle of safe substitutidi24]. In this cases is said to be a subtype @f,

which is written as

S<:T (5.1)

This relation can be described using the following important type rule calleditbef
subsumption
I'Ht: S S<:T
r=t:T

(t-sub)

5.1 Types, Subtyping and Inheritance 59

The rule states that i§ <: 7', then everyterm* ¢ of type S is also a term of typd".
This shows a special form @olymorphismwhich we will further explore in Section 5.2.

5.1.3 Inheritance

Inheritances a fundamental language concept found in basically all class ifdt-
Oriented (OO)languages. From an existinttase classa newsubclassan be created
by extendingfrom the base class, resulting in the subclageriting all properties from
the base class. One of the main purposes with inheritance is to save programming and
maintenance efforts of duplicating and reading duplicates of code. Inheritance can in
principle be seen as an implicit code duplication which in some circumstances implies
that the subclass becomes a subtype of the type of the base class.

Figure 5.2 shows an examplehere inheritance is used in Modelica.odelcalled
Resi st or extends a base cla3swPi n, which includes two elements for voltage
andi for current. Furthermore, two instancpsandn of connectorPi n are public
elements offTwoPi n. BecauseResi st or extendsTwoPi n, all elements/, i , p and
n are "copied" to clasResi st or. In this case, the type dResi st or will also be a
subtype ofTwoPi n’s type.

connector Pin
Sl . Vol t age v;
flow Sl.Current i;
end Pin;

partial nodel TwoPin
Sl . Vol t age v;

Sl.Current i;
Pin p, n;
equati on

V= p.v - n.v;
0 =p.i +n.i;
i =p.i;

end TwoPi n;

nodel Resi stor

ext ends TwoPi n;

paraneter Sl. Resistance R=100;
equati on

Rxi = v;
end Resi stor;

Figure 5.2: Example of inheritance in Modelica, where a new subdRess st or
is created by extending the base clag®Pi n.

1The wordtermis commonly used in the literature as an interchangeable name for expression.
2These classes are available in the Modelica Standard Library 2.2, but are slightly modified for reasons of
readability.

60 5 Types in the Modelica Language

However, a common misunderstanding is that subtyping anditahee is the same con-
cept [99]. A simple informal distinction is to say that "subtyping is a relation on in-
terfaces", but "inheritance is a relation on implementations”. In the resistor example,
not only the public elements, i , p andn will be part of classResi st or, but also

the meaning of this class, i.e, the equations p.v - n.v,0 = p.i + n.i and

i =p.i.

A famous example, originally stated by Snyder [135], illustrates the difference be-
tween subtyping and inheritance. Three comnadistract data typefor storing data
objects arequeue stack anddequeueA queue normally has two operationgsertand
delete which stores and returns objects iffirgt-in-first-out (FIFO)manner. A stack has
the same operations, but is usindgat-in-first out (LIFO)principle. A dequeue can op-
erate as both a stack and a queue, and is normally implemented as a list, which allows
inserts and removals at both the front and the end of the list.

Figure 5.3 shows two C++ classes modeling the properties of a dequeue and a stack.
Because the claf3equeue implements the properties also needed for a stack, it seems
natural to create a subclaSsack that inherits the implementation froBequeue. In
C++, it is possible to use so callgntivate inheritancéo model inheritance with aax-
clude operatioyi.e., to inherit some, but not all properties of a base class. In the example,
the public methodsnsFr ont ,del Front ,anddel Rear in classDequeue are inher-
ited to be private in the subclaSs ack. However, by adding new methodssFr ont
anddel Front in classSt ack, we have created a subclass, which has the property of a
stack by excluding the methatkel Rear . St ack is obviously a subclass @equeue,

cl ass Dequeue{
public:

void insFront(int e);
int del Front();

int del Rear();

b

class Stack : private Dequeue{
public:
void insFront(int e)
{Dequeue: :insFront(e);}
int del Front ()
{return Dequeue::del Front();}

}s

Figure 5.3: C++ example, where inheritance does not imply a subtype relationship.

but is it a subtype? The answer is no because an instar@teaafk cannot be safely used
whenDequeue is expected. In fact, the opposite is true, iRegueue is a subtype of

St ack and not the other way around. However, in the following section we will see that
C++ does not treat such a subtype relationship as valid, but the type system of Modelica
would do so.

5.1 Types, Subtyping and Inheritance 61

5.1.4 Structural and Nominal Type Systems

During type checking, regardless if it takes place at compile-time or runtime, the type
checking algorithm must control the relations between types to see if they are correct or
not. Two of the most fundamental relations atétypingandtype equivalence

Checking of type equivalence is the single most common operation during type check-
ing. For example, in Modelica it is required that the left and right side of the equality in
an equation have the same type, which is shown in the following type rule.

I'ke : T I'kes:

L (tequ)
I'kFei=es: Unit

Note that type equivalence has nothing to do with equivalence of values, e.g., equation
4 = 10 istype correct because integers 4 and 10 are type equivalent. However, this is of
course not a valid equation because the values on the right and left side are not the same.
The Unit type (not to confuse with physical units), shown as the resulting type of the
equation, is often used as a type for uninteresting result values.
A closely related concept to type equivalenceyige declarationi.e., when a type
is declared as a specifiameor identifier. For example, the following Modelica record
declaration

record Person
String nang;
I nt eger age,;

end Person;

declares a type with nanfeer son. Some languages would treat this as a new unique
type that is not equal to any other type. This is callgiquetype declaration. In other
languages, this declaration would simply mean that an alternative name is given to this
type. However, the type can also be expressed by other names or without any name. This
latter concept is commonly referred tigansparentype declaration.

In a purenominal type systeimypes are compared (subtyping and type equivalence)
by using thenamesof the declared types, i.e., opaque type declarations are used. Type
equivalence is controlled by checking that the same declared name is used. Furthermore,
the subtype relation in OO languages is checked by validating the inheritance order be-
tween classes. The C++ language is mainly using a nominal type system, even if parts of
the language does not obey the strict nominal structure.

Consider the listing in Figure 5.4, which illustrates a C++ model similar to the resis-
tor example earlier given as Modelica code in Figure 5.2. In this d?es®j, st or is a
subclass ofwoPi n and the type oResi st or is therefore also a subtype ®wPi n’s
type. However, the type dfnduct or is not a subtype to the type @woPi n because
I nduct or does not inherit fronrTwoPi n. Moreover,Resi st or 2 is not type equiv-
alent toResi st or even if they have the same structure and inherit from the same base
class because they are opaquely declared.

In a structural type systerfil24], declarations are introducing new names for type
expressions, but no new types are created. Type equivalence and subtype relationship is
only decided depending on the structure of the type, not the naming.

The Modelica language is inspired by the type system described by Abadi and Cardelli
[2] and is using transparent type declarations, i.e., Modelica has a structural type system.

62 5 Types in the Modelica Language

cl ass Pin{
public:
float v, i;

b

cl ass TwoPi n{

public:

TwoPin() : v(0),i(0){};
float v, i;

Pin p, n;

1

class Resistor : public TwoPi n{
public:

Resistor() : r(100) {};

float r;

s

class Resistor2 : public TwoPin{
public:

Resistor2() : r(200) {};

float r;

s

cl ass I nductor{
public:
Inductor() : v(0),i(0){};
float v, i;
Pin p, n;
const float L;

}s

Figure 5.4: Resi st or inheritance example in C++.

Consider theResi st or example given in Figure 5.2 and the two complementary mod-
elsl nduct or andResi st or 2 in Figure 5.5. Here, the same relations hold between
TwoPi n andResi st or, i.e., the type oResi st or is a subtype offwoPi n’s type.
The same holds betwedwoPi n andResi st or 2. However, nowResi st or and
Resi st or 2 are type equivalent because they have the same structure and naming of
their public elements. Furthermore, the typel efduct or is now a valid subtype of
TwoPi n’s type becausénduct or contains all public elements (type and name) of the
ones available iTwoPi n.

It is important to stress thafassesandtypesin a structural type system an®t the
same thing, which also holds for Modelica. The type of a class represents the interface of
the class relevant to the language’s type rules. The type does not include implementation
details, such as equations and algorithms.

Note that a nominal type system is more restrictive than a structural type system,

5.2 Polymorphism 63

nodel Resistor2

ext ends TwoPi n;

paraneter Sl. Resistance R=200;
equati on

Rxi = v;
end Resi stor;

nodel | nductor

Pin p, n;

Sl . Vol t age v;

SI.Current i;

paraneter Sl.Inductance L=1;
equation

Lxder (i) = v;
end | nduct or;

Figure 5.5: Complementary nduct or andResi st or 2 models to the example
in Figure 5.2.

i.e., two types that have a structured subtype relation can always have a subtype relation
by names (if the language’s semantics allows it). However, the opposite is not always
true. Recall théequeue example listed in Figure 5.3. The claSsack has a subclass
relation toDequeue, but a subtype relation cannot be enforced, due to the structure of
the class. The converse could be true, but the type system of C++ would not allow it
because it is nominal and subtype relationships are based on names. Hence, a structural
type system can be seen as mexpressivandflexible compared to a nominal one, even

if both gives the same level of language type safety.

5.2 Polymorphism

A type system can bemonomorphidn which each value can belong to at most one type. A
type system, as illustrated in Figure 5.1, consisting of the distinct types function, integer,
real, and boolean is a monomorphic type system. Converselgdfyanorphictype sys-

tem, each value can belong to many different types. Languages supporting polymorphism
are in general more expressive compared to languages only supporting monomorphic
types. The concept of polymorphism can be handled in various forms and have different
naming depending on the paradigm where it is used. Following John C. Mitchell’s cate-
gorization, polymorphism can be divided into the following three main categories [99]:

e Subtype Polymorphism
e Parametric Polymorphism

e Ad-hoc Polymorphism

64 5 Types in the Modelica Language

There are other similar categorizations, such as given bydltaehd Wegner’s [33],
where the ad-hoc category is divided irtwerloadingand coercionat the top level of
categories.

5.2.1 Subtype Polymorphism

Subtyping is an obvious way that gives polymorphic behavior in a language. For example,
an instance oResi st or can be represented both a$woPi n type and a&Resi st or

type. This statement can also be shown according to the rule of subsumption (t-sub)
described in Section 5.1.2.

When a value is changed from one type to some supertype, it is said toupecast
Up-casts can be viewed as a formatifstractioror information hiding where parts of the
value becomes invisible to the context. For example, an up-castResnst or 's type
to TwoPi n’s type hides the parametBr Up-casts are always type safe, i.e., the runtime
behavior cannot change due to the upcast.

However, for subtype polymorphism to be useful, typically types should be possible
to down-casti.e., to change to a subtype of a type’s value. Consider fun&ian

function Foo
i nput TwoPin x;
out put TwoPi n vy;
end Foo;

where we assume that down-casting is allotveldiis in this case valid to pass either a
value of typeTwoPi n (type equivalence) or a subtype to the typ&@abPi n. Regardless

if a value of TwoPi n’s or | nduct or ’s type is sent as input to the function, a value of
TwoPi n’s type will be returned. Itis not possible for the static type system to know if this
isaTwoPi n, Resi st or oral nduct or type. However, for the user of the function, it
might be crucial to handle it as amduct or , which is why a down-cast is necessary.

Down-casting is however not a safe operation because it might cast down to the wrong
subtype. In Java [65], before version 1.5 whgenericswere introduced, this safety
issue could only be handled using dynamic checks and raising dynamic exceptions if an
illegal down-cast was made. Subtype polymorphism is sometimes called "poor-man’s
polymorphism™ because it enables polymorphic behavior, but the safety of down-casts
must be handled dynamically [124].

The Modelica language supports subtyping as explained previously, but does not have
any operation for down-cast. Because the language does notinclude this unsafe operation,
only a limited form of subtype polymorphism can be used with functions. For example, a
function can operate on a polymorphic type as input, suchnadi n, but it only makes
sense to return values of a type that can be directly used by the caller.

However, subtype polymorphism is more extensively used when reusing and replacing
components in models, i.e., by using thedec! ar e keyword.

3This function type or example is not valid in the current Modelica standard. It is used only for the purpose
of demonstrating subtype polymorphism.

5.2 Polymorphism 65

5.2.2 Parametric Polymorphism

The termparametric polymorphismmeans that functions or classes can hignpe param-
eters to which types otype expressionsan be supplied. The term parametric polymor-
phism is often used in functional language communities, while people related to object-
oriented languages tend to use the tgrenerics

The C++templatemechanism is an example ekplicit parametric polymorphism
where the type parameter must be explicitly declared. Consider for example Figure 5.6,
where a template functiewap is implemented. The type parametemust be explicitly
stated when declaring the function. However, the type argument is not needed when call-
ing the function, e.g., bothnt x, y; swap(x,y); andfloat i,j; swap(i,j)
are valid uses of the function.

t enpl at e<t ypenane T>
voi d swap(T& x, T& y){

Ttnp = x;
X =Y;
y = tnp;

}

Figure 5.6: Explicit parametric polymorphism in C++.

Standard ML on the other hand is making uséablicit parametric polymorphismvhere
the type parameters do not need to be explicitly stated when declaring the function. In-
stead, theype inference algorithrmomputes when type parameters are needed.

A notable difference of parametric and subtype polymorphism s that all type checking
of parametric polymorphism can take place at compile-time and no unsafe down-cast
operation is needed.

Standard ML and and C++ are internally handling parametric polymorphism quite
differently. In C++ templates, instantiation to compiled code of a function is done at
link time. If for example functiorswap is called both using nt andf | oat , different
code for implementations and calls of the function is generated for the two function calls.
Standard ML on the other hand is usinguaiform data representatiowhere all data
objects are represented internally as pointers/references to objects. Therefore, there is no
need to create different copies of code for different types of arguments.

Modelica can be seen to support a variant of parametric polymorphism, by using the
redeclareconstruct on class declarations.

5.2.3 Ad-hoc Polymorphism

In parametric polymorphism the purpose is to declare one implementation that can be
used with different types of argument®Ad-hoc polymorphismby contrast, allows a
polymorphic value to be used differently depending on which type the value is viewed to
have.

There are several language concepts that fall under the concept of ad-hoc polymor-
phism [33], whereOverloadingand Coercionare most notable. Other related concepts

66 5 Types in the Modelica Language

that also fall under this category are Javarsst anceO concept and different form of
pattern matchin§l24].

Overloading

A symbol isoverloadedf it has two or more meanings, which are distinguished by using
types. Thatis, a single function symbol or identifier is associated with several implemen-
tations.

An example of overloading that exists in many programming languageséegator
overloadingfor built in types. For example, the symbelis using infix notation and has
two operands associated with it. The type of these operands decides how the operation
should be carried out, i.e., which implementation should be used.

Overloading can take place at either compile-time or at runtime. Overloading used at
runtime is often referred to adynamic lookup[99], dynamic dispatctor multi-method
dispatch In most cases, the single term overloading refers to static overloading taking
place at compile-time. The distinction becomes of course vague, if the languageris
pretedand not compiled.

Another form of overloading available in some languages is user-definedion
overloading where a function identifier can represent several implementations for dif-
ferent type arguments. Modelica is currently not supporting any form of user defined
overloading.

Coercion

Another form of ad-hoc polymorphism &oercionor implicit type conversiopwhich is
runtime conversion between types, typically performed by code automatically inserted by
the compiler. The distinction between overloading and type coercion is not always clear,
and the two concepts are strongly related. Consider the following four expressions of
multiplication [33]:

7 * 9 /1l nteger * Integer
6.0 » 9.1 //Real * Real

6 * 5.2 //Integer * Real
6.0 » 8 // Real * Integer

All four of these expressions are valid Modelica expressions, but they can in the context
of coercion and overloading be interpreted in three different ways:

e The multiplication operator is overloaded four times, one for each of the four ex-
pressions.

e The operator is overloaded twice; one for each of the the first two expressions. If
the arguments have different types, i.e., onBasal and the other onkent eger
type coercion is first performed to convert the argumenietal .

e Arguments are always implicitly converted Real , and the operator is only de-
fined forReal s.

5.3 Modelica Types 67

Type conversions can also be maglicit, i.e., code is inserted manually by the pro-
grammer that converts the expression to the correct type.

In Modelica, implicit type conversion is used when converting frbnt eger to
Real . Of the three different cases listed above, the second one applies to the current
Modelica 3.2 standard.

5.3 Modelica Types

In the previous sections we described different aspects of types for various languages. In
this section we will present a concrete syntax for describing Modelica types, followed by
rules stating legal type expressions for the language.

The current Modelica language specification [104] specifies a formal syntax of the
language, but the semantics including the type system are given informally using plain
English. There is no explicit definition of the type system, but an implicit description
can be derived by reading the text describing relations between types and classes in the
Modelica specification. This kind of implicit specification makes the actual specification
open for interpretation, which may result in incompatible compilers; both between each
other, but also to the specification itself. Our work in this section should be seen as a first
step to formalize what a type in Modelica actually is. Previous work has been performed
to formally specify the semantics of the language [85]. The formal specification of the
semantics includes the meaning of a Modelica type. However, the earlier work was not as
precise as a distinction between class type and object type was not made.

Why is it then so important to have a precise definition of the types in a language? As
we have described earlier, a type can be seen as an interface to a class or an object. The
concept of interfaces forms the basis for the widely accepted approach of sepspaiing
ification from implementatiopwhich is particularly important in large scale development
projects. To put it in a Modelica modeling context, let us consider a modeling project of
a car, where different modeling teams are working on the wheels, gearbox and the en-
gine. Each team has committed to provide a set of specific attributes for their component,
which specifies the interface. The contract between the teams is not violated, as long
as the individual teams are following this commitment of interface (the specification) by
adding / removing equations (the implementation). Because the types state the interfaces
in a language with a structural type system, such as Modelica, it is obviously decisive that
they have a precise definition.

Our aim here is to define a precise notation of types for a subset of the Modelica
language, which can then further be extended to the whole language. Because the Mod-
elica language specification is open for interpretation, the presented type definition is our
interpretation of the specification.

5.3.1 Class Types and Object Types

Now, let us study the types of some concrete Modelica models. Consider the following
modelB, which is rather uninteresting from a physical point of view, but demonstrates
some key concepts regarding types.

68 5 Types in the Modelica Language

nodel B
paraneter Real s=-0.5;
connector C

fl ow Real p;
Real q;
end C

protect ed
Real x(start=1);

equati on
der (x) = sxX;

end B;

What is the type of modeB? Furthermore, iB was used and instantiated as a com-
ponent in another model, e.@, b; , what would the resulting type for elememtbe?
Would the type foB andb be the same? The answer to the last question is definitely no.
Consider the following listing, which illustrates the type of moBel

nodel classtype //C ass type of nodel B
public parameter Real objtype s;
public connector classtype

fl ow Real objtype p;
nonfl ow Real objtype q;
end C
protected Real objtype x;
end

This type listing follows the grammar syntax listed in Figure 5.7. The first thing to
notice is that the name of modgls notvisible in the type. Recall that Modelica is using a
structural type system, where the types are determined by the structure and not the names,
i.e., the type of modeB has nothing to do with the nani However, the names of the
elementsn a type are part of the type, as we can see for pararaeded variable.

The second thing to observe is that the equation part of the model is missing in the
type definition. The reason for this is that equations and algorithms are part of the imple-
mentation and not the model interface. Moreover, all elemen@andx are preserved
in the type, but the keywordsodel , connect or and basic typdreal are followed
by new keywords| asst ype or obj t ype. This is one of the most important obser-
vations to make regarding types in a class based system using structural subtyping and
type equivalence. As we can see in the example, the type of nBadel class typebut
parametes is anobject type Simply stated: A class type is the type of one of Modelica’s
restricted classes, suchm@sdel , connect or, r ecor d etc., but arobject typeis the
type of an instance of a class, i.e., an object. Now, the following shows the object type of
b, whereb represents an instance of moékel

5.3 Modelica Types 69

nodel objtype //Object type of b
paraneter Real objtype s;
end

Obviously, both the type of connectGrand variablex have been removed from the
type ofb. The reason is that an object is a runtime entity, where neither local classes
(connectol) nor protected elements (varialxpare accessible from outside the instance.
However, note that this is not the same as that variallees not exist in a instance Bf
it only means that it is not visible to the outside world.

Now, the following basic distinctions can be made betwekss typesand object
types

e Classes can inherit (using extends) from class types, i.e., the type that is bound to
the name used in aaxt ends clause must be a class type and not an object type.

e Class types can contain both object types and class types, but object types can only
hold other object types.

e Class types can contain types of protected elements; object types cannot.

e Class types are used for compile time evaluation, such as inheritance and redecla-
rations.

Let us now take a closer look at the grammar listed in Figure 5.7. The root non-terminal
of the grammar igype, which can form a class or object type of the restricted classes
or the built in typesReal , | nt eger, Bool ean, Stri ng, orenunerati on. The
grammar is given using a variant &ktended Backus-Naur For(EBNF), where terms
enclosed in brackets} denote zero, one or more repetitions. Keywords appearing in the
concrete syntax are given in bold font. All prefixes, sucpail i c,fl ow, out er etc.

can be given infinitely many times. The correct use of these prefixes is not enforced by
the grammar, and must therefore be handled later in the semantic analysis. We will give
guidelines for default prefixes and restrictions of the use of prefixes in the next subsection.

Now, let us introduce another mod&|which extends mode:

nodel A
extends B(s=4);
C c1;
equation
cl.g = -10+der(x);
end A;

The question is now what the type of modeis and if it is instantiated to an object,
i.e.,A a;,whatis then the type af? The following shows the type of model

70 5 Types in the Modelica Language

nodel classtype //C ass type of A
public parameter Real objtype s;
public connector classtype

fl ow Real objtype p;
nonfl ow Real objtype q;
end C
publ i c connector objtype
fl ow Real objtype p;
nonfl ow Real objtype q;
end cl;
protected Real objtype x;
end

First of all, we see that the type of modebtoes not include angxt ends keyword
referring to the inherited mod@®. Because Modelica has a structural type system, it is
the structure that is interesting, and thus a type only contains the collapsed structure of

type == (nodel |record |connector |
bl ock | function|package)
kindoftype
{{prefiz} type identifier ; } end
| (Real |Integer |Bool ean |
St ri ng) kindoftype
| enuneration kindoftype

enumlist
kindoftype == cl asstype|objtype
prefiz == access | causality |

Sflowprefix | modi fiability |

variability | outerinner

enumlist = (identifier {, identifier})
access == public|protected
causality == input |output |
i nput out put
flowprefixz == flow|nonfl ow
modifiability = replaceabl e|nodifiable|
final
variability = constant |paraneter |

di screte |continuous
outerinner = outer |inner |
not out eri nner

Figure 5.7: Concrete syntax of partial Modelica types.

5.3 Modelica Types 71

inherited elements. Furthermore, we can see that the prdtelements fronB are still
available, i.e., inheritance preserves the protected element after inheritance. Moreover,
because modée\ contains an instance of connect@rthis is now available as an object
type for element1 in the class type oA. Finally, consider the type of an instanaef

classA:

nodel objtype //Ohject type of a
paranet er Real objtype s;
connect or objtype

fl ow Real objtype p;
nonfl ow Real objtype q;
end cl;

end

The protected element is now gone, along with the elements representing class types.
A careful reader might have noticed that each type definition ends without a semi-colon,
but elements defined inside a type suclhmadel cl asst ype ends with a semi-colon.
A closer look at the grammar should make it clear that types themselves do not have
names, but when part of an element definition, the type is followed by a name and a semi-
colon. If type expressions were to be ended with a semi-colon, this recursive form of
defining concrete types would not be possible.

5.3.2 Prefixes in Types

Elements of a Modelica class can be prefixed with different notations, syzhhkds c,

out er orrepl aceabl e. We do not intend to describe the semantics of these prefixes
here, instead we refer to the specification [102] and to the more accessible description
by Fritzson [51]. Most of the Modelica language’s prefixes have been introduced in the
grammar in Figure 5.7. However, not all prefixes are allowed or have any semantic mean-
ing in all contexts.

In this subsection, we present a partial definition of when different prefixes are allowed
to appear in a type. In currently available tools for Modelica, such as Dymola [45] and
OpenModelica [52], the enforcement of these restrictions is sparse. The reason for this
can both be the difficulties to extract this information from the specification and the fact
that the rules for the type prefixes are very complex.

In Figure 5.8 several abbreviations are listed. The lower case abbreviations'
etc. define sets of prefixes. The uppercase abbreviafibon® etc. together with a
subscription ofc for class type and for object type, represents the type of an element
part of another type. For exampld.. is a model class type, an@, is a record object
type.

Now, consider the rules for allowed prefixes of elements shown in the tables given in
Figure 5.9, Figure 5.10, and Figure 5.11.

In Figure 5.9 the intersection between the column (the type of an element) and the
row (the type that contains this element) states the allowed prefixes for this particular
element. This table shows which prefixes are allowed for a class type that is part of
another class type. For example, recall the connéetormodelA. When looking at the
type of A, we have a class type (the model class type) that contains another class type (the
connector class type), i.e., the allowed prefixes are given in the intersection of row 1 and

72 5 Types in the Modelica Language

M= nodel
= record

C = connector
= bl ock
= function

P = package
= I nteger, Bool ean,
enuneration, String
Real
= {public, protected} Access
{public}
= {input, out put, Causality
i nput out put }
= {input, output}
{f I ow, nonf | ow} Flowprefix
{repl aceabl e, Modifiability
nodi fi abl e, final}
! {modi fiabl e, final }
{const ant, par anet er Variability
di screte, conti nuous}
{const ant , par anet er
di screte}
{constant }
o = {outer, inner, Outerinner
not out eri nner}

~
\

o o e
I

3o
|

< 3
(I

S
I

Figure 5.8: Abbreviation for describing allowed prefixes. Default prefixes are un-
derlined.

M. |R. |C. |B:. |F. |P. |X. |Ye
M. |amo|lamo |amo|amo|amo]|. amo|amo
R.
Ce
B. |amo|lamo |amo|amo|amo|. amol|amo
F. am |. . am |. am |am
P. |am |amv”lam |am |am |a'm |am |am

Figure 5.9: Prefixes allowed for elements of class type (columns) inside a class type
(rows).

column 3. In this casegccesprefixespubl i ¢ andpr ot ect ed, modifiability prefixes
repl aceabl e, nodi fi abl e, andf i nal , andouter/innemprefixesout er , i nner
andnot out er i nner are allowed.

We have introduced a number of new prefixesput out put , not out eri nner,
nonfl ow, nodi fi abl e, andconti nuous. These new prefixes are introduced to
enable a complete type definition, e.g., it should be possible to explicitly specify that a
variable in a connector is not a flow variable by giving@nf | ow prefix. However, for
simplicity, sometimes it is more convenient to leave out some of the prefixes, and instead

5.3 Modelica Types 73

M, |R, C, B, |F, |P, | X, Y,

. |amolacmo |acmo |amolamol|. acmv’o |acmvo
M,
Re mo |. . . . mv'o |muvo
C. mo |mo . . . m mefvo

. |amo|ac’ mo|lac’ mo|amo|lamol. ac’'mv’o|ac’ muo
B
F, ac'm |. . am |. ac'mv’ |ac'mu
P, amv”|. . . . amv” |amv”

Figure 5.10: Prefixes allowed for elements of object type (columns) inside a class
type (rows).

M, |R, |C, |Bo |Fo |P, | X, Y,

M, o |em'o|co o |o |. em/v'o [em/vo

R, mio |. . . . m/v'o |m'vo

C, |. m'o |o cfm'vo
/ / / 17 / /

B, |o |cdo |colo |o |. cm'v'o|d'm'vo

F, c m/v’ m'v

P,

Figure 5.11: Prefixes allowed for elements of object type (columns) inside an object
type (rows).

use default prefixes. The defined default prefixes are shown underlined in Figure 5.8. If
no underlined prefix exists in a specific set, this implies that the prefix must be explicitly
stated.

Analogously to the description of Figure 5.9, Figure 5.10 shows the allowed prefixes
for elements of object types contained in a class type and Figure 5.11 shows object types
contained in object types. There are no tables given for class types contained in object
types for the simple reason that object types are not allowed to contain class types.

In some of the cells in the tables described above, a dot symbol is shown. This means
that the specific type of element inside a certain type is not allowed. Hence, such a
combination should not be allowed by the compiler at compile-time.

Now, let us observe some general trends between the allowed attributes. First of all,
object types cannot contain class types, which is why there are only 3 tables. Secondly,
access prefixep@bl i c, pr ot ect ed) are only allowed in class types, which is why
Figure 5.11 does not contain any abbreviation Thirdly, ther epl aceabl e prefix
does not make sense in object types because redeclarations may only occur during object
creation or inheritance, i.e., compile-time evaluation. Then when an object exists, the type
information for replaceable is of no interest any more. Finally, we can see that package
class types can hold any other class types, but no other class type can hold package types.

Note that several aspects described here are our design suggestions for simplifying
and making the language more stringent from a type perspective. Currently, there are no
limitations for any class to contain packages in the Modelica specification. Furthermore,
there are no strict distinctions between object- and class types because elaboration and
type checking are not clearly distinguished. Hence, redeclaration of elements in an object
are in fact possible according to the current specification, even if it does not make sense
in a class based type perspective.

74 5 Types in the Modelica Language

5.3.3 Completeness of the Type Syntax

One might ask if this type definition is complete and includes all aspects of the Modelica
language and the answer to that question is no. There are several aspects, such as arrays,
partial and encapsulated classes, units, constrained types, conditional components and
external functions that are left out on purpose.

The main reason for this work is to pinpoint the main structure of types in Modelica,
not to formulate a complete type definition. As we can see from the previous sections,
the type concept in the language is very complex and hard to define, due to the large
number of exceptions and the informal description of the semantics and type system in
the language specification.

The completeness and correctness of the allowed type prefixes described in the pre-
vious section depend on how the specification is interpreted. However, the notation and
structure of the concrete type syntax should be consistent and is intended to form the basis
for incorporating this improved type concept tighter into the language.

Finally, we would like to stress that defining types of a language should be done in
parallel with the definition of precise semantic and type rules. Because the latter infor-
mation is currently not available, the precise type definition is obviously not possible to
validate.

5.4 Chapter Summary and Conclusions

We have in this chapter given a brief overview of the concept of types and how they relate
to the Modelica language. The first part of the Chapter described types in general, and the
latter sections detailed a syntax definition of how types can be expressed for the Modelica
language.

Over- and Under-Constrained
Systems of Equations

model in an EOO language needs to have the same number of equations as un-

knowns. This chapter describes a novel technique to determine over- and under-
constrained systems of equations in models, based on a concept stalletdiral con-
Straint delta denoted”a. Our approach makes use of static type checking and consists
of a type checking algorithm, which determines if a model is under- or over-constrained
without elaborating its subcomponents. This is essential if separate compilation of com-
ponentsisintroduced in an EOO language. Furthermore, the concept also allows detection
of constraint-errors at the subcomponent level and improves the possibilities of isolating
the source of the errors. We have implemented it for a subset of the Modelica language,
and successfully validated it on several examples. However, the idea is not limited to
Modelica and should be possible to generalize to other EOO languages. The remainder
of this chapter is structured as follows.

e We describe the problem and motivation for determining over- and under-constrained
systems of equations (Section 6.1).

e We introduces a minimal EOO language called Featherweight Modelica (FM), its
syntax and informal description of semantics and type system (Section 6.2).

e We define the concept of structural constraint delta, the algorithms used for con-
straint checking and debugging, and how these concepts fit into the FM language’s
type system (Section 6.3).

e We describe how we validate the approach by making use of a prototype implemen-
tation (Section 6.4).

The work of this chapter was published in 2006 [28]. Later revisions of the Modelica
specification (version 3.0 released in 2007 [103]) included a similar concept with balanced
models.

75

76 6 Over- and Under-Constrained Systems of Equations

6.1 Problem and Motivation

While EOO languages provide attractive advantages, they also present new challenges in
the areas of static analysis, type systems, and debugging. This chapter deals with specific
problems arising with EOO languages in two areas:

e Constraint checking of separately compiled components.

e Error detection and debugging.

The continuous-time behavior of a EOO model is typically described by a DAE. The exis-
tence of a unique solution requires that the number of equations and variables (unknowns)
are equdi. If the number of equations is greater than unknowns, the model is said to be
over-constrainedConversely, if the number of unknowns is greater than equations, it is
under-constrained

Inan EOO model, variables and equations can be specified in different subcomponents
of the model. To find out if a model has the same number of equations as variables, the
model has traditionally been elaborated into a flat system of equations, where the number
of variables and equations can be counted. However, this simple counting approach is
not possible in the general case when one or more components in the model have been
separately compiled.

Figure 6.1 outlines a potential architecture for separate compilation of Modelica mod-
els. Because symbolic transformation always needs to take into account the whole equa-
tion system, it is performed after the linking phase. Consider a simple model of a car,
consisting of axis, gearbox, and an engine. In order to find out if the car model has the
same number of equations as unknowns, we have to translate it into one large system of
equations and count the number of variables and equations in that system. In the simple
case the compiled engine always generate the same set of equations. However, mod-
els can also typically be parameterized with other models (using for example Modelica’s
redecl ar e-construct), resulting in that a separately compiled model can not always
resultin a flat DAE.

Moreover, if a model intended for simulation has not the same number of equations
as variables, itis an error. This can be detected (trivially) after compiling the model into a
system of equations. However, it is non-trival to isolate the fault of the error, i.e., to help
the user to pinpoint where or which components the error is located in. Consider again the
car model discussed above. When the model is compiled (translated into equations), the
user might be presented with an error message such as: “There are 20237 equations and
20235 variables”. Debugging the car model with only this message and a listing of equa-
tions and variables is extremely hard. There exist software tools [45] and methods [29]
that help the user in this process, but they require information of the model’s whole system
of equations, i.e., the tools need the flat hybrid DAE.

1This means that the incidence matrix associated with the system of equations is square, which is a necessary
but not sufficient condition for the equation system to be structurally non-singular.

2In this thesis, we do not make any statement on how to handle the problem of separate compilation. We
will only argue for that our approach can enable static checking of separately compiled models.

6.2 Featherweight Modelica 77

Modelica model Modelica model
Lexer Lexer
Token Tokens
s
Parser Parser
Parse tree Parse tree
Elaborator & Elaborator &
Typechecker Typechecker
Intermediary format Intermediary format
Symbolic
transformer
C code

Executable

Figure 6.1: Separate compilation in Modelica.

To summarize, there are two deficiencies with the current practice in the Modelica com-
pilers before Modelica 3¥that we would like to stress.

1. Complete elaboration of all elements in a model is required to determine if the
model is under- or over-constrained.

2. If the model turns out to be under- or over-constrained, it is very hard to find the
bug because the error is detected at the level of flat system of equations rather than
at a component/model level.

6.2 Featherweight Modelica

Modelica is a large and complex language that includes many concepts such as discrete
simulation, algorithm sections, and functions, which are not central for our purpose. Con-
sequently, we have designed and extracted a subset of the Modelica language, which
models important aspects of the continuous and object-oriented parts of the language. We
call this language Featherweight Modelica (FM). This section will informally present the
language.

3The approach presented in this chapter was published in 2006, i.e., before Modelica 3.0 was released.

78 6 Over- and Under-Constrained Systems of Equations

6.2.1 Syntax and Semantics

A model designed in FM can express continuous behavior by using Differential Algebraic
Equations (DAES). Reuse is achieved by ¢x¢ ends andr edecl ar e constructs.

In Figure 6.2 the syntax grammar of FM is listed using a variant of extended Backus-
Naur Form (EBNF). Alternatives are separated using the ’|' symbol, optional arguments
are given using square brackéfs- -|) and the curly bracket§{- - - }) denote that the
enclosed elements can be repeated zero or more times. Terminals are highlighted in bold-
face.

The non-terminatoot gives the starting point of a model definition. The metavariable
M ranges over names of models andver names of instances of modelsranges over
names of connectors amrcver names of instances of connectdis;anges over names
of records and over names of instances of recordsanges over variable names of type
Real . Note that numeric subscripts are used to differentiate between meta-variables. All
bold strings are keywords in the language excepR&al , which is the built in type for
R.

The foundation of the language is tblassconcept, whereodel ,connect or , and
recor d are special forms of classes. By observing the grammar, we can see that only
models are allowed to have connections or to contain elements that can be redeclared or
modified. Connectors are the only classes whose instances can be pamofiact -
equation, whileReal types and ecor d instances can be part of equations. Note that
this can be seen in the grammar by considering the meta-variables.

There are two kinds of prefixesiccessand modifiability. Access prefixes state if an
elementin a model can be defined togaebl i ¢ or pr ot ect ed. The latter is only visi-
ble outside the model by a model extending from the class. The second prefix category is
modifiability, defining how an element can be modified. Declaring an elementreplaceable
makes it possible for a user to redeclare the element. Setting the prefix of an element to
fi nal means that the element can neither be modified nor redeclared. Only models can
be redeclared and onReal s can be modified in FM.

6.2.2 Type-Equivalence and Subtyping

Modelica is using a so callestructural type systerfil24], where the type of a class is
determined by the structure of its components. However, other object-oriented languages,
such as Java, are using primarilypaminal type systeprwhere the name of a declared
class identifies its type.

The Modelica language specification [102] is informally describing the semantics and
type system of the language. From the specification, the following definitiappaf
equivalencecan be extracted:

Definition 6.2.1 (Type Equivalence). Two types T and U are equivalent if T and U
denote the same built-in type, or T and U are types of classes, T and U contain the same
public declaration elements (according to their names), and the elements’ types in T are
equivalent to the corresponding element types in U.

Note that aclassCis not the same as thgpe of classC because the type only represents
the interfaceof the class and not the privateiplementationor semanticpart, such as
equations.

6.2 Featherweight Modelica 79

root == {model | connector | record}
model = nodel M,
{ext ends M, [modification] ; }
{[access] [modi fiability]
(M3 m [modification] |
Cc|Rr|Real z[=lnum]);}
[equat i on {equation; }]

end M ;
connector = connector C; {extends Cs; }
{[fl o] Real z=; }
end C1 ;
record == recordR; {extends Ry; }
{(Rsr|Real z);}
end Ry ;
modi fication = (modification’ {, modification’})
modi fication’ = redecl are M m [modification]
| z=lnum
access == public|protected
modifiability = replaceabl e|nodifiable
| final
equation = connect (ci, c2) |e1=e2
e = e1ter|er-e|errer|erl e

| -e|(e) |lnum|der(z) |z|r
| tine|sin(e)

Figure 6.2: Syntax of Featherweight Modelica.

Besides type equivalence, the Modelica language defines subtyping relationships be-
tween types of classes.

Definition 6.2.2 (Subtyping). For any types S and C, S is a supertype of C and C is

a subtype of S if they are equivalent or if: every public declaration element of S also
exists in C (according to their names) and those element types in S are supertypes of the
corresponding element types in C.

In the following text, we will use the notation & <: S, meaning that the type of class
Cis a subtype of the clas®s type.

Now, consider the three models given in Figure 6.3. According to Definition 6.2.2,
we can see tha® <: A because the public elememisandc that exist inA also exist
in B. We can see thaf extendsA, i.e., Cinherits all components and equations frém
FurthermoreC defines an elemeut, which make<C <: A. In addition because both

80 6 Over- and Under-Constrained Systems of Equations

nodel A nodel B nodel C
Real p; Real p; extends A;
Real c; Real c; Real q;

equati on Real q; equation
c = 2; equation q = p*p;
der(p) = -c*p; c =2 end C

end A der(p) = -c*p;

end B;

Figure 6.3: Three different Modelica models.

andChold the same public elements, it can be concluded from Definition 6.2.B trad
Care type equivalent.

Subtyping is a fundamental concept in many programming languages. Generally, it
means that if a typé has all the properties of another typethensS can be safely used in
all contexts where typ#' is expected. This view of subtyping is often call&e principle
of safe substitutiof124]. Now the question arise if this is true for the type system and
examples described above. The main question is what we mesafégubstitutiom the
context of equation-based object-oriented languages. If we count the number of variables
and equations in each of the models in Figure 6.3, we can see that AlodePR variables
and 2 equations, mod#@ has 3 variables and 2 equations and finally mddéias 3
variables and 3 equations. In the current type system of Modelica BoatilC are said
to be safe replacementsAfHowever, in this case we know that replacigith C gives
us a potentially solvable system with 3 variables and 3 equations, but repkawiiily B
results in a under-constrained system with 3 variables and 2 equations, which will not give
a unique solution. Can we after these observations still rdgasla safe replacement of
A? We think not, and will in the next subsections propose a solution.

6.3 The Approach of Structural Constraint Delta

In this section, we will present an approach that addresses the problem of determining
under- and over-constrained components without performing complete elaboration. We
start by giving a definition:

Definition 6.3.1 (Structural Constraint Delta, Ca). Given an arbitrary class C, con-
taining components, equations, and connections, the type of C has a defined integer at-
tribute called structural constraint deltda. This attribute states, for C and all its sub-
components, the integer difference between the total number of defined equations and
variables.

The termstructuralindicates that the equations and variables are counted as they are
declared in the model. For example, two linearly dependent equations in an equation
system will still be counted as two separate equations. Herige= 0 for a system of
equations does not guarantee a unique solution, it will only indicate that a single solution
might exist. IfCa < 0, we have an under-constrained problem with more unknowns

6.3 The Approach of Structural Constraint Delta 81

than equations, which might give an infinite number of soligidhCA > 0, we have an
over-constrained system of equations, which most likely will not give a unique solution.
However, because the algorithm for computifig does not check if equations are lin-
early independent or not, a system with > 0 may be solvable. To be able to guarantee
that a system of equations has a unique solution, complete knowledge of the entire sys-
tem of equation must be available. Because this is obviously not possible when inspecting
components separately, the valug€bf only provides a good indication whether a system

of equations has a unique solution or not.

For example, ilC A is to be calculated for the types of the models given in Figure 6.3,
the difference between the number of equations and variables in the model gives the value
of Ca. Inthis case(Ca = 0 for AandC, butCx = —1 for B. Because our models so
far only contain variables and equations, calculatihgis straightforward. However, if a
model contains hundreds of subcomponents, using connections, connectors, and records,
the resulting flattened system might consist of thousands of equations. To be able to
formulate algorithms for calculatinga, we need another definition:

Definition 6.3.2 (Constraint Delta Effect, EA). Let C be an arbitrary class containing

two elements cl and c2 that are instances of classes C1 and C2, which contain only
elements and no equations or connections. Given an equation or connection E located
in C representing a relation between cl1 and c2, the constraint delta Efferst a type
attribute of both C1 and C2, which states the effect E has when compiitiraf C.

Note thatCa is not the same a&'A. Simply stated, we say thd of two elements
represents the change of the current modegkswhen an equation or connection is intro-
duced between the two elements. For example, if we in mBdelFigure 6.3 introduce

a new equatiorq = 2 * p, this equation will have the effect of changing moé

Ca from —1 to 0. Therefore, involved variables andp, are said to havé&/a = 1 (or

to be precise; the attributes to the types of the elements). However, we will soon see that
elements do not always ha¥g, = 1.

6.3.1 Algorithms for Computing Ca and Ea

In this section, we present algorithms for calculatifig and Ea. Even if the algorithms
for calculating the type attributeSAn and Ea could be stated by using a formal type
system, we have chosen to illustrate the algorithm more informally using pseudo-code
algorithms. The main reasons for this are that the Modelica language itself has currently
no formal semantics or type system and the target audience of this chapter is not only
computer scientists, but also engineers from the modeling and simulation community.

It is important to stress that'a and Ea are defined as attributes to thgpes of
the classes, and not for the classes themselves. This implies that when calculating the
value for a specific class, we do not need to recursively calculdtg and Ea for each
subelement because they are already defined by the type of the efenTrsprocess
of calculatingCa andEa is a form oftype inferencei.e., the type attributes are inferred
from equations given in the class and types of the elements in the class.

4In FM, we have made the assumption that variables are always bound to a value without circular dependen-
cies. Unfortunately cannot this be guaranteed in full Modelica.

82 6 Over- and Under-Constrained Systems of Equations

Algorithm 1: ComputeCx of a class

Input: An arbitraryClass
Output: Ca of the class
1 Car 0
2 switch Class do
3 casemodel

4 foreach e € getElements{lass) do

5 Ca «— Ca+ getDeltag)

6 if hasDefaultValue(ethen

7 Ca — Car+1

8 foreachm € getModifiedElementg] do
9 if not hasDefaultValue(rithen

10 Ca «— Car+1

11 foreach e € getEquations(lass) do

12 Ca — Ca+ getEffect(9

13 foreach ¢ € getConnectors{lass) do

14 P,utside — FALSE

15 Pinherited < FALSE

16 if not isVisited(c) then

17 traverseConnectorGraph(c

18 if Pouiside then

19 Ca « Ca+ getOutsideAdjustment]
20 foreach b € getBaseClasseS(ass) do

21 foreach m € getModifiedElement$j do
22 if not hasDefaultValue(rithen

23 Ca — Car+1

24 Cha «— Ca+getDeltad)

25 caserecord

26 foreach e € getElements(iass) do

27 Ca «— Ca+ getDeltag)

28 foreach b € getBaseClasseS(ass) do

29 Ca «— Ca+ getDeltap)

30 caseconnector

31 foreach e € getElements(iass) do

32 if not hasFlowPrefix{) then

33 Ca < Ca+ getDeltag)

34 foreach b € getBaseClasseS(ass) do
35 Ca «— Ca+ getDeltad)

36 casevariable

37 Ca — —1

38 end

The algorithm for computing’a is given in Algorithm 1. This algorithm uses a help
function defined in Algorithm 2. The algorithm for computitg is listed in Algo-
rithm 3. Note that the indentation of the algorithms is significant and delimits blocks for
thef or each,i f, andsw t ch statements.

6.3 The Approach of Structural Constraint Delta 83

Algorithm 2 : traverseConnectorGraph]

Input: Connectore; from which graph traversal starts
Output: Global variablesP, ,tside, Pinnherited, andCa
1 if ((isOutside;) and isInherited¢;)) or ((isOutside:)
2 or islnherited¢:)) and (Poutside OF Pinneritea)) then typeCheckingFailed()
3 else
4 markAsVisited¢;)
5 Poutside + Poutside OF iSOuUtsidet:)
6
7
8
9

P’inhﬁritﬁd — P’inhﬁritﬁd or iSInheritedél)
foreach ¢, € getAdjacencyConnectoks() do
if not isVisited(cz) then
Cha — Ca+ getEffect(getTypeOi())
10 traverseConnectorGraphic

Algorithm 3: ComputeEa of a class

Input: An arbitraryClass
Output: Ea of the class

1 EFa 0

2 switch Class do

3 caserecord

4 foreach e € getElements(lass) do

5 Ea «— Ea+ getEffect(9

6 foreach b € getBaseClasseS(ass) do
7 Ea «— Ea+ getEffect()

8 caseconnector

9 foreach e € getElements{lass) do
10 if hasFlowPrefix{) then
11 Ea «— Ea—getEffect(9
12 else Ea «+— Ea+ getEffect(9
13 foreach b € getBaseClasseS(ass) do
14 Ea «— Ea+ getEffect()
15 casevariable
16 FEa —1
17 end

To make the algorithms more easy to follow, the following heipdtions are defined:

e getAdjacencyConnectors(c) - the set of connectors that are directly connected by
connect-equations declared in the local class.

e getBaseClassef”) - the set of types for the base classe€'to

e getConnectorgC) - the set of accessible connectors that are used by connections id'class
All connectors are initially marked as unvisited.

e getDelta(t) - attributeCa part of typet.
e getElement$C) - the set of types for elements part of cladss

e getEquationg(C) - the set of equations part of the local classexcluding connect-equations

84 6 Over- and Under-Constrained Systems of Equations

and equations from base classes. Each element in the setergsrése type of the expres-
sions declared equal by the equation.

e getEffect(t) - the attributeEa part of typet.

e getModifiedElementge) - the set of elements’ types inwhich is modified by modification
equations.

e getOutsideAdjustment() - an integer value representing adjustments to be made if connec-
tor ¢ is part of a connector set that is connected to an outside connector. The integer value is
equal to the positive number of flow variables inside connector

e getTypeOf(c) - the type of connectar.

e hasDefaultValuge) - TRUE if element type: has a defined default value.

e hasFlowPrefixe) - TRUE if elemente is prefixed with keyword | ow.

e isInherited(c) - TRUE if connectore is inherited from a base class.

e isVisited(c) - TRUE if connectorc is marked as visited.

e isOutside(c) - TRUE if connectore is seen as an outside connector in the local class.
e markAsVisited(c) - mark connector as visited.

e typeCheckingFailed) - terminates the type because two outside or inherited connectors are
connected, or a connected connector is both outside and inherited.

Computing Ca - Equations, Inheritance, and Modification

We start by illustrating the algorithms using trivial examples, where the models only
contain equations, records, and variables. Consider the following FM listing:

record R Ca=-2 Ea=2
Real p; Ca=-1 Ea=1
Real q; Car=-1 Ea=1
end R;
nodel A Car=-3
Rr1; Ca=-2 EA=2
R r2; Ca=-2 EA=2
Real p; Car=-1 Ea=1
equati on
rli =rz;
end A;
nodel B Ca=0
Real y=10; Car=0 Ea=1
end B;
nodel M Car=-1
extends A(p=1); Ca=-2
B b1l(y=20); Ca=0
B b2; Ca=0
equati on
bl.y = p;

end M

6.3 The Approach of Structural Constraint Delta 85

Model Mextends from modeA, which implies that all equations and elementgiwill
be merged intoM Model A contains two instances of recoRl If each of these models
were to be compiled separately, we would need to calcdlatdor each of the models
without any knowledge of the internal semantics of the subcomponents, i.e., the equations.
Calculated”A andE A for every class and element are given to the right in the listing.

Consider Algorithm 1, which takes an arbitrary class as input and calculatésthe
value for this class. First, we can see that calculatihgof a record simply adds the
Ca value for each element (rows 26-27), which in the case of reRgitesCa = —2
becausd holds 2 variables. In Algorithm 3, we can see that calculating the effelt of
givesEa = 2. But what does this mean? Recall tliat, given in Definition 6.3.2, states
the effect onC'a when connecting two elements. In modglan equatiom 1l = r2is
given, which uses record. This equation will after elaboration generate two equations,
namelyr 1.p = r2.pandrl.q = r2.q,whichiswhyFx forRis 2. The rest of the
procedure for computing’a of modelA should be pretty straightforward by following
Algorithm 1. Note that onlyC'a and notFE s is given for models because models are not
allowed to be interconnected.

The more interesting aspects of calculatirig in this example are shown in modll
First of all, we can see that moddkextends fromA, which results in thaf’, of Ais added
to C'a of M(see rows 20-24 in Algorithm 1). Because varigbie modified withp=1, we
see that’x is increased by of the type ofp, i.e.,Real . Hence, th&’'a contribution
from base clasé is —2. TheCx value for modeB is 0. When instantiated to element
b1 in modelM its elemeny is modified withy=20. However, this modification does not

nodel K
Cicl;
Cic2;

end K;

connector C
fl ow Real x;
Real v;

end C

nodel M
K a;
K b;
C ocl;
C oc2;
equation
connect (a.icl, ocl);
connect (a.ic2, b.icl);
connect (b.ic2, oc2);
end M

Figure 6.4: ModelMwith inside connectors (e.@. i c1 andb. i c2) and outside
connectorsqcl andoc?2).

86 6 Over- and Under-Constrained Systems of Equations

effectCa becausy dready has a default value (see rows 8-10 in Algorithm 1). Finally,
we can see that the total calculation\ivill result in aC'a value of—1.

Computing Ca - Connectors, Connections, and Flow Variables

Consider the source code listing and graphical representation given in Figure 6.4. Model
Mcontains components andb, which are instances of modkl Each model consist of
several connector instance all instances of a connector€lass

The semantics of the Modelica language distinguish betvoegside connectorand
inside connectorswhere the former are connector instances denoting the border of a
model, e.g.pc1 andoc?2, and the latter represent connectors available in local compo-
nents, e.ga.icl,a.ic2,b.icl,andb.ic2. Note that a connector instance can be
seen as both an outside and an inside connector, depending which model is being pro-
cessed. In this example we are looking at madel

CalculatingC'a of connectolC can be achieved by using rows 30-35 in Algorithm 1.
Onrow 32, we can see that is only added if the variable has not got a flow prefix. The
reason for this is that an unconnected flow variable has always a defined default equation,
setting its value to 0. Hence, introducing a flow variable gives one extra variable and one
equation, i.e.C'a = 0. Further inspection of the algorithm yields, = —2 for modelK.

CalculatingCa of Mis more complicated. On row 13 in Algorithm 1 it is stated that
we iterate over all involved connectors, in this case c1,a.ic2,b.icl,b.ic2,
ocl, andoc?2. Variable P,,;s:qc becomes TRUE if the algorithm has passed an outside
connector, an®;,,..itca becomes TRUE if it has passed an inherited element. The latter
case will not be illustrated in this example. The first thing to notice is that the connector
graph is traversed by using the recursive function traverseConnectorGraph(), listed in
Algorithm 2. The algorithm performsa@epth-first searchisiting each connector (vertex)
only once, by marking it as visited. Note that function traverseConnectorGraph() has side
effects and updates the variablB$,s;qc, Pinherited, aNdCa. Each connect-equation
(edge) in the graph contributes to thig of the class being computed, by addifig of a
connector in the connection (see row 9 in Algorithm 2). Because all connectors traversed
in one iteration of the foreach loop are connected (row 13-19 in Algorithm 1), all types of
the connectors hold the same valuerX.

By using Algorithm 3, rows 9-12, we can see thiat = 0 for connectorC. Con-
sequently, all the connections in modéivill not change the value af'a. Why is this
the case? We know that connecting non-flow variables will always result in an extra
equation, i.e., for non-flow variablegjx must be 1. However, when connecting two
flow variables, one equation is added, but two default equations are removed. For ex-
ample inconnect (a.ic2, b.icl), the two default equationa. i c2. x=0 and
b. i cl. x=0 are removed and replaced with the sum-to-zero equation:

a.ic2.x + b.icl.x =0

Hence, the effect of connecting two flow variabledis = —1.
There are several aspects covered by the algorithms that we have not covered in detail.
The following items briefly describe some of these issues:

e If cycles appear in the connector graph, there exists a redundant connect-equation

6.4 Prototype Implementation 87

which does not contribute to the value@f . For example, if connections

connect (ocl, b.icl) andconnect (a.icl, a. i c2) would be introduced

in M one connection would be redundant. This issue is handled by making sure that
connectors are only visited once (see rows 7-10 in Algorithm 2.)

e Connecting an inside connector to an outside connector does not give the same
effect onCa as connecting inside to inside. For example, when conneoitirlg
to a local connector insid] the default variablec1. x=0 will not be removed.
This default equation will only be removed when1 is connected outside model
M i.e., when another model is usiljas a component. This issue is managed on
rows 18-19 in Algorithm 1.

e The algorithm does not allow direct or indirect connections between outside con-
nectors. For example, a connectioannect (oc1, b. i c2) would generate a
type checking error (see row 1-2 in Algorithm 2). The same semantics hold for con-
nections between connectors inherited from base classes. We use this conservative
approach because without it, the type of a class must be extended with information
regarding the connectors that are connected.

6.3.2 Extending the Type System with Cxa

The previous sections describe how we can calcdlateand Fa of classes, resulting in
value attributes for types in the language. However, this is of no use if we do not apply this
new information to the type system. A new extended version of the Featherweight Model-
ica language, denoted FM is defined by extending Definition 6.2.1 and Definition 6.2.2
for type-equivalence and subtyping with the following definitions:

Definition 6.3.3 (Type-equivalence and’s). Foranytypes T and U to be type-equivalent,
Definition 6.2.1 must hold and th@x -value of T and U must be equal.

Definition 6.3.4 (Subtyping andC). For anytypes S and C, S is a supertype of C and
C is a subtype of S if Definition 6.2.2 holds and tfig-value of S is equal to that of C.

Hence, the extended language kMuarantees that the difference between declared vari-
ables and equations does not change when using the rule of subsumption. If we recall the
models listed in Figure 6.3, we can now see that m@lisl a subtype of mode, but
modelB is not.

6.4 Prototype Implementation

To validate and verify our algorithms, a prototype Featherweight Modelica Compiler
(f nt) was implemented consisting of a type-checker for EMvhereCa and Ea are
automatically inferred and represented as attributes to the types. The prototype compiler
was implemented as a batch-program, which takes an Fifo-file (containing FNA
models) as input and returning to standard output the pretty-printed type of the last model
defined in the no-file.

To validate the correctness of our solution, the following procedure has been used:

88 6 Over- and Under-Constrained Systems of Equations

1. Create relevant models in M

2. Run the prototype compiler for FMon the models. The output is the listed type
of the model including”'» information.

3. Elaborate the model and manually inspect the flat Modelica code generated by the
compilers Dymola version 6 [45] and OpenModelica version 1.4.1 [52].

The above approach gives us confidence that the algorithm is correct with respect to the
Modelica semantics, but it does not give any guarantees. The best option would of course
have been to be able to prove the correctness of the algorithm. However, we face two
problems with this. Firstly, the algorithm itself is fairly complicated, which is the effect of
complications of the Modelica connect semantics using connection graphs. The question
arises naturally if the connection semantics needs to be that complicated. In Section 11.2
we will propose an alternative semantics for describing connections compared to Model-
ica, which we argue has a simpler semantics. Secondly, to be able to prove correctness
compared to Modelicas elaboration semantics, we need a formalization of that elabora-
tion semantics. Because this is not available, we have instead justified the correctness by
implementation and testing.

We will now analyze, by using a simple circuit example, how the concept of struc-
tural constraint delta attacks the problems of constraint checking with separately com-
piled model components, and error detection and debugging. In the exafmpteand
Dymola version 6 are used when testing the models.

6.4.1 Constraint Checking of Separately Compiled Components

Consider the following listing, stating the modRgsi st or , a connectoPi n and a base
classTwoPi n:

nodel TwoPi n connector Pin
Pin p; Real v;
Pin n; flow Real i;
Real v; end Pin;
Real i;

equation nodel Resi stor
V = p.V - n.v; ext ends TwoPi n;
0 =p.i +n.i; Real R = 100;
i =p.i; equation

end TwoPi n; Rxi = v;

end Resi stor;

When using nt, each of these models is separately type checked. For example, when
typechecking moddResi st or , modelTwoPi n and connectoPi n are not elaborated.
Instead, only the types @woPi n andPi n are used. This information is available after
these classes are compiled.

Below the output generated bynt is listed, with some pretty printing added for
readability:

nodel cl asstype Ca=0
public final connector objtype Ca=-1 Ea=0

6.4 Prototype Implementation 89

nonfl ow Real objtype v;
flow Real objtype i;
end p;
public final connector objtype Ca=-1 EaA=0
nonfl ow Real objtype v;
fl ow Real objtype i;
end n;
public nodifiable Real objtype v;
public nodifiable Real objtype i;
public nodifiable Real objtyper R;
end

The lines above represent the type of mogesi st or . Note the difference made be-
tweenclass type(the type of a class that can be instantiated), ambjgype (the type
of an object that has been instantiated by a class). The type’s of elemantsn have
Ca = —1 andEA = 0. The latter indicates that when tiResi st or model is used
by connecting or n, Ca will not change. Finally, we can see that tliat = 0 for the
whole type ofResi st or.

Now, if the following code is added to ourno-file, we have a complete model named
Circui t that we can simulate.

nodel G ound nodel VsourceAC
Pin p; ext ends TwoPi n;
equati on Real VA = 220;
p.v = 0; Real f = 50;
end Ground; Real PI = 3.1416;
equati on

v = VA*sin(2«Pl +xf*tine);
end Vsour ceAC,

nodel | nductor nmodel Circuit
Pin p; protect ed
Pin n; repl aceabl e Resi stor RL(R=10);
Real v; repl aceabl e I nductor L(L=0.1);
Real i; Vsour ceAC AC;
Real L = 1; G ound G

equati on equati on
Lxder (i) = v; connect (AC. p, Rl.p);

end | nductor; connect (R1.n, L.p);

connect (L.n, AC. n);
connect (AC.n, G p);
end Circuit;

Trying to simulate the above modé@l r cui t in the commercial Modelica environment
Dymola, the error feedback states that it is not possible to simulate it because there are 22
equations and 25 variables in the flattened equation system.

Executing the model int, we get the response that modeélr cui t hasCx = —3,
which corresponds to the message Dymola reported. Note that Dymola had to elaborate
all the models to a flattened system of equation to get to this refoit. on the other
hand could use the separately type checked components and just use the types of these

90 6 Over- and Under-Constrained Systems of Equations

components to get the same result. Hence, this exampleadltasthow our approach can
be used to enable separate compilation of components.

6.4.2 Error Detection and Debugging

Now the following question arise: How can we know where the problem is located? The
user needs to either analyze the model code or to inspect the flat system of equations. In
both cases, this problem seems hard to manage.

If we run this modelirf nt, we get the following type information for mod@i r cui t
(for readability, parts of the type are replaced by a dotted line):

nodel classtype Ca=-3
protected repl aceabl e nodel objtype Ca=0

end Ri1;
protected repl aceabl e nodel objtype Ca=-3

end L;

protected nodifiable nodel objtype Ca=0

end AC,

protected nodifiable nodel objtype Ca=0

end G
end

Analyzing the type information, it indicates that it is componkntvhich is an in-
stance ofl nduct or that probably causes the under-constrained system. After a closer

look, we notice that nduct or is not extending fronTwoPi n, as it should. After re-
placing the old nduct or model with

nodel | nduct or
ext ends TwoPi n;
Real L = 1;
equation
Lxder (i) = v;
end | nductor;

it is possible to simulate the model.

Now, let us assume that we want to build a larger model having n@detui t as
a subcomponent. However, this time we do not want to uBesa stor inCircui t.
Instead, the goal is to redeclaRavith a temperature dependent resistor called
TenpResi st or . Consider the following models:

nodel TenpResi stor
ext ends TwoPi n;

Real R /'l Resistance at. reference tenp.
Real RT=0; /1l Tenp. dependent resistance
Real Tref=20; // Reference tenperature

Real Tenp; /1 Actual tenperature

equation

6.5 Chapter Summary and Conclusions 91

v=i=* (R+RT* (Tenp-Tref));
end TenpResi stor;

nodel Circuit2
extends Circuit(redeclare TenpResistor R1(R=35));
end Circuit2;

Trying to simulate this model in Dymola results in a flattened model with 28 variables and
27 equations, which cannot be simulated. By elaborating all components and analyzing
the system of equations, Dymola hints that R1 is structurally singular.

However, using nt, this model does not even pass the type checker. The compiler
reports thatCx for the original type is OResi st or), but the redeclaring model’s type
is -1 (TenpResi st or). Hence, the subtyping rule is not legal and the redeclaration
is incorrect. The following listing shows a correct redeclaration, where the temperature
parametefenp has been assigned a value.

nodel Circuit3
extends Circuit
(redecl are TenpResi stor R1(R=35, Tenp=20));
end Circuits3;

Consequently, our approach finds the incorrect model at an early stage during type check-
ing. Furthermore, because the type checking was performed on precompiled models,
there is no need for elaborating the model's subcomponents. Hence, this approach is not
only useful for separate compilation, but also for users when locating errors in models.

6.5 Chapter Summary and Conclusions

We have presented the concept of structural constraint délta for equation-based
object-oriented modeling languages. Algorithms for computihgwere given, and it
was shown how’ s is used to determine if a model is under- or over-constraimétbut
having to elaborate a model's components.

We have also illustrated how the concept®{ allows the user to detect and pinpoint
some model errors. The concept has been implemented for a subset of the Modelica
language and successfully tested on several models.

92

6 Over- and Under-Constrained Systems of Equations

Part Il

The Modeling Kernel Language

93

Introduction to Functional
Programming in MKL

ROM our study of the Modelica language in Part I, we have seen that the language is
large and complex, providing many possibilities for advanced modeling. However,
we have also concluded that it is hard to formalize because it is large and complex.

In this second part of the thesis, we present a new language called the Modeling Kernel
Language (MKL). Instead of taking a top-down approach of trying to formalize a large
language such as Modelica, this research is following a bottom-up approach, where we
formally define a small language. The objective and hope is then that the small kernel
language can be extended with both new modeling constructs, as well as functions for
manipulating and making use of the mathematical models. The approach that we are
exploring is that these extensions are not added to the core of the language itself, but are
instead added as library functions written in MKL. This approach concerns the research
questions stated in Section 1.4.3 regarding the problem of designing an expressive and
extensible EOO language that is formally defined.

The MKL language is fundamentally a statically typfehctional languageThe ra-
tionale for designing a functional language is because we would like to base it on a well
known and proven theory, in this case the lambda calculus [12].

In this introductionary chapter to Part Il, we first explain the fundamentals of func-
tional programming by introducing the syntax and the standard functional parts of MKL,
i.e., language constructs that can be found in languages such as Haskell [134] or Standard
ML [98] (Section 7.1). This is followed by a brief introduction to the lambda calculus
(Section 7.2).

Part Il consists of the following chapters:

e Chapter 8 - Modeling in MKL . In this chapter we first give a brief description
of basic modeling in MKL. This is followed by introducing the concept of higher-
order acausal modeling (HOAM). By providing a simple model in the electrical and
mechanical domains, we show the expressive power of the concept. This chapter
also informally introduces the modeling capabilities of the MKL.

95

96 7 Introduction to Functional Programming in MKL

e Chapter 9 - Intensional Analysis of Models In this chapter, we demonstrate how
MKL can also be used for intensional analysis of the models, i.e., to inspect and
analyze the equation system of the model and to synthesize output for different
purposes.

e Chapter 10 - Semantics of MKL In this chapter, we formally define the syn-
tax and semantics of the core of MKL, which is an extension of the simply typed
lambda calculus. The semantics forms the foundation of both the modeling capa-
bilities and the ability of intensional analysis of models. Both a small-step dynamic
semantics and a static type system are formally defined. We also prove type safety
for the core language.

e Chapter 11 - Elaboration Semantics We describe and give a formal definition of
the elaboration semantics used for elaborating models down to equation systems.
The problem of extracting information from models is discussed and a solution is
proposed.

e Chapter 12 - Implementation, Verification, and Evaluation. In this final chapter
we first give an overview of the prototype implementation of MKL. This is fol-
lowed by two examples of the use of models - one for direct simulation and one for
exporting to Modelica code. We explain how we verify the solution and we discuss
and evaluate our approach with regards to safety, expressiveness, extensibility, and
performance aspects.

7.1 Functional Programming in MKL

There are many different opinions of what functional programming actually means. To
give an intuition, we quote Hutton [69, p. 2]:

“functional programming can be viewed astgle of programming in which

the basic method of computation is the application of functions to arguments.
In turn, a functional programming language is one Swgiportsandencour-
agesthe functional style”

The modeling kernel language (MKL) is a functional programming language, specially
designed for providing EOO language functionality within libraries. The current version
that we present in this thesis should be seen as a research language for exploring this
approach.

MKL has a syntax style where expressions are similar to OCaml [74], and types have
similarities to Haskell [134], and, to some extent, Clean [125]. The subset that is pre-
sented in this chapter only consists of standard constructs, available in most functional
programming languages. The extensions are presented in the following chapters.

The functional programming style encourages declarative programming, where func-
tion applications do not haveide effectsi.e., a function applied to the same argument
should always return the same value regardless of its context. Languages where func-
tion applications do not have side effects are often calie@functional languages (e.g.,

7.1 Functional Programming in MKL 97

Haskell or Clean}. In other functional languages (e.g., OCaml or Standard ML [98])
pure functional programming is encouraged, but the language also supports effectful con-
structs, i.e., constructs with side effects, e.g., reference updates and destructive arrays.
MKL is within the latter category, where handling of unknowns (explained in coming
chapters) and destructive arrays are effectful constructs that are part of the language.

A functional languages have a defined evaluation strategy. The language si@icthe
(eager)meaning that arguments to functions are evaluated before they are passed to the
function at function call. Examples of functional programming languages within this cat-
egory are OCaml, Standard ML, and Common LISP [137]. A FP language can also use an
evaluation strategy when arguments are supplied to a function without first evaluating the
arguments. In its simplest form, this is calleall-by-namebut to avoid recomputation of
expressions a more efficient approach is often referred takk$y-need This approach
is used by languages such as Haskell and Clean. MKL is within the former class, i.e. a
strict functional language.

A program in MKL is anexpression For examplet + 5 = 3 is an expression for
adding and multiplying integers. When executing a program, the expressoalisated
to avalue We writee —* v meaning that is evaluated to the valugin zero or more
steps, ané@ — ¢’ meaning that is reduced t@’ in one step. For examplke + 5 = 3
—*19and4 + 5 * 3 — 4 + 15.

Each expression has a (or belongs to dype T, writtene : 7. That is, the type
predicts the kind of value that the expression reduces to. For exdmples = 3:1nt,
and19 : I nt have both typé nt because the type of an expression is preserved during
evaluation. MKL isstatically typed, meaning that all expressions in a program can be
given a type statically, before evaluation.

In MKL, there are four basic typed: nt, Real , Bool , andStri ng. Overload-
ing is not allowed and therefore different operators are used for different types. Sim-
ilar to OCaml, operators for real types are given a dot suffix. For example, expres-
sion12.10 . 10. -. 50. is evaluated t®2. 10. Boolean literals arer ue and
f al se, with infix logical operator&& for and | | for or, and! for negation. Two strings
can be concatenated using infix operater e.g.," My " ++ "string\n" is evalu-
ated to" My string\ n". Escape sequences, such as new\lineean be given inside
a string. For a full list of available functions and operators that are built-in to MKL, see
Appendix D.1.

7.1.1 Higher-Order Functions and Currying

In functional languages, the most fundamental language construttrision Functions
correspond to partial mathematical functions, i.e., a funcfio®l — B gives a mapping

from (a subset of) the domai# to the codomai3. Anonymous functiongalso called
lambda abstractions) are functions without names. Such functions are also expressions.
An anonymous function can be expressed as

funz: T->e

IHaskell is using monads and Clean uniqueness types for handling side effects, such as keyboard input, file
1/0 etc. without compromising function purity)
2We will later in Part Il also introduce a certain level of dynamic typing.

98 7 Introduction to Functional Programming in MKL

wherez is the parameter namé, the parameter’s type, andthe body of the function.

MKL is an explicitly typedlanguage, meaning that the types of parameters must be given
by the user explicitly in the program. A lambda abstraction has always just one parameter
and its type is written using arrow syntd¥ - > 75, where the left hand side of the arrow

is the type of the parameter, and the right hand side the type of the return value. For
example, the anonymous functibon a: Int -> a + 1, where the arrow points to the
function body, has a parameterof typel nt, and a bodya + 1. Because the type of

the body is alsd nt , the type of the whole function expression ig -> I nt.

In a function that takes more than one parameter, these parameters are not written as
in Java or C/C++ as a comma separated list enclosed in parenthesis. Instead, multiple
parameters are defined usiagrrying meaning that several parameters are defined by
composing several lambda abstractions. For example, consider

fun a:lnt -> fun b:Int ->a * b

which is equivalent to

fun a:lnt -> (fun b:Int -> a * b)

This function expression, of tygent - >I nt - >I nt , which takes two arguments as in-

put and multiplies their values, can Ipartially applied meaning that if only the first
argument is supplied, a new function with the remaining parameter is returned, e.g., the
expression

(fun a:Int -> fun b:Int ->a * b) 5
— fun b:Int ->5 * b

is reduced to a new function with typent -> I nt. Note that the expression in the
function body cannot be reduced any more because no argument has been supplied to the
function parameten. Lambdas (anonymous functions denoteid the original calculus
instead of un), currying, and partial applications are some of the key concepts that make
functional programming expressive and useful.

However, it is often convenient to give names to values. A MKL source code file
consists of a sequence tap-level definitions giving names to expressions. If the same
name is defined more than once, the last binding is used. For example, in

let p=3
let q =4
let p=5
let 1 = p +q

variabler will be bound to the valué.
Because functions are values, they can be given names in the same way, i.e., by bind-
ing an anonymous function to a name usinglthe-construct:

let multiply = fun a:Int -> fun b:Int ->a * b

Alternatively, the function parameters can be moved to the left of the equal sign, thus
defining a function directly.

let multiply x:Int ->y:Int ->1Int = x * vy

7.1 Functional Programming in MKL 99

Note that this notation is non-standard and can be seen as arenddt Haskell's con-
vention of giving the arrow syntax above a function definition and OCaml’s syntax of
defining functions usinget -binding. We are using the arrow notation both to name the
parameters, and to relate types to the parameter names. We have found this syntax fairly
intuitive and assume that its meaning is clear.

Thetypeofrul tiplyisint -> Int -> Int,whichis explicitly stated in the
lastl et -binding. The arrow notation is right associative,ileit -> (I nt -> Int)
is the same type, bitl nt -> I nt) -> | nt isnot. The latter is the type of a func-
tion that takes a function as argument and then returns an integer.

A careful reader might have noticed that the return type (the last type definition after
the last arrow) of theul t i pl y definition is not necessary for the type checker because it
can be derived from the expression+ y because is an integer multiplication operator
that always return results of typat . Thisis true as long as the function is non-recursive.
For example, in the following definition of the factorial function

let fact n:Int -> Int =
if n==0then 1 else n* (fact (n-1))

the type checker needs the return type to be able to type check the firmicause the
function is recursivef(act refers to itself in the false branch of thé-expression).

Note that the syntax for function application does not use parentheses. Instead the
function to be applied is separated from its supplied arguments by one or more spaces.
A function call that in standard mathematical calculus or in languages such as C or Java
would appear as multiply(3,4) here appears as multiply 3 4. Parentheses are only used
for grouping and disambiguation. This is a function call syntax used by most functional
languages.

Function application has higher precedence than infix operators. For example, in the
expression

fact (multiply (1+2) 3)

the expressiorf 1+2) is the first argument supplied toul ti pl y and3 the second
argument. The expression

fact ((multiply (1+2)) 3)
is equivalent because applications are left associative, but
fact (multiply 1+2 3)

would give a parse error.

In many situations, it is useful to pass a function as an argument to another function,
or to return a function as a result of executing a function. When functions are treated as
values and can be passed around freely as any other value, they are saftdbdigss
citizens In such a case, the language suppbither-order functions

Definition 7.1.1 (Higher-Order Function).
A higher-order function is a function that

1. takes another function as argument, or

31f the types were inferred using, e.g., Hindley-Milner type inference, this would of course not be necessary.

100 7 Introduction to Functional Programming in MKL

2. returns a function as its result.

Let us first show the former case where functions are passed as values. Consider the
following function definition oft wi ce, which applies the functioh two times toy, and
then returns the result.

let twice f:(Real -> Real) -> y:Real -> Real =
f(fy)

The functiont wi ce can then be used with a functibrnthat has typéreal -> Real .
We can now define a functiqgrower 2

let power2 x:Real -> Real = x *. x

and apply functiort wi ce to power 2 (first argument) and a valug. (second argu-
ment):

twi ce power2 3.

— power2 (power2 3.)
— power2 (3.+%3.)
— power 2 9.

— 9. *, O,

— 81.

Because wi ce can take any function as an argument, we can appiyce to an anony-
mous function, passed directly as an argument to the funttidrce.

twice (fun x:Real -> 2. *. x -. 3.) 5.

— (fun x:Real -> 2. *. x -. 3.)((fun x:Real -> 2. *. x -.3.)5.)
— (fun x:Real -> 2. *. x -. 3.)(2. . 5. -. 3.)

— (fun x:Real -> 2. *. x -. 3.) 7.

— 2. x. 7. -. 3.

— 11.

Let us now consider the second part of Definition 7.1.1, i.e., a function that returns another
function as its result. In mathematics, functional composition is normally expressed using
the infix operator. Two functionsf : X — Y andg : Y — Z can be composed to
go f: X — Z, by using the definitiorig o f)(z) = g(f(x)).

The very same definition can be expressed in a language supporting higher-order func-
tions:

l et conpose g:(Real->Real) -> f:(Real->Real) -> (Real ->Real) =
fun x:Real -> g (f x)

This example illustrates the creation of a new anonymous function and returning it from
the conpose function. The function composes the two functions given as parameters
to conmpose. Hence, this example illustrates both that higher-order functions can be
applied to functions passed as arguments (using formal pararhetadsy)), and that new
functions can be created and returned as results (the anonymous function).

To illustrate an evaluation trace of the composition function, we first define another
functionadd?7

let add7 x:Real = 7. +. x

7.1 Functional Programming in MKL 101

and then composgower 2 andadd? together, forming a new functidnoo:

| et foo = conpose power2 add7
— let foo = (fun x:Real -> power2 (add7 x))

Note how the functiorronpose applied topower 2 andadd?7 evaluates to an anony-
mous function. Now, the new functidroo can be applied to some argument, e.g.,

foo 4.

— (fun x:real -> power2 (add7 x)) 4.
— power2 (add7 4.)

— power2 (7. +. 4.)

— power 2 11.

— 11. *. 11.

— 121.

7.1.2 Tuples, Lists, and Pattern Matching

Tuplesare the simplest form of a compound type (also called product type), contain-
ing a fixed number of ordered expressions, where each expression can have a different
type. Tuples can be viewed as a simple form of records without record field names. A
tuple expression is given as a comma separated list of expressions enclosed in paren-
theses. For example, the tuglel, "str", fal se) has three elements and has type
(I'nt, String, Bool). Hence, we write the type of tuples in the folf, ..., 73)

wheren is the number of elements in the tuple.

A unit type* is similar tovoi d in languages such as C. Both thait expression
and its type are written as an empty tuple, i(6., The unit type is used as the result
type when a function has side effects and does not return an actual value, e.g., expression
print "a string\n" printsouta string to the standard output. The type of the function
print isString -> (), li.e., ittakes a string as input and returns the unit expression,
i.e., novalue. Hence, it is the side effect of printing the string to standard output that is of
interest in the computation.

A list is a sequence of expressions, where each expression has the same type. We
write [77 for the type of a list, whose elements have type A list expression is
written as a comma-separated list of expressions (the elements of the list), enclosed
within brackets. For exampl¢3, 1, 7, 0, 3] is list of integers with typd I nt], and
["this","is","a","list"] isalist of strings with typg St ri ng] . The expression
["text", 32.10] will be rejected by the type checker because the list contains elements
of both typeSt r i ng andReal . Alist can contain other lists, for example, the expression
[[1,5,2],[3,2,5],[6,2,4]] isa3 x 3 matrix represented as a nested list.

A listis built up of conscells, i.e., element pairs where the first element is an element
of the list and the second element the rest of the list. A cons constructor is written using
the infix operator. : . For example3: : 9:: 20: : [] is a list of 3 elements. The last
expressioti] is the empty list, which is always the last element of a cons sequence. The
cons operator is right associative, i.e., the expres3ian 9: : (20: : [])) denotes the

4The nameunit typeis often used in literature for functional languages. Note that this has nothing to do with
physical units of measurement.

102 7 Introduction to Functional Programming in MKL

same expression. The syntactic form of a comma separatesl jlistisyntactic sugar for
the cons cells, i.e[,3, 9, 20] is just another syntactic form of the same expression.

Pattern matchings a way for deconstructing tuples and lists, i.e., to take them apart.
A mat ch-expression in its simplest syntactic form appears as follows

matchew th |p1->€1 | Pn = > €p

wheree is the expression to be matched, ppreceding each matching casgthe chosen
expression if the patterp, is matched, wheré € {1...n} for n matching cases. For
example,

| et weekend day:Int -> String =
mat ch day with
| 6 -> "Saturday"
| 7 -> "Sunday"
| x -> "Nunmber " ++ (int2string x) ++ " is not a weekend day"

defines a functiomeekend that returns a string with the name of a weekend day. Each
matching case is tried in order, and if the pattern matches, the expression on the right
hand side of > is evaluated and returned. If none of the literal valéi@s 7 matches, the
pattern variablex matches any value and is bound to the matching value in the matching
process. In this case, the built-in functiomt 2st ri ng is used to generate a return
string.

Pattern matching can be used together with recursion and higher-order functions.

let filter p:(Int -> Bool) -> list:[Int] ->[Int] =
match list with
| x::ixs ->if px then x::(filter p xs) else filter p xs

| [1 ->1]

The functionf i | t er takes a predicate, a list of integersd i st and returns a new list,

with all elements that satisfy the predicate. The first case ofrtlhe h-expression takes
apart a list using the cons operator, wheris the first element of the list ands matches

the rest of the list. If the list is not empty, this matching case is used and the guard of
thei f -expression is evaluated, i.e., the predicate fungtié® applied to the element.

If it returns true, then a new cons cell is created with elemeand with a recursive

call filter with the rest of the lisks. If the guard of the f -expression is false, the
recursive call is performed without addirgo the list, i.e., the element is filtered out. If

the list is empty (matching the empty list), the empty list is returned. Expression

filter (fun x:Int -> x < 10) [3,22,8,99, 4, 12]
—* [3,8, 4]

shows how an anonymous function is used as a predicate to filter integers smaller than 10.
Consider now the following example that illustrates several other properties of the
matching construct:

let foo t:([String],Int) -> String =
match t with
| (["magic"],x) when x > 77 -> "The magi ¢ conbi nation"
| ([va]v_) -> X ++y

7.1 Functional Programming in MKL 103

First, it shows that patterns can be nested in an arbitrary imais case we have a list
["magi c"] and a number representedws part of a tuple. In the first line, we match
a singleton list with a specific valdaragi c¢" . The pattern variable is bound and then
used in thenhen pattern guardmeaning that the case will only be selectex i§ greater
than 77. The second case shows how a list with two pattern varialaedy is bound if
the list has exactly two elements. We also introduceiiécard pattern _which matches
any value. Some example expressions

foo (["magic"], 100) —* "The nmgi ¢ conbi nation”
foo (["two ","strings"],10) —* "two strings"
foo (["one"], 12) —* error

The last example shows an example where none of the cases matches. In such a case, a
runtime error is generated.

If certain types are used in several functions, it could be practical to give new names
to types. At the top-level, netype aliase€an be given, e.g.,

type Vector = (Real, Real, Real)

defines a vector in the Cartesian coordinate system. Because tuples have a defined shape
at compile time (in contrast to lists which can be either cons or the empty list) gthe
construct can be used directly as syntactic sugar to deconstruct a tuple. The following
function defines the cross product (or vector product):

| et crossProduct a:Vector -> b:Vector -> Vector =
let (al, a2, al3) ain
let (bl, b2, b3) bin
(a2 ». b3 -. a3 . b2,
a3 *. bl -. al . b3,
al . b2 -. a2 *. bl)

Note that we are here using bdtht -expressions at the top-level, as well as Idcat -
expressions inside a function. In the latter case, thé&eyword is used to separate the
expressions, i.e., syntdxet p = e; i n ey states that expressian is matched against
patternp. The free pattern variables jnare bound and then availabledn. Finally, we
show how thecr ossPr oduct function can be applied to some example vectors:

crossProduct (2.,8.,33.) (15.,22.,9.)
—* (-654.,477.,-76.)
3

7.1.3 Equality, Abstract Data Types, and Modules

In the current version of MKL, there is no support fearametric polymorphismThe

main rationale for excluding such useful language property is that further research is
needed to study the relation of polymorphism with the language extensions presented
in the next chapters.

5In future versions, exhaustive checking of matching rules could be done at compile time. However, this is
not available in the current prototype.

104 7 Introduction to Functional Programming in MKL

However, to be able to evaluate the approach taken in the tlefisly efficient im-
plementation is needed. For that reason polymorphic buétbistract data types (ADTS)
for handling finite sets, mapping between key value pairs, and efficient random access
arrays have been added to the language. Appendix B defines their interfaces and the rest
of this subsection gives a brief overview of their uses.

MKL has a built-in polymorphic infix operator= for structural equivalence test be-
tween two values. It is polymorphic in the sense that the expression on the left and right
hand sides can have any type, as long as the types are equal. Hence, an implementation
traverses data structures and/or functions to determine if they are equal or not. Functions
are syntactically compared for equality updeconversion, i.e., the identifier names for
function parameters do not matter. For example, the two expressions

321 == 150 + 171
(fun x:Int -> 1 + x,"text") == (fun y:Int -> 1 + y,"text")

both evaluate to r ue, but the expressions

[1,4,9,2] == [90, 21, 3]
(fun x:Bool -> true && false) == (fun x:Bool -> false)

both evaluate th al se. Note that comparison of equality is always performed on values,
and therefore the right hand side of the first expression is first evaluated to the2dlue
The second expression evaluates to true due-tonversion, i.e., that bound variables
can be renamed. The third is obviously false because both the size of the list and their
elements differ. Finally, the fourth expression evaluates to false because functions are
values and MKL is using weak reduction, i.e., evaluation is not performed under function
abstractions. Besides equality of expressions, the functions of the ADTs need a compar-
ison function to determine the total order over all types. This comparison function is not
reachable as a user function, but is used internally by the ADTs. Equality and comparison
of expressions are further discussed in Section 10.5.4.

All operations available within the set ADT are reached by prefixing the operator with
Set followed by a dot. An empty set is created with expressen. enpt y. Elements
can be added by usirget . add, where the first argument is the element and the second
the set that should be extended. The returned value is the new set. Consider the following
example

let s1 = Set.add 10 (Set.add 20 (Set.enpty))
let ml = Set.nem 10 s1

let s2 = Set.renmove 10 sl

let n2 = Set.nem 10 s2

let | = Set.tolList sl

wheres1 evaluates tq 10,20}, ml evaluates to trues2 to {20}, n?2 to false and to
[20, 10] , where we have used the notatipn, eo, ...} to denote a set constructed from
elementsey, es, etc. It should be noted that set operations are purely functional, i.e.,
no destructive updates occur. For example, the remove operations did not remove the
element frons 1; it just returned a new se2 where the element was removed. The type
of a set is writterSet 7', whereT" is the type of the element in the set.

TheMap ADT is used for storing a finite mapping of key - value pairs. The implemen-
tation is purely functional, i.e., no destructive updates occur and update operations always

7.2 Lambda Calculus and Operational Semantics 105

return a new map. We use a double arrow to denote the type of &ap 7>, where

T, is the type of the keys arit}, the type of the values. The operations are similar to the
set, e.gMap. enpt y creates a new empty maggap. add k£ v m adds a key: with the
valuev to the mapn, and then returns the new updated map. If the key already exists, the
returned map holds the new binding with valueThe operatoMap. f i nd k& m returns

the value associated with the kiyn m, if found. If not, a runtime error is reported. To
avoid this to happerivap. mnem#k m should first be called to check if the kéyexists in

m.

TheArray ADT implements random access of fixed sized arrays. We \rife}
for the type of an array. For examplg,Real , Real) } is the type of an array of tuples,
whose elements are of tygeeal . Arrays differs from the other ADTs in that all of
its operations are not purely functional. For exampler ay. set « p e destructively
replaces the element at positipiin the arrays with the element. If an access is out of
bounds, a runtime error is reported.

Finally, the current version of MKL has a very simple system for separating code into
different modules. The prototype implementation does not yet support separate compila-
tion or information hiding, e.g., to create ADTs. The import mechanism from separately
defined modules is a simple include mechanism. At the top-level, for example the lines

i ncl ude Base
include El ectrical

will include the definitions in fildbase. nkl andel ectri cal . nkl into the current
module. However, the include mechanism ensures both that equivalent definitions are not
included twice and reports an error if the include statements of the modules introduce
circular dependencies. The approach taken here is preliminary and is likely to be changed
in future revisions of the language.

7.2 Lambda Calculus and Operational Semantics

In the following section, we give a brief introduction to the lambda calculus, as well as
the foundation of operational semantics.

7.2.1 Untyped Lambda Calculus

The lambda calculus was invented by Alonso Church in the 1930s. Today it forms the
foundation of many programming languages in general, and for functional programming
languages in particular. Several books have been written about the subject, where Baren-
dregt [12] gives a comprehensive description of the foundations, Hindley and Seldin [67]
a perhaps more accessible introduction, and Pierce [124] details how it can be extended
with types and other language constructs to form programming languages.

The syntax of the lambda calculus is given with the followiBgckus-Naur Form
(BNF) grammar:

ex=ux|v.eleres (7.1)

wheree is alambda expression: a variable \z.e a lambda abstractigrande;es an
application. The above grammar should be understood as definimpsteact syntawof

106 7 Introduction to Functional Programming in MKL

the calculus, i.e., that ambiguities of precedence and a&sdtyi have been handled by

the earlierparsingstage fromconcrete syntaxWhen discussing calculi in this thesis,

we mean the abstract syntax. However, in examples and proofs, we need to write out
expressions concretely. We use parentheses to remove ambiguities, but to avoid too many
parentheses, we use the following convention:

The body of a lambda abstraction is counted as far to the right as possible, only
ending with a closing parenthesis or end of expression. For example, the expression
Az. Ax. \y. x y z is equivalent to\z. (Ax. (A\y. z y 2)), but nottodz.(Az. \y. = y) z,
where the latter states thats supplied as an argument to the lambda abstraction binding
the variablex. The second convention is that function application is left associative, i.e.,

x y zis equivalenttq(z y) z).

Grammar (7.1) is a convenient short way of stating the abstract syntax. A more formal

definition can be giving inductively:

Definition 7.2.1 (Lambda expressions). Let X be the countable set of variable names.
The set of lambda expressiofiss the smallest set such that

o ifz € Xthenzx € &
e if x € Xande € £then)x.e € £
e if ¢ € £ andey € £ thenejes € €

In the coming calculi we use the simpler form defining the syntax using BNF.

A variablez in a lambda abstractiohr.e is said to beboundby the abstraction if it
occursfreein the abstraction’s body. The set of free variables of a lambda expression
can be defined as a recursive functioi (e):

Definition 7.2.2 (Free variable).

FV@) = f{a)
FV(Ax.e) = FV(e)—{a}
FV(eleg) = FV(el) UFV(CQ)

For example, il\z. 2 y the variabler is bound by the lambda abstraction ani a free
variable of the expression. In the expressian \y. A\x. z y x, variablez appears free
andx andy are bound. Variable is bound by the innermost lambda. The outermost
lambda does not bind any variables becaugenot free in its body.

We write [z +— e]e; meaning that all free occurrences of the variable e, are
replaced/substituted by the expressignWe define substitution as follows:

Definition 7.2.3 (Substitution).

[z — e]z = e

[z ely =y ify#x

[—e](Ay.e1) = Ay. [z ele; if © #yandy ¢ FV(e)
[z —elleres) = ([z—eler)([x > elea)

The computation of a lambda expression is performed by reducing expressions, so called
redexesThe rewriting rule

(Ar.er) e — [z — eler

7.2 Lambda Calculus and Operational Semantics 107

is called thes-reduction. There are differemvaluation strategie®r the A-calculus.
They defines which order the redexes are reduced.
In normal orderevaluation, the outermost and leftmost redex is is reduced first. E.g.,

Az, dw. 2)(M\y. y)(Az. 2)) —
(Aw.(Ny. y)(Az. 2)) —
(Aw.(Az. 2))

Note that evaluation occurs under lambda, i.e., evaluation proceeds in the body of the
lambda abstraction.

If we reconsider Definition 7.2.3, we see that the guards for the equations make the
substitution a partial function. We say that Definition 7.2.8apture avoidingmeaning
that a free variable cannot be accidentally captured by another lambda abstraction. For
example the expressior. (Az. A\z. z) z is reduced to\z. ([z — z](Az. z)). However,
the partial definition of substitution does not apply because the binding varigbfece
in the substituting expression, i.e., the guard of the second equation in Definition 7.2.3.
Hence, we say that we are working on expressions updonversion (i.e., name conver-
sion), meaning that the names can be consistently renamed in an expression. We make
use of the following convention:

Convention 1. All expressions that differ only with names of binding variables are ex-
changeable in all contexts.

Hence, the binding variable for the innermost lambda can be renamed to evgand
the expressionz. ([z — z](Aw. x)) can be reduced thz. \w. z.

In the call-by-nameevaluation strategy, also the leftmost outermost redex is reduced
first, but evaluation is not allowed under lambda. E.g,

M. dw. 2)(M\y. y)(Az. 2)) —
(Aw.(A\y. y)(Az. 2))

Hence, the evaluation stops after the first step because the only available redex is under a
lambda abstraction.

Finally, in the call-by-valueevaluation strategy, the argument is first reduced to a
value, followed by a beta reduction of the outermost redex. In the pure lambda calculus,
only lambda abstractions are values. However, we will later in this thesis enrich the
language with more constructs and where other expressions are also values. The same
example as above with the call-by-value strategy evaluates as follows:

Az, dw. 2)(M\y. y)(Az. 2)) —
Ax. dw. 2)(Az. z) —
(Aw. Az. 2)

In this thesis, we are only concerned with enriched variants of call-by-value calculi.

We now formally define the semantics of the lambda calculus with the call-by-value
evaluation strategy usingmall-step operational semanti@he rules for the operational
semantics are given below:

108 7 Introduction to Functional Programming in MKL

Definition 7.2.4 (Call-by-value operational semantics).

/ !
€1 — € €9 — €
L (E-APPY) 2 _
€162 — €162 Vi€ — V1€y

(E-APP2)

(Ax.e) v — [z — v]e (E-BETA)
We must also give the definition of a value
v = Ax.e (7.2)

i.e., a value is a lambda abstraction. The first two rules are catiagruenceules and

the last oneomputatiorrule. The former rules are used for “going inside” an expression,
and the last one, the-rule, reduces (computes) a redex. Note also how the meta-variables
for values make the calculus deterministic. Hence, at most one rule can apply.

7.3 Chapter Summary and Conclusions

We have in this chapter introduced fundamental concepts in functional programming, by
giving examples in our research language MKL. Language constructs presented so far is
available in most standard functional languages, that is, new language constructs in MKL
are presented in the next chapters.

We have also given a short introduction to the lambda calculus, which will be used in
Chapter 10 where we present the core of MKL's semantics.

Modeling in MKL

fundamental construct in an EOO languages is an acausal model (also called non-

causal model). Such models can encapsulate and compose both continuous-time
behavior in the form of DAEs or other interconnected components, where the direction of
information flow between the components is not specified.

In functional programming languages, such as Haskell [134] and Standard ML [98],
standard libraries have for a long time been highly reusable, due to the basic property of
having functions as first-class values. This property, also céligber-order functions
means that functions can be passed around in the language as any other value.

In this chapter, we investigate the combination of acausal models with higher-order
functions. We call this concepigher-order acausal models (HOAMS)

A similar idea calledfirst-class relations on signatas been outlined in the context
of functional hybrid modeling (FHM) [109]. Giorgidze and Nilsson’s later developments
of this work have focused on efficient JIT compilation and aspects of embedding the
constructs in Haskell [61, 62, 63]. However, that work is still at an early stage regarding
formalizing the semantics. In contrast, our previous work’s main objective has been to
define a formal operational semantics for a subset of a typical EOO language [17]. From
the technical results of our earlier work, we have extracted the more general ideas of
HOAM, which was first published by Broman and Fritzson in 2008 [25]. This chapter
consists of a refinement of that work, where examples have been updated to conform to
the MKL syntax.

In the chapter, we show examples of using HOAMs that in prinéipléosume three
different constructs in Modelica:

1Because the semantics of MKL and Modelica are fundamentally different we cannot say that the constructs
can directly replace each other.

109

110 8 Modeling in MKL

e The Modelicar edecl ar e construct used for replacing sub-models and compo-
nents in a Modelica model with other models/components (subsumed by passing
models as arguments to other models).

e The Modelicaf or -equation construct used for creating equations and connecting
several components together (subsumed by using recursive HOAMS).

e The Modelica construct of conditional components used for inclusion/exclusion
of a component depending on a conditional expression (subsumed byiusing
expressions and HOAMS).

An objective of this chapter is to make the basic ideas of higher-order acausal models
accessible both to engineers with little functional language programming background, as
well as to computer scientists with minimal knowledge of physical acausal modeling.

Hence, the chapter is structured in the following way to both reflect the broad intended
audience, as well as presenting the contributions of the concept of HOAMSs:

e We give an informal introduction to physical modeling in our research language
MKL (Section 8.1).

e \We state a definition of higher-order acausal models (HOAMs) and outline motivat-
ing examples. Surprisingly, this concept has not previously been widely explored
in the context of EOO-languages (Section 8.2).

¢ Finally, we give examples using dynamic data structures together with higher-order
models and discuss polymorphism. (Section 8.3).

8.1 Basic Physical Modeling in MKL

In conventional object-oriented programming languages, such as Java or C++, the be-
havior of classes is described using methods. However, in equation-based object-oriented
languages, the continuous-time behavior is typically described using differential algebraic
equations and the discrete-time behavior using e.g., conditional equations. This behavior
is grouped into abstractions called classes or models (Modelica) or entities and architec-
tures (VHDL-AMS). From now on we refer to such abstractions simplgnasgels

Models are blue-prints for creatimgodel instance@én Modelica called components).
The models typically have well-defined interfaces consisting of ports (also called connec-
tors), which can be connected together usiognections A typical property of EOO-
languages is that these connections usuallyamausa/ meaning that the direction of
information flow between model instances is not defined at modeling time.

8.1 Basic Physical Modeling in MKL 111

0] (1
let Crcuit = nodel Circuit

let el:Electrical in Resi st or R1(R=10);
|l et e2:Electrical in Capacitor C(C=0.01);
let e3:Electrical in Resi st or R2(R=100);
let ed:Electrical in I nductor L(L=0.1);
Resistor 10. el e2; Si neVol t age AC(VA=220) ;
Capacitor 0.01 e2 e4; Ground G
Resi stor 100. el e3; equation
Inductor 0.1 e3 e4; connect (AC. p, Rl.p);
Si neVol t age 220. 50. el e4; connect (R1.n, C. p);
Ground e4 connect (C.n, AC.n);

connect (RL. p, R2.p);

connect (R2.n, L.p);

connect (L.n, C.n);

connect (AC.n, G p);
end Circuit;

Figure 8.1: Figure (1) lists the MKL model definition of a simple electrical circuit,
and (Il) shows a Modelica model of the same circuit.

In the context of EOO languages, we define acausal (also called non-causal) models
using the following definition:

Definition 8.1.1 (Acausal Model).
An acausal model is an abstraction that encapsulates and composes

1. continuous-time behavior in the form of differential algebraic equations (DAES),
and/or

2. interconnected components, where the direction of information flow between com-
ponents is not specified.

Sometimes, a model has both causal and acausal ports. In such a case we say that the
model ispartially acausal

In many EOO languages, acausal models also contain conditional constructs for han-
dling discrete events. Moreover, connections between model instances can typically both
express potential connections (across) generating direct equality equations and flow (also
called through) connections generating sum-to-zero equations.

8.1.1 A Simple Electrical Circuit

To illustrate the basic modeling capabilities of MKL, the source code of a simple electrical
circuit is listed in Figure 8.1. Part (I) shows the corresponding textual model given in
MKL. For clarity to the readers familiar with the Modelica language, we also compare to
the same model given as Modelica textual code (II).

In the exampleSi r cui t, the model is given a name using thet -construct. The
expression defining the model lists four lotak -expressions. These expressions define

112 8 Modeling in MKL

R=10 R=100
n
VA=220
é}’ e2 e3
(]
€=0.01 L=0.1

2o

e

Figure 8.2: Graphical model of a simple electrical circuit.

four node$ of typeEl ectri cal , i.e., the nodes are defined for the electrical domain.
Below the definitions of nodes, scomponentsare defined. Figure 8.2 shows a graphical
representation of the circuit, including the six components and the mdde, 3, and
e4.

Consider the first resistor component using the following line, which contains a call
to theResi st or by passing three arguments using the functional call notation without
parenthesis.

Resi stor 10. el e2;

The two last arguments state that nodésande2 are connected to this resistor instance
(compare Figure 8.2 and Figure 8.1). We say that the nodes are connected to the compo-
nents’ports In the same manner, we can see that, e.g., edds connected to the ports
of theVol t ageSour ce, | nduct or, andCapaci t or instances. Hence, the intuition
is that nodes in a mode&onnectcomponents together. The tygkectri cal of the
node indicates that we are modeling in the electrical domain and that only ports of type
El ect ri cal can be connected to nodes of the same type. The first argument expresses
that the resistance for this instance is 10 Ohm. In the same way, the first argument states
that thel nduct or has inductance 0.1.

Modeling using MKL differs in several ways compared to Modelica (Figure 8.1, part
I). First, models are not defined anonymously in Modelica and are not treated as first-
class citizens. Second, the way in which acausal connections are defined between model
instances differs. In MKL, the connection (in this case the electrical nodes), is created
and then connected to the model instances by giving it as an argument to the creation of
sub-model instances. In Modelica, a speciahnect -equation construct is defined in
the language. This construct is used to define binary connections between connectors of
sub-model instances. From a user point of view, both approaches can be used to express
acausal connections between model instance. Hence, we let it be up to the reader to
judge what is the most natural way of defining interconnections. However, from a formal
semantics point of view, with regards to HOAMs, we have found it easier to encode

2Nodes are similar to what is callgdrminalsin VHDL-AMS.

8.1 Basic Physical Modeling in MKL 113

connections using the ordinary parameter passing style, @ied here using MKL.

8.1.2 Models and Equation Systems

The main model in this example is tleé r cui t model. This model contains instances
of other models, such as tiResi st or model:

| et Resistor R Real -> p:Electrical -> n:Electrical -> Equations=
let i:Current in
let v:Voltage in
El ectricalBranch i v p n;
R*. i =v

In the same way as f@@i r cui t , this model is defined using thet -construct followed

by formal parameters with type annotations. In tRési st or model, the first formal
parameteR of type Real states the resistance of a component. The second and third
formal parameters are the ports of the component, i.e., the connection points. The type
for both formal parameters E ect ri cal , which is the type of a node in the electrical
domain. Recall that the nodes in mod@lr cui t had typeEl ectrical . Hence,
acausal connections in MKL are simply parameter passing of nodes. Note that these
connections do not state any causality and order of computation. The control flow and
approach to solve the equation system is not defined at modeling time.

The return type given for the resistor model is of tfgppiat i ons. This is the return
type of any acausal model defined in the language. Hence, when an instance is created
of theResi st or model, the returned value is a system of equations. Several systems of
equations are composed together using the operafeecall the use of this operator in
theCi r cui t modelin Figure 8.1). In the next chapter, we go into the details about what
the Equat i ons type actually mean. However, for the purpose of illustrating physical
modeling capabilities, it is enough to view it as an abstract concept representing a system
of equations.

The body of theResi st or model consists of four lines of code. The first two lines
define two new unknown variablésandv. Note that compared to an ordindret -
expression, no value is bound to the variable. Hehe¢ -expressions without a binding
value are treated as unknowns in the model. These unknowns are then later solved during
simulation.

The third line states all ect ri cal Branch. The purpose of the branch is twofold.
First, it is used to bind equations to the unknownandv (first and second arguments).

The unknown current is the current flowing through the component. The unknown
voltagev is the voltage drop over the component, i.e., the potential difference between
the positive porp and negative pom. The third and fourth arguments are the nodes
coming from the ports of the model. The second purpose of the branch equation is for
generating equations conforming to Kirchhoff’s current law. The details of this connec-
tion semantics are described and discussed in Section 11.2. However, the intuition of the
El ectri cal Branch is that it is path of flow through a component and between two
nodes. From a graph theoretical point of view, we would say vertex instead of node, edge
instead of branch, and graph instead of network. However, we will use the former termi-
nology because itis commonly used in the electrical domain and also in related languages,
such as VHDL-AMS [10].

114 8 Modeling in MKL

The fourth line states an equation describing the contintious-behavior of the
model. For theResi st or model, it is simply an algebraic equation stating Ohm'’s law.
Thel nduct or model is defined as follows:

let Inductor L:Real -> p:Electrical -> n:Electrical -> Equations=
let i:Current in
let v:Voltage in
El ectricalBranch i v p n;
L x. (der i) =v

and similarly, theCapaci t or model:

|l et Capacitor C Real -> p:Electrical -> n:Electrical -> Equations=
let i:Current in
let v:Voltage in
El ectrical Branch i v p n;
Cx. (der v) =i

The main difference compared to tResi st or model is that thé nduct or and the
Capaci t or models contain differential equations, where ithendv variables are dif-
ferentiated with respect to time using tder -operator. The voltage source model is
defined as follows:

|l et SineVoltage V:Real -> f:Real ->
p: Electrical -> n:Electrical -> Equations =
let PI = 3.1415 in
let i:Current in
let v:Voltage in
El ectricalBranch i v p n;
v =V=*. sin(2. . Pl ». f x. tine)

The first modelSi neVol t age specifies a time varying voltage source, by using a sine
functionsi n with type Real -> Real , and the global time variablei ne, which
gives the current time in seconds. Note also that we have defined a capPistasing

an ordinaryl et -expression. The last model in this exam@ler cui t is theGr ound
model:

let Ground p:Electrical -> Equations =
let i:Current in
let v:Voltage in
El ectrical RefBranch i v p;
v = 0.

Similarly to what is done in Modelica, th& ound model is modeled by binding a poten-

tial voltage variable to zero. The main difference of Gieound model compared to the

other models is that it is using a reference branch equdietct ri cal Ref Branch

instead of arEl ectri cal Branch. The reference branch takes only one node as ar-

gument, in this case, the node coming from the positive porThe unknowrv gives

the absolute potential value of the node coming from the pararmpetéhe unknowri

represents the current flowing through the component, which in this case ought to be zero.
The careful reader might now ask what the difference is between the definition of an

acausal model usingleet -expression and a higher-order function defined usihgte-

expression? The answer is: none. Acausal models in MKL are defined and abstracted

8.2 Higher-Order Acausal Modeling 115

using ordinary functions. The difference is that these modefgain unknowns defined

by usingl et -expressions that lack a binding to a value. Moreover, the actual computation
of solving the equations are delayed to a later stage. We will postpone the discussion of
the details of the exact meaning of these constructs to the next chapter, and instead give a
bigger example of higher-order modeling.

Note also that we have as a convention to start ordinary function names with a lower-
case letter (e.qg., thfeact factorial function in Chapter 7) and model names with an upper-
case letter (e.gGi rcui t orResi st or). Even if both are functions from the language
point of view, we find that this convention clarifies the source code.

8.2 Higher-Order Acausal Modeling

In EOO languages models are typically treated as compile time entities, which are trans-
lated into hybrid DAEs during the compiler elaboration phase. We have previously seen
how functions can be turned into first-class citizens, passed around, and dynamically cre-
ated during evaluation (see Chapter 7). Can the same concept of higher-order functions
semantics be generalized to also apply to acausal models in EOO languages? If so, does
this give any improved expressive power in such a generalized EOO language?

In this section we describe concrete examples of acausal modeling using MKL. How-
ever, let us first define what we actually mean by higher-order acausal models.

Definition 8.2.1 (Higher-Order Acausal Model (HOAM)).
A higher-order acausal model is an acausal model, which can be

1. parameterized with other HOAMs.
2. recursively composed to generate new HOAMSs.
3. passed as an argument to, or returned as a result from functions.

In the first case of the definition, models can be parameterized by other models. For ex-
ample, the constructor of an automobile model can take as an argument another model
representing a gearbox. Hence, different automobile instances can be created with differ-
ent gearboxes, as long as the gearboxes respect the interface (i.e., the type) of the gearbox
parametet of the automobile model.

The second case of Definition 8.2.1 states that a model can reference itself; resulting
in a recursive model definition. This capability can for example express models composed
of many similar parts, e.qg., discretization of flexible shafts in mechanical systems or pipes
in fluid models.

Finally, the third case emphasizes the fact that HOAMs are first-class citizens, e.g.,
that models can be both passed as arguments to functions and created and returned as
results from functions. Hence, in the same way as in the case of higher-order functions,
generic reusable functions can be created that perform various tasks on arbitrary models,
as long as they respect the defined types (interfaces) of the models’ formal parameters.
Consequently, this property enablasdel compositiotio be defined and executed within

SWe refer here to formal parameters when the model is viewed as a function. It is not related to the concept
of parameters in Modelica, which are constants during simulation time.

116 8 Modeling in MKL

the modeling language itself. For example, certain dis@attins of models can be im-
plemented as a generic function and stored in a standard library, and then reused with
different user defined models.

Some special and complex language constructs in currently available EOO languages
express part of the described functionality (e.g., the redeclare and for-equation constructs
in Modelica). However, in the sequential sections we show that the concept of higher-
order acausal models is a small but very powerful and expressive language construct that
subsumes and/or can be used to define several other, more complex language constructs.
Whether the end user finds this more functional approach of modeling easy or hard de-
pends of course on many factors, e.g., previous programming language experiences and
syntax preferences. However, from a semantic point of view, we show that the approach
is very expressive because few language constructs enable rich modeling capabilities in a
relatively small kernel language.

We will now in the rest of this section exemplify three kinds of uses of HOAM by
giving examples in MKL.

8.2.1 Parameterization of Models with Models

A common goal of model design is to make model libraries extensible and reusable. A
natural requirementis to be able to parameterize models with other models, i.e., to reuse
a model by replacing some of the sub-models with other models. To illustrate the main
idea of parameterized acausal models, consider the following over-simplified example of
an automobile model:

| et Autonobile Engine: (Rotational -> Equations) ->

Tire: (Rotational -> Equations) ->
Equations =

let rl:Rotational in

let r2:Rotational in

Engi ne r1;

Cearbox rl r2;

Tirer2; Tirer2;, Tirer2;, Tirer2

In the example, the automobile is defined to have two formal parameteEngime
model and di r e model. To create a model instance of the automobile, the model can
be applied to a specific engine, e.g., a modeti neV6 and some type of tire, e.g.

Ti reTypeA:

Aut onobi | e Engi neV6 TireTypeA

If later on a new engine was developed, eEngi neV8, a new automobile model in-
stance can be created by changing the arguments when the model instance is created,

eg.,
Aut onobi | e Engi neV8 TireTypeA

Hence, new model instances can be created without the need to modify the definition of
the Aut onobi | e model. This is analogous to a higher-order function which takes a
function as a parameter, and somewhat related to a Modelica model with replaceable for-
mal parameters. In fact, because acausal models are abstracted by higher-order functions
in MKL, the samefundamental semantics is used in both cases.

8.2 Higher-Order Acausal Modeling 117

DCMotor
Shaft elements: 1..N

Resistor Inductor | - - - |

J=0.2

Voltage
Source EMF

EV:GO

Ground

Inertia

— e |

Figure 8.3: A simple mechatronic system with a direct current (DC) motor to the
left and a flexible shaft to the right. The flexible shaft consists tof N elements,
where each element includes an inertia, a spring, and a damper.

In the example above, the definition Afit onobi | e was not parametrized on the
Gear box model. Hence, th€ear box definition must be given in the lexical scope of
the Aut onobi | e definition. However, this model could of course also be defined as a
parameter taAut onobi | e.

This way of reusing acausal models has obvious strengths, and it is therefore not sur-
prising that constructs with similar capabilities are available in some EOO languages, e.g.,
the special edecl ar e construct in Modelica. However, instead of creating a special
language construct for this kind of reuse, we believe that HOAMs can give simpler and a
more uniform semantics of an EOO language.

8.2.2 Recursively Defined Models

In many applications it is enough to hierarchically compose models by explicitly defin-
ing model instances within each other (e.g., the sin@plecui t example). However,
sometimes several hundred model instances of the same model should be connected to
each other. This can of course be achieved manually by creating hundreds of explicit
instances. However, this results in very large models that are hard to maintain and get an
overview of.

One solution could be to add a loop-construct to the EOO language. This is the ap-
proach taken in Modelica, with thieor -equation construct. However, such an extra
language construct is actually not needed to model this behavior. Analogously to defining
recursive functions, we can definecursive modelsThis gives the same modeling pos-
sibilities as adding théor -construct. However, we have also found it easier to define a
compact formal semantics of the language using this construct.

Consider Figure 8.3 which shows a simple mechatronic model, i.e., a model contain-
ing components from both the electrical and mechanical domain. The left hand side of
the model shows a direct current (DC) motor. The electromotoric force (EMF) component
converts electrical energy to mechanical rotational energy.

In the middle of the model in Figure 8.3 a rotational body with Inestia= 0.2 is
defined. This body is connected to a flexible shaft, i.e., a shaft which is divided into
a number of small bodies connected in series with a spring and a damper in parallel in
between each pair of bodies. VariaVeis the number of elements that the shaft consists
of.

118 8 Modeling in MKL

A model of the mechatronic system is described by the followitikd- source code.

| et MechSys =
let rl:Rotational in
let r2:Rotational in
let r3:Rotational in
DCMbt or r1;
Inertia 0.2 rl1 r2;
Fl exi bl eShaft 120 r2 r3

If we recall from the previous section, the connection between electrical components was
defined usingel ectri cal nodes. However, in the rotational mechanical domain, the
connection is instead defined by creatRaf at i onal nodes. In thédvechSys model,
three such nodes are created. These nodes are used for connecdMthieor , the
I nerti aandtheFl exi bl eShaft components together.
The most interesting part is the definition of teexi bl eShaf t component. This
shaft is connected to the Inertia to the left. To the right, it is connected ton®dehich
is not connected to any other port. Hence, ports always need to be connected to a node,
even ifitis a singleton node. The first argument supplied téthexi bl eShaf t model
states the number of elements that the shaft should consist of; in this case 120 elements.
Can these 120 elements be described without the need of code duplication? Yes, by
the simple but powerful mechanism of recursively defined models. Consider the following
self-explanatory definitions @haf t El enent :

I et ShaftEl ement flangeA: Rotational -> flangeB: Rotational ->
Equati ons =
let rl:Rotational in
Spring 8. flangeA rl1;
Damper 1.5 flangeA r1;
Inertia 0.5 r1 flangeB

This model represents just one of the 120 elements connected in series in the flexi-
ble shaft. The actual flexible shaft model is recursively defined and makes use of the
Shaf t El ement model:

| et FlexibleShaft n:Int -> flangeA Rotational ->
fl angeB: Rot ati onal -> Equations =
if n==1then
Shaft El ement fl angeA fl angeB
el se
let rl:Rotational in
Shaft El ement fl angeA r1;
Fl exi bl eShaft (n-1) r1 flangeB

The recursive definition is a standard recursively defined function, wheré tegpression
evaluates to false, as long as the count paranmetginot equal to 1. For each recursive
step, a new connection is created by definidg which connects the shaft elements in
series. Note that the last element of the shaft is connected to the last argument supplied to
theFl exi bl eShaf t model because the shaft element created whenfthexpression

is evaluated to true takes paramdteangeB as an argument.

8.2 Higher-Order Acausal Modeling 119

When theMechSys model is elaborated using our MKL prototype implementation,
it results in a DAE consisting of 1586 equations and the same number of unkhadtias
obviously beneficial to be able to define recursive models in cases such as the one above,
instead of manually creating 120 instances of a shaft element.

However, it is still a bit annoying to be forced to write the recursive model definition
each time one wants to serialize a number of model instances. Is it possible to capture
and define this serialization behavior once and for all, and then reuse this functionality?

8.2.3 Higher-Order Functions for Generic Model Composition

In the previous section we have seen how models can be reused by applying models to
other models, or to recursively define models. In this section we show that it is indeed
possible to define several kinds of generiodel compositiorstrategies by using higher-
order functions. These functions can in turn be part of a modeling language’s standard
library, enabling reuse of model composition functions.

Recall the examples from Chapter 7 of higher-order functions returning other anony-
mously defined functions. Assume that we want to create a general function, which can
take any two models that have two ports defined (é.xgerti a or Shaf t El enent),
and then compose together by connecting them in parallel, and then return this new model:

| et composeParal l el
nodel 1: (Rot ati onal -> Rotational -> Equations) ->
nodel 2: (Rotati onal -> Rotational -> Equations) ->
(Rotational -> Rotational -> Equations) =
(fun flangeA: Rotational -> fun flangeB: Rotational ->
nodel 1 fl angeA fl angeB;
nodel 2 fl angeA fl angeB)

However, for example, ouBpri ng model does not take two arguments, but three,
where the first one is the value for the particular component (e.g., spring constant for
the Spri ng model and moment of inertia for tHener t i a model). Because models

are higher-order functions and multiple formal parameters are defined using currying, the
solution is basi@artial applicatiorwhere the first argument is supplied to the model. For
example, a new functiononp that composes a spring and a damper can be defined as
follows:

| et conmp = conposeParallel (Spring 8.) (Danper 1.5)

A standard library can then further be enhanced with other higher-order functions, e.g., a
function that composes two models in series:

| et conposeSerial nodel 1: (Rotational -> Rotational -> Equations)->
nodel 2: (Rotati onal -> Rotational -> Equations)->
(Rotational -> Rotational -> Equations) =
(fun flangeA Rotational -> fun flangeB: Rotational ->
| et flangeM Rotational in

4Using our elaboration approach, this is approximately half the number of equations generated by using the
Modelica elaboration semantics (2922 equations for the corresponding Modelica model). The main reason is
that our semantics do not need to generate equations for potential variables between connectors. Details of this
elaboration semantics is given in Chapter 11.

120 8 Modeling in MKL

nodel 1 fl angeA fl angeM
nodel 2 fl angeM fl angeB)

Note that this time a new node is created betweedel 1 andnodel 2. Consider now
the following new definition of the ShaftElement:

|l et ShaftEl ement =
| et conp = conposeParallel (Spring 8.) (Danper 1.5) in
conposeSerial conp (lnertia 0.5)

This results in the exact same model instance as the one giving before, where the com-
ponents were connected using node connections. Hence, models can be composed by
either direct node connection, or by utilizing higher-order functions for generic model
composition.

We have now created two simple higher-order functions which compose models in
parallel and in series. However, can we create a function that takes a mbdeld
an integemn, and then returns a new model whereaumber of models\/ have been
connected in series? If this is possible, we do not have to create a special recursive model
for theFl exi bl eShaf t , as shown in the previous section.

Fortunately, this is indeed possible by combining a recursive model (e.g., a recursive
function) and a higher-order function. Consider the following definition of a serialization
function for the rotational domain:

l et serializeRotational
n:Int -> nodel: (Rotational -> Rotational -> Equations) ->
(Rotational -> Rotational -> Equations) =
let recnodel n:Int -> flangeA Rotational ->
fl angeB: Rot ati onal -> Equations =
if n <=1 then
nodel flangeA fl angeB
el se
| et nodeNew. Rotational in
nodel flangeA nodeNew;
recnodel (n-1) nodeNew fl angeB
in
(fun flangeA Rotational -> fun flangeB: Rotational ->
recnodel n flangeA fl angeB)

The main function definitioser i al i zeRot at i onal contains a local function def-
inition r ecnodel . A closer look at the latter function shows that it is almost identical
to the definition of modeBhaf t El enent . The main difference is that inecnodel ,
instances are created from the variabtedel , which is the second parameter of the
functionseri al i zeRot ati onal .

The last part of the main function returns a curried function representing a rotational
model of two ports f(Il angeA andf | angeB). The body of this function is calling
r ecnodel , resulting in a composed model withelements in series.
Now, we can once again define the mechatronic system given in Figure 8.3, but this time
by using functiorseri al i zeRot at i onal :

l et MechSys2 =
let rl:Rotational in

8.3 Dynamic Data Structures and Polymorphism 121

let r2:Rotational in

let r3:Rotational in

DCMot or r1;

Inertia 0.2 rl1 r2;

(serializeRotational 120 ShaftEl enent) r2 r3

Even if the serialize function might seem a bit complicated to define, the good news is that
such functions usually are created by library developers and not end-users. Fortunately,
the end-user only has to call the serialize function and then use the newly created model.

8.3 Dynamic Data Structures and Polymorphism

We have in the previous section created a flexible function for connecting series of models
in the rotational domain. However, how can we connect a list of models in series, which
are not configured in the same way, i.e., do not have the same inertia or spring constant?
Moreover, do we need to create a new version of e.g. the serialization functions for each
physical domain? These questions are the topics for this section.

8.3.1 Model Composition over Lists of Models

Let us a assume that we want to model the flexible shaft again, but with a few hypothetical
requirements:

e The shaft element should be modeled in the same way as in the previous section,
with the difference that the inertihcan be different for each shaft element.

e The first element should have inertia 0.5 and then each element should have an
increased intertia of 0.2.

e An inertia component of an element should only exist if the expected inertia is
greater than 5.0, otherwise it should not be inserted in the model.

e There should be no shaft elements with inertia larger or equal to 10.0, i.e., this states
the termination condition for the generation of the shaft elements.

To start with, we define a type synonym for a rotational model with two ports:
type Rot Mbdel = Rotational -> Rotational -> Equations

The idea would be to create a list of shaft element models which is valid for the above re-
quirements and then to connect all these models in series. A general serialization function
over a list of models in the rotational domain can be defined as follows:

| et serializeList nodel s:[RotMdel] -> RotMdel =
l et serialize flangeA Rotational -> flangeB: Rotational ->
nodel s: [Rot Mbdel] -> Equations =
mat ch nodel s with
| [mM -> mflangeA flangeB
| m:ms ->
let flangeM Rotational in

122 8 Modeling in MKL

m fl angeA fl angeM
serialize flangeM fl angeB ns
| [1 ->error "illegal to serialize an enpty list"
in
(fun flangeA: Rotational -> fun flangeB: Rotational ->
serialize flangeA fl angeB nodel s)

A local function is performing the recursion over the list. The list is deconstructed using
pattern matching, and returning a composed new model, where all model elements are
connected in series.

To meet the requirements, one way could be to create a new shaft element, which is
parameterized by the inertial

let ShaftEl ement2 J: Real =
| et conp = conposeParallel (Spring 8.) (Danper 1.5) in
if J > 5. then conposeSerial conmp (lnertia J) else conp

Note that this variant of the shaft element is only adding an Inertia instantés Iarger
than5. This selection is performed with a standafd-expression.

We also need to generate the list of shaft elements, where the inertia is increased with
0. 2 for each element. This is straightforward using a recursive function:

|l et genElenlist J:Real -> incrJ:Real -> maxJ: Real -> [RotMdel] =
if J <. maxJ then
(ShaftEl ement2 J):: (genElenlist (J +. incrJd) incrJ maxJ)
el se []

The first parameter is the inertial, the second the increment value and the third the max
value, i.e., deciding when to finish the recursion.
Finally, we create an instance of this new flexible shaft inside the mechatronic system:

| et MechSys3 =
let rl:Rotational in
let r2:Rotational in
let r3:Rotational in
DCMbt or r1;
Inertia 0.2 r1 r2;
(serializelList (genEleniList 0.5 0.2 10.)) r2 r3

8.3.2 Parametric Polymorphism

We have in the previous section illustrated some of the modeling flexibility and expres-
siveness of being able to use higher-order models together with data structures such
as lists. However, so far we have modeled all components within a specific domain;
in this case the mechanical rotational domain. For example, recall that the function
seri al i zeLi st was specially defined for theot Model type

type Rot Mbdel = Rotational -> Rotational -> Equations

where the ports werRot at i onal nodes. Would it not be good to be able to create
one function that could take models fraany physical domain and connect such models

8.4 Chapter Summary and Conclusions 123

in series? The solution would be to incorporg@rametric polymorphisrim the lan-
guage, i.e., to have type variables in tret -expression. For example, a generic variant
ofseri al i zelLi st could look like

| et serializeList nodels:['a ->"a -> Equations] ->
("a ->"a -> Equations) =

where the type variables are denoted as identifiers prefixed by a single-qutagever,

the current version of our experimental platform is monomorphic with regards to types
and therefore such a definition as above is not allowed. At first glance, this extension
seems straightforward to incorporate into the language, but a more in depth study needs
to be performed to see how it interacts with the other constructs of the model lambda
calculus, which is presented in Chapter 10. We leave as future work the study of incorpo-
ration of parametric polymorphism into the language.

8.4 Chapter Summary and Conclusions

We have in this chapter given a basic introduction of the fundamentals of mathematical
modeling in MKL. In particular, we study and give examples of how the concept of higher-
order acausal model (HOAM) can be used for modeling.

We conclude that HOAMs can be used to express several of the language constructs
available in Modelica, such dr -equationsy edecl ar e-constructs, and conditional
components. We have also shown how HOAMs can be used together with lists for flexible
modeling. However, it is to early to draw any general conclusions that this modeling
technique is easy to use from a user perspective.

124 8 Modeling in MKL

Intensional Analysis of Models

I N meaprogramming environments and systemsgtaprogramsnanipulate, transform

and analyzebject programsMetaprograms can, for exampl,e be compilers, theorem
provers, transformation systems, partial evaluators, and analyzers. The aim of metapro-
grams can be to increase the expressive power of a system and/or to increase the perfor-
mance of systems.

Programming languages capablemensional analysisf code are program analyz-
ers, i.e., metaprograms that inspect and analyze an object progra@msional metapro-
gramminglanguages are on the other hand languages that only generate new programs
using information available in the metaprogram.

Designing and implementing model libraries for different domains often requires deep
knowledge of the mechanisms of the underlying language, as well as implementation de-
tails of the used compiler or software tool. Mathematical models include equations of
different forms. The system of equations in such models can be inspected and analyzed
in several ways and for different needs. In this chapter, we introduce the idea of using
intensional analysis of mathematical modeks., the possibility for a function to inspect
and analyze the equation system of the model. The programmfmgri®egeneoysean-
ing that the program manipulates the models created in the same language. The chapter
is organized as follows:

e We explain the concept of models, unknowns, and model types of MKL (Sec-
tion 9.1).

e We describe, by giving several examples, how pattern matching can be used for
intensional analysis of models (Section 9.2).

125

126 9 Intensional Analysis of Models

9.1 Models and Unknowns

In the previous chapter, we introduced variables that are both algebraic and appear differ-
entiated, e.g., recall the model definition of capacitor:

|l et Capacitor C.Real -> p:Electrical -> n:Electrical -> Equations=
let i:Current in
let v:Voltage in
El ectricalBranch i v p n;
Cx. (der v) =i

In the model, we have defined two unknown variabiesf typeCur r ent andv of type
Vol t age. We say that these variables are bindintknownshecause they are not bound
to any explicit values by théet -expressions. The unknown appears differentiated
(expressiorgder v)), whilei does not and is therefore an algebraic variable.

From a modeling point of view, one might expect thatdlee operator and the defini-
tions of Cur r ent andEl ect ri cal Branch are part of the MKL language. However,
they are not. Instead these construct are defined in MKL standard libraries.

9.1.1 Unknowns

The fundamental construct for mathematical modeling in MKL is the concept of un-
known. Unknowns are defined using the syntax

let z:Tine

wherez is the variable bound to the unknowi, the type of the unknown ane the
expression where appears bound.

Unknowns are values and first-class citizen, i.e., they can be passed around as any
other value. Note that this is why we say that the variatieboundto an unknown, i.e.,
an unknown is created when thet -expression is evaluated.

9.1.2 Model Type

The concrete syntax of types in MKL is defined by the following grammar:

T:=Int |[Real |Bool |String|T->T|() |
[T] [(T1, ..., T) | Set T|T=>T [{T} |
<I>|<>

Types<T'> and<> are callednodel typesType<T> is aspecific model typand said to

be al-modeltype. For exampleg] nt > is aninteger model type artReal - > Real >

is a function model type. Type> is called theany model type The intuition is that a

value of a model type is a mathematical model, i.e., it includes unknowns and equations.
From a modeling point of view, the termgknownand variableare often used with

no difference in their meaning. However, from our language design point of view, they

are different concepts.

9.1 Models and Unknowns 127

Definition 9.1.1. An unknownis the value that is created by evaluating a let-expression
offorml et x: T'i n e. The new unknown will be bound byand substituted in expres-
sione.

Unknowns are here defined to be values (the unknown value) and can never be bound to
another value, while variables are bound within function abstractions and can be substi-
tuted by another value.

An unknown is always of a model type. When binding an unknown to a variable using
al et -expression, the type is syntactically checked. For example, expression

let x:<Real> in x

definesx as aReal model type. Now, consider the expression

let x:<Real> in
x +. 1.

that is a model of typgReal >. The add operator. cannot compute the result of the
addition because is unknown.

During type checking of the expression, the type checker checks if either of the
operand expressions are of a model type. If this is the case, the operand that was not
amodel is embedded into a new expressiontoelel value expression

val e

wheree is the expression that after evaluation will be a value. The value expression has
two purposes. First, it turns the type of an expressiaf type 7" into a model, where
expressiornval e has type<T'>. Secondly, the typ& is internally tagged (not visible
to the user) to the expression and can later be used to match the type of the value during
intensional analysis.

This expression can be explicitly given by the user, for example in

let x:<Real > in
x +. (val 1.)

where bothx and expressiomal 1. are explicit model types. In both examples, the
operands are models, where in the formerilaé expression was inserted by the type
checker, while in the latter case it was explicitly stated by the user.

The add operator is itself a function, which is defined in the standard libess'g. k|
(see Appendix D.1) as

let (+.) : Real -> Real -> Real = @eal _add

The line states that a prefix operafot.) takes two arguments of tydeeal (curried
form) and returns d&eal . The actual operation is performed by the built-in function
@ eal _add, which has@@symbols prefixed to distinguish it from other user defined
identifiers. The operator can be used as either an infix operatér e, or as a prefix
operator(+.) e es.

1The explanation given in this chapter is informal and somewhat simplified. Details are given in the next
chapter.

128 9 Intensional Analysis of Models

The type checker has a similar procedure for the function \itde#, as for its argu-
ments. If both arguments are of model type, the function value is embeddedviaio a
expression. Hence, our expression will, after the type checking phase, have the form

let x:<Real> in
(val (+.)) x (val 1.)

when we write the add operator in prefix form.

9.1.3 Models as Data Structures

The procedure informally described in the previous section, is related to, but different
from binding-time analysis (BTA)used in offline partial evaluators [66, 80]. During
BTA, it is determined, given some static input data, if expressions in a program can be
safely evaluated statically (at compile time) or if the computation of the expression must
be delayed until runtime. However, for our translation steps performed during type check-
ing, decisions are made regarding which expresstamsotbe evaluated at runtime. No
evaluation is performed statically at compile-time (in the context of model types). Con-
sider the following slightly larger expression:

let y = 2. in
let x:<Real> in
X +. 3. *x.y

After the translation phase during type checking, the program is

let y = 2. in
let x:<Real > in
(val (+.)) x (val ((*.) 3. v¥))

Hence, operatof +.) itself is embedded into aal -expression, but in the case of the
multiplication, the whole expressidn(*.) 3. y) is embedded. Why the difference?
The answer lies in the type returned by the type checker. For the opérator, its
second operand needs to be a model because the unknésva model by definition.
However, in the case dfx .) , both arguments have typeal , i.e., they are not models.
Hence, that expression can be safely evaluated during runtime.

The above example is what can be entered as an MKL program, but internally in the
compiler, a different operator is used for application, caftentlel applicationThe reason
is that the application should be treated as data, i.e., the computation should not be carried
out directly. The model application is here denoted with the i@symbol:

let y = 2. in
let x:<Real> in

((val (+.)) @x) @(val ((*.) 3. y))

An expressiore; @es, a model application of; to e; can from a dynamic semantics

point of view be considered as a tuple holding a pair of expressions. Hence, the model
translation creates a data structure from an expression, so that operations are not unsafely
performed on unknowns. The result of evaluating the above expression is

let x:<Real > in

((val (+.)) @x) @(val (6.))

9.2 Intensional Analysis of Models 129

Hence, sub-expressions that are safe to evaluate can betedalbat expressions con-
taining unknowns are translated into data structures.

9.2 Intensional Analysis of Models

Intensional analysjsn the literature of metaprogramming languages, is referred to as the
ability of the language to observe the structure of the code and its decomposition [129].
The information gathered during the analysis can then be used to synthesize a result.
In the case of our mathematical modeling aims, the purpose would be to observe and
inspect the equation system, symbolically manipulate it (e.g., symbolic differentiation),
and solve the equation system. Alternatively, the system of equations can be analyzed and
then translated into another form, e.g., compiled into another target language.

In the following section we show how intensional analysis can be performed on mod-
els in MKL, i.e., on expressions of a model type. In this section we explain the syntax
and semantics informally from a programmers point of view. Hence, we will be using the
high-level constructs (e.g., pattern matching) which are then translated into more primi-
tive constructs for the core of the language. In Chapter 10 we explain the core language
formally.

9.2.1 Pattern Matching on Models

In the previous section we stated that models are data structures which can include un-
knowns. To be able to inspect the model we need to deconstruct the data structure. This
can be performed witwattern matchingon models. A model can be built up of three
kinds of elements:

e Unknown An unknown is the value that is created by et -expression of form
let z:Tine.

e Model Application A valuewv; applied to another value,, where the application
is treated as data.

e Model Value The expressiomal v, which embeds a value

The syntax of patterns for deconstructing models are as follows:

p = uk:T|pipe|val :T|x

wherezx is a pattern variable and represent types. The pattern for unknovaks: T
matches if the matching value is an unknown and was defined with a type that is equal
to T'. Note that you can only test if an unknown match with a specific type, you cannot
extract the type. The pattern for model applications, written as an applicatipn,
consists of two patterns. Hence, it is possible to nest these model application patterns

2Note that we did not use th@symbol for model application in patterns. This symbol was only used in the
previous section to emphasize the difference of applications and model applications when they are stored in an
internal form in the program.

130 9 Intensional Analysis of Models

The pattern matches the matching value if it is a model apmicafThe last pattern for
model valuesral z: 7" matches if the matching value is a model value and the type of
the value embedded in the model value is consistent with Typ& such case, pattern
variablex is bound to the embedded value. The last pattesithe pattern variable.
Consider now the following simple model of an expression with two unknowns:

let M=
let kK = 2. in
let x:<Real > in
let y:<Real> in
X +. 3. .y x. (x +. k x. 4.)

We would now like to analyze mod@&land create a function that returns all constants
with typeReal :

let constReal m<> -> acc:[Real] -> [Real] =
match mw th
| mL n2 -> constReal n2 (constReal nil acc)
| val v:Real -> v::acc
| _ -> acc

The functionconst Real takes as input a model an accumulatdrlist acc, and re-
turns a list of constants found in the model. The expression to be matchednsthe
first case, a pattern for a model application is matched. In such a case recursive calls are
made both withml andn® as arguments. Parametahas type any modei>, making
it possible perform the recursive call regardless of the specific model type of the supplied
argument. The accumulator ligt ¢ is used for storing/accumulating (through: acc)
all constants that are found, and is therefore threaded through the recursion. If the match-
ing value is not a model application, but a model value, case two applies. Moreover,
the matching case checks that the typera$ Real . In such a casey is added to the
accumulator list. Finally, if none of the other cases apply, the accumulator list is returned.

If the expressiorconst Real M [] is evaluated, we get the li§t8. , 3.]. We
supply an empty list as the second argumerntamst Real . The first thing to notice
is that the model application could be used to traverse the whole model. The reason is
that all operators, including the primitive operators on basic types, are represented as
curried functions. In the second case, model values are matched where the type of the
embedded value should IRReal . The second thing to notice is that because we know
that the embedded value has tylReal , we can use it in a type-safe way for further
computation. The third observation to be made is that we only get a list of two elements,
but the model contains three constafts, 4. , and2. . The latter was bound by variable
k. The reason is that the model translation during type checking only converts the whole
expressiork *. 4. into a model value. Hence, when the expressitia evaluatedk
will be substituted by. and the embedded model value will be compute8.to

Consider now another function for pretty-printing the model, i.e., for creating a string
representation of the model:

let pprint m<Real> -> String =
match mw th

3An accumulator list is a formal parameter used to accumulate results during recursive calls of the function.

9.2 Intensional Analysis of Models 131

| el +. e2 -> "(" ++ (pprint el) ++ " +. " ++ (pprint e2) ++ ")"

| el x. e2 -> (pprint el) ++ " *. " ++ (pprint e2)

| val v:Real -> real2string v

| uk:<Real > -> "uk"

The functiornppr i nt takes a modehas input and returns a pretty-print®dr i ng. The

first two cases match the infix versions of operator@and+ . . The infix representation of

the pattern makes the rule more readable, but is actually just syntactic sugar for the prefix
pattern rule used in combination wittwaen pattern guard. For example, the second case

is equivalent to:

| op e e2 when op == (*.) -> (pprint el) ++" . "++ (pprint e2)

where the pattern is a nested model application pattern. The third case riattbe-
expression in functioppr i nt matches a model value and converts the embedded value
into a string. Note that we can safely usén a context where expressions of tyReal

are expected because the type checker guarantees that the embedded type Reaifitype
Inthe last line, we match that the unknown should have §Real >. If none of the cases
matches, a runtime error will be generated.

9.2.2 Analyzing Systems of Equations

We are primarily interested in mathematical models consisting of systems of equations.
Let us consider the following classic example:

let LotkaVolterra =

| et growt hRateRabbits = 0.04 in

| et deat hRateRabbits = 0.0005 in

| et deat hRat eFoxes = 0.09 in

let efficiencyGowthFoxes = 0.1 in

| et rabbits: Population in

| et foxes:Population in

Init rabbits 700.;

Init foxes 10.;

der (rabbits) = growthRateRabbits *. rabbits -.
deat hRat eRabbits *. rabbits *. foxes;

der (f oxes) = effici encyG owm hFoxes *. deat hRat eRabbits =*.
rabbits . foxes -. deathRateFoxes *. foxes

This is a simple form of biological model modeling the population dynamics of an ecolog-
ical system. The model, called Lotka-Volterra after its inventors, models a predator-prey
relationship, where the predators are foxes and the prey animals are rabbits. The model
given in this example is a translation of the model described by Fritzson [51]. At the
top of the model, a list of constants is given. The last tved -expressions define two
unknowns abbi t s andf oxes, both of typePopul at i on, which is just a type alias

type Popul ation = <Real >

for making the model more readable.
At the bottom of the model, we have two differential equations. Both of the variables
rabbi t andf oxes appear differentiated, and the differentiated variables both appear

132 9 Intensional Analysis of Models

on the left hand side of the equations. Hence, we have an exPIRE in state-space
form. To solve the initial value problem, we need to define initial values for the state
variables. This is expressed with the twai t declarations, where for example the
variabler abbi t is given the initial valug00. .

The MKL language in itself does not know about the concepts of derivatives, ini-
tial values, and equations. These are all defined in a program or model. The following
definitions are a selection from the definitions given in the MKL standard library file
nodel i ng. nkl (See Appendix D.2 for a full listing). The type definition

type Egs

defines a nevpseudaype calledeqs. We call it a pseudo type because there is nothing
on the right hand side of the type definition, i.e., there are no constructor or alias defined
for pseudo types. Itis only used for type checking models. Because models have model
type, we need to define a model typekafs.

type Equati ons = <Eqs>

The intuition is thatEquat i ons is the type of system of equations (one or more equa-
tions). This is also the standard return type from a model abstraction, i.e., the result of a
model instantiation is an equation system (compare the electrical and mechanical models
described in Chapter 8).

The next four lines lists the constructs for defining an equation system.

let Eq : <Real -> Real -> Egs>

| et EquationSysNode : <Egs -> Egs -> Eqs>

let (=) : <Real -> Real -> Egs> = Eq

let (;) : <Egs -> Egqs -> Egqs> = Equati onSysNode

The first definition defines an unknown called which is of function model type. The
function takes two arguments of tyfeal as input and returns an equation system.
The second unknown is a composition operator for the equation system. An equation
system will internally be stored as a tree of equations, usindstheat i onSysNode
as the nodes in the tree. The leaves will be the equations. Note how the types define the
relationships.

The last two lines define prefix and infix operators for the equatiand composition
; operators for creating systems of equations. These infix operators are also what is used
when defining models.

The derivative operatater is defined as follows:

let der : <Real -> Real >

i.e., itis an unknown function takingReal as inputand returnBeal . Sometimes it is
convenient to use the independent variahlee explicitly in the model. For example, in
the previous chapter, we defined mo8eheVol t age, which uses théi e variable.
Time is also an unknown and defined as follows:

let time : <Real >
Finally, we define how a model can be given initial values:

let Init : <Real -> Real -> Eqs>
let InitCGuess : <Real -> Real -> Eqs>

9.2 Intensional Analysis of Models 133

Thefirstl ni t constructor is intended to define an initial condition, where the user states
that it must be initialized to this value (i.é.j xed = true in Modelica). The second
constructott ni t Guess should be used when the initial value is only a guess value, i.e.,
as starting point for the solver to search for a consistent initial value.

The first thing to notice about all these definitions is that they define new unknowns.
Hence, the concept of unknown has a very broad use in MKL. Itis used both for modeling
unknowns in the ordinary mathematical sense in equations, but also used as a constructor
for expressions. Note also that the actual semantics of the meaning of these definitions
are not defined here, but is defined by the analysis functions that inspects the model.

Now, let us analyze the model. Our first example task is to count the number of
equations and the number of unknowns that an instance of a model contains.

Starting with counting the number of unknowns, we need to count the number of
unique unknowns, not the number of times unknowns appear in equations. We create a
type alias for the set of unknowns:

type UkSet = (Set <Real >)

Our task is now to define a function which takes a system of equations dEtypet i ons
as input and return a value of typk Set :

| et unknowns eqs: Equations -> WUkSet =
let get e:<> -> acc: UkSet -> UkSet =
match e with
| el e2 -> get e2 (get el acc)
| "time -> acc
| uk:<Real> -> Set.add e acc
| _ -> acc
in get eqs (Set.enpty)

The functionunknowns traverses the model using model application patterns. Each
time it finds an unknown, the matching valegwhich in this case is the unknown of type
<Real > is added to the set. Because it is a set, there are no duplications of elements.
There are two new observations to be made in the example.

The first one is the pattern case withi ne. The pattern syntake is a syntactic
sugar for matching against an expression. Hence, the line’withre is equivalent to
the following line

| e when e == tinme -> acc

The rationale for having thiei me case is that i e is also defined to be an unknown of
type<Real >. Because we do not want to include the independent varidlie in the
set of unknowns, it is excluded by the match case.

The second observation in the example is that the first parametéheget function
has type<>. Recall that this was defined to be t#veymodel type, which has the meaning
that it is type consistent with all other model types. For exampleg#tefunction, can
be applied to any argument, as long as it is a model type. This introduces dynamic types
of models within the statically typed language. The approach is inspired by Atadi
al’s [1] work on dynamic typing in statically typed languages, as well as the work on
gradual typing by Siek and Taha [132, 133]. The intuition of the type consistency relation
is that a type<> is type consistent witk> or <7">, for any typeT’. A type<T}> is type

134 9 Intensional Analysis of Models

consistent with another typel,> iff 77 and T, are type consistent. A formalization of
this type consistency relation will be given in Chapter 10.

The number of unknowns can then be computed by taking the size of the unknown
set:

| et noUnknowns egs: Equations -> Int =
Set.size (unknowns eqs)

The computation of the number of equations is more direct:

| et noEquati ons eqs: Equations -> Int =
match eqs with
| el ; e2 -> (noEquations el) + (noEquations e2)
| el =e2 ->1
| _->0

In this function we are not traversing any model application, we are only moving down in
the tree of equations. By also matching on the equation using infix notation, we exclude
all other relations that have typdEqs >, e.g.,|I ni t -equations.

By supplying thd_ot kaVol t er r a model as argument to both of theUnknowns
andnoEquat i ons functions we get the result 2 for both the number of unknowns and
the number of equations.

Are these functions for calculating the number of unknowns and the number of equa-
tions only valid for such small example modelslast kaVol t er r a? No, they can ac-
tually handle arbitrary models, as long as the model is defined using the same primitives
for equations etc. By calling these functions on the elaborated variant dkthieSy s
model described in the previous chapter, we get the resuls&s equations and 586
unknowns, which are the expected results.

The second and last example in this section for illustrating the idea of intensional
analysis of models is to define a function that extracts a mapping between unknowns and
their defined initial values. We start by defining a type alias for an initial value mapping
between unknowns and initial values:

type InitVal Map = (<Real > => Real)
The function for extracting the initial values are defined as follows:

| et initValues eqgs: Equations -> InitVal Map =
| et get eqs:Equations -> acc:InitValMap -> InitVal Map =
match eqs with
| el ; e2 -> get e2 (get el acc)
| Init x (val v:Real) -> Map.add x v acc
| _ -> acc
in get eqs (Map.enpty)

The local functionget takes as its second argument an accumulator map, which is a
mapping that will accumulate a binding each time tme t expression is matched. The
function definition is straightforward and should be self describing. Also note that we are
using a nested pattern for thai t case, from which the embedded vaiuef the model
value is extracted.

9.3 Chapter Summary and Conclusions 135

9.3 Chapter Summary and Conclusions

In this chapter we gave a short introduction to the ideas of intensional analysis of models
in MKL. We will in both Chapter 11 and 12 give larger examples for showing the approach
of intensional analysis of models.

We showed in a few examples that the language is expressive for traversing the model
structure. This expressiveness is mainly due to the flexibility of having dynamic types for
models, i.e., that a type of a model does not have to be specific, it cosld.be

Regarding language safety, the model type concept in MKL requires that types must
be used when modeling. Hence, the MKL interpreter can type check and report errors in
models, even if the constructs are user defined. This enables early and explicit feedback of
modeling errors. For example, if the user tries to insert an equation inside an expression,
e.g.(3. = 2.) +. 4. thetype checker will report an error. Hence, at the modeling
level, the type requirements are strict. However, for analyzing the model, we have favored
expressiveness.

136 9 Intensional Analysis of Models

10

Semantics of MKL

E have in previous chapters informally described the syntax and semantics of MKL.
In this chapter we formalize both the static and the dynamic semantics for a core
of the MKL language.
We present three different languages. The languagés the source language corre-
sponding to a core of MKL. An expressioni” can be lifted to an intermediate language
77, meaning that selected expressions are lifted into models. The reason for model lifting
is, as explained in the previous chapter, to create data structures of models that can later
be inspected and analyzed. The langusigecan be used for evaluation, but is not techni-
cally sufficient for proving type safety. Hence, we define a second intermediate language
Ao Where type casts are inserted. We prove soundness of the translation between the
intermediate languages, the usual progress and preservation lemm&3, fand finally
type safety for*>. The chapter is structured as follows:

e \We describe the abstract syntax #6r and\;” respectively (Section 10.1).

e \We state the type system far~, rules for lifting expressions to models, as well as
a type consistency relation used for comparing types. (Section 10.2).

We prove soundness of model lifting and cast insertion, as well as giving a type
system and operational dynamic small-step semanticsfpr (Section 10.3).

We prove type safety fok=> (Section 10.4).

e Finally, we discuss different extensions to the core languag€Section 10.5).

10.1 Syntax

Consider the abstract syntax faF”> that is summarized in Figure 10.1. The meta-
variablesr andy range overX, a countable set of names. The meta-variablanges

137

138 10 Semantics of MKL

Variables z,y € X
Unknowns uel
Constants ceC
Expressions e = x| Ax:Tel|ee|c|
u:t |v(r)|e@e|val e:7|decon(e,d,e,e)
Deconstruct patterns! w= uk:7|xzQz|val z:7
Values v n= Ar:T.e|c|u:T|v@Qu|val viT
Ground Types vyeG
Types T n= oy T =T <r> <>

Figure 10.1: Abstract syntax foh™> and\;>

over the set of expressiogpr andr ranges over the set of typdgpes. We use sub-
scripts for denoting different expressions or types, egandes represent two different
expressions.

The first four expressions are standard. The expressi®a free variable and lambda
abstractiom\z: T.e binds variable: of typer in e. We use the lambda notation here, which
has the same meaning as MKL's concrete syntax for anonymous functions that is defined
with thef un keyword. The expressiony es is application and € C a constant. The
set of constant€ is the union of the set of boolean valugtsr ue, f al se}, the set of
integers, the set of reals (represented as floating-point values), the set of strings, and the
set of primitive functions.

The next five expressions are new for°. The aim of the language is to be able
to express mathematical models and to inspect a models’ structure. Hence, the concept
of unknownsis central. The first expressian: 7 is an unknownu tagged with type
7. The setU is defined as the set of all unknowns. Unlike e.g., logic variables in logic
programming languages, unknowns in MKL cannot be bound to values. Instead, they are
used to build up the data structure of a model that can be deconstructed at a later stage.

To simplify A*> compared to MKL, we define an expressigrr) (pronounced “new”),
which creates an unknown expression<r> when evaluated. In MKL, unknowns are
constructed using et -expressions of the formet «: 7' i n e. Hence, we define the
following derived form:

let z: <r>ine= (\z:<r>.e)r(r) (10.1)

The expressiom Q e is a model application, which is typed as a function, but is never
applied. From a runtime perspective a model application can be seen as a tuple with two
elements.

The expressiomal e: 7 is a model value that embeds the expressiohtyper. We
call this a modelaluebecause must be closed and is evaluated to a value before it can
be extracted fronval e:7.

The expressiomlecon(es, d, e, e3) is a deconstructor of models. The value after
evaluatinge; is the value to be deconstructed and matched against the deconstruction
patternd. We choose the letteffor patterns instead gfto avoid confusion with patterns

10.2 Type System and Model Lifting 139

in mat ch expressions. The expressiesnis returned on a successful match agdn a
unsuccessful match.

Deconstructor patterns can have the following shapks: for unknownsx @ z for
matching model application, andal 2 : 7 for matching model values. The variahlgs
a pattern variable anda type tad

The meta-variable ranges over the set dfalues, where Values C Expr?. Lambda
abstractions, constants, and unknowns are always values. The language is using weak
reduction with a call-by-value evaluation strategy and therefore variables are not values.
A model applicatiorw Qv is a value if its sub-expressions are values. A model value
expressiorval v:r is also defined to be a value, if its sub-expression is a value.

10.2 Type System and Model Lifting

In this section we describe the type system %67 and how expressions are lifted to
models, by translation td7”. We start by considering types and how they are compared.

Recall the syntax definition of types in Figure 10.1. There are two standard types and
two new types for this language. The meta-variapl@anges over all ground typés,
which includes boolean, integer type etc. The type 7 is the standard function (arrow)
type.

The two new typesir> and<> are bothmodel types The former is thespecific
model type stating that this model is of type The latter is called thany model type
because a value with that type can be any model. The intuition of the type system is
that it introduces dynamic typinfpr modelsin a statically typed functional language. To
deconstruct a model, the explicit deconstruct expressemon must be used.

A first attempt of defining a type system for model types would be to introduce a
subtyping relation between specific model types and any model types. In such a case,
type<> represents the top model type. The subtyping rules for such a system could be as
follows:

Subtyping rules <7
T <! To T3 <:!T1 To <:T4
v<iv <7T> <1 <> <71> <! <T9> T1 — T2 <!T3 — T4

A type system would then include the usual rule of subsumption:

IF'btern m1<:m
I'tFen

INote that deconstructor patterns are not nested for the reason of making the core language as simple as
possible. Howevemmat ch-expressions in full MKL can contain nested patterns. Thesiech-expressions
are then translated during pattern compilation to primitives for deconstructing values,defoaa is used for
deconstructing models.

2In this chapter, we only define an operational semantics\fgr,. The languages=> and A5 are only
used as translation steps for proving type safety. Consequently, values are strictly not necessary to define at this
stage. However, we define a big-step semantica\forin Appendix C that motivates the inclusion of values.

140 10 Semantics of MKL

Now, assume we have a functign <l nt > — <l nt > and a constant: <I nt >. Then,
an expression

(Ax:<>.2)c
has type<> in such a subtyping system. However, an expression
(Az:<>.fx)e

is not typeable becausehas type<> which is a supertype and not a subtype<bit >,

which is the functiorf’s argument’s type. We argue that this typesystem is too restrictive
and does not give the flexibility of dynamic typing of models. Instead, we choose to use
a more flexible approach wittype consistency

10.2.1 Type Consistency

We adopt the idea of replacing type equality in type checking rules with the type consis-
tency relation~. This idea was pioneered by Siek and Taha [132, 133] in the context of
gradual typing. The intuition of the consistency relation in our language is that ground
types shall be compared with equality, while the tygreis consistent with botkr> and

<> for some typer. For example:

<Int>~<> <l nt - >Real > ~ <I nt - >Real >
<> ~ <Bool - >Real > <Real >- >Real ~ <>->Real
Int £ <> Real - ><> ;4 <>- >Reall Real o Bool

Note the difference from gradual typing [133] that the typeis only consistent with
othermodel typesnot with any other type.
Before we define type consistency, we defimestrictionoperator as follows:

Restriction 7
<T>||<> = <>
<7—1>H<72> = <T1 HT2 >
T11 — T12 HT21*>T22 = 11 ”7'21_) T12 HT22
7-1”7_2 = 1 if T17é<7'3> and 7'17&7'11—>7'12

for somers, 711, andro

We can now define type consistency:

Definition 10.2.1 (Type Consistency).

Two typesr; andr, are consistent, writtery ~ 72 iff 71 ||,= 72 ||, -
Proposition 10.1 (Properties of~)

The restriction operator has the following basic properties:

(a) ~ is reflexive.

10.2 Type System and Model Lifting 141

(b) ~ is symmetric.
(c) ~ is not transitive. For example
<l nt > ~ <>and<> ~ <Real > but<| nt > «£ <Real >.

(d) 71 ~ 7 iff <7> ~ <7p>.

(e) If<>~ rthent = <>or3r'.7 = <7r'>.
(f) If <>~ 7and7 ~ 7/ then<> ~ 7/,

(9) If 7 ~ <7'>thent ~ <>,

Note that property (e) is a compact way to test if a type is a model type (either a specific
or an any model type).

10.2.2 Type System

Before we explain the type system for> we define the typing environment as follows:

Definition 10.2.2 (Typing Environment). The typing environmentis a partial function
I' : X — Types, where the domain is the set of variable names and the co-domain the set
of types.

Syntactically, the typing environment will also be handled with set notationse.g..€
I'is equivalent td"(z) = 7. However, Definition 10.2.2 states that variable names in the
environment are always distinct.

We use the notatiolt, z: 7 to extend environmerit with a new bindingz: 7. If a
binding of z exists inI", the new binding replaces the old one. We define the domain of a
typing relation as follows:

Definition 10.2.3. dom(I") ={z |z :7 €T}

We also define the subset relation between typing environments:

Definition 10.2.4. T C I =Var.I'(z) = 7 implies ' (z) = 7

The type system fok=> is defined by a four-placeodel lifting relation
I Fre~eé:r

wheree is an expression ih*>, ¢’ an expression il\;”, 7 the resulting type, and’
the typing environment. The model lifting relation is inductively defined using a set of
inference rules given in Figure 10.2 on page 154

Definition 10.2.5 (Well typed expression il\<>). An expressiore of language*” is
well typed (typable) in typing environmeftif there exitse’ andr, such thal® +/, e ~
e:T.

3To make it easier to compare the different intermediate languages’ semantics, we list all the rules at the end
of the chapter.

142 10 Semantics of MKL

Language*~ is a explicitly typed language and the model lifting can therefore be per-
formed in a direct bottom up manner. Input to such a function would be an empty typing
environment and expressien and the output expressien whose type is-.

We now give an overview of the translation rules for the model lifting relation. We first
consider the rules that are not lifting any expression, i.e., where the type of the expression
is not changed during translation.

The rules (L-VAR) for variables and (L-ABS) for lambda abstractions are standard
and similar to the simply-typed lambda calculus.

The rule (L-CONST) assumes a functidn: C — T'ypes that applied to a constant
returns the constant’s type. We assume thatAhinction cannot return a model type
and therefore give the following assumption:

Assumption Al (A-types).
If A(c) = 7 thent € G or there existsy andr, such thatr = 74 — 7.

Now, consider the following examples:

(u:<Int —1Int>) :<Int —Int> (10.2)

(val 5:Int) :<Int> (10.3)

(u:<Int - Int>)@(val 5:Int) :<Int> (10.4)
(Az:<>.z) (val 5:1nt) : <> (10.5)

(Az:<I nt>.x) (val 5:Int) :<Int> (10.6)
(u:<>)@(val 5:1nt) : <> (10.7)

v(lnt) :<Int> (10.8)

(10.9)

In the first example, we see that an unknown tagged with a specific model type is of the
same type as the type tag (type rule (L-UK)). Also, the premiise- 1, of (L-UK) makes
sure that unknowns are always tagged with only model types, i.e., unknown expressions
are always models.

Example (10.3) shows the use of type rule (L-VAL). The type of the embedded value
5 has typel nt and the val expression has tygént >. The intuition is that a model
value expressions embed arbitrary expressiwith type 7 with the result thaval e:7
is of type<7>. We say that expressianis “lifted” to be of model type. The model value
is similar to values of typ®ynamic developed by Abadgt. al.[1]. That work inspired
our design, but there are several differences, including the procedure for type checking.

In example (10.4), a model application applies an unknown to a model value. We
can see that the resulting model type is specific, and follows normal conventions of type
checking of applications, with the exception that all expressions are models. The example
demonstrates how the rule (L-MODAPP2) is used for deriving the type of the expression.
Note also that expression (10.4) is a value, i.e., the model application will never actually
be applied because there is no beta reduction for model applications.

So far all model types have been specific. However, in example (10.5), we see an or-
dinary function application, where the lambda binding variable of the lambda expression
is given any model type>. Even though the argument has specific model et >,

10.2 Type System and Model Lifting 143

the resulting type of the expressionds. However, if the lambda’s binding variable has
a specific model type (example (10.6)), the specific type is preserved. In both cases, rule

P"L€1W€/11711—>7'12 FI—LGQWG/QITQ T11 ~ T2

— (L-APP)
r I—L €1 €2 v €1 €9:T12

was used. Note how the type consistency premigse- 7 is used instead of type equiva-
lence between the type of the argument and the type of the abstraction’s formal parameter.

In the example (10.7), we see how rule (L-MODAPP1) is used when the type of the
left hand side’s expression<s>. Finally, in (10.8) we see how thgl nt) constructor of
unknowns has a typlent and creates unknown expressions of model typet >. That
is, when unknowns are created, they must be of a specific model type, which conform to
the presence of premise> ~ 7 of rule (L-UK).

The last three type rules are applicable for type checkidg@on expression, i.e.,
the expression for deconstructing models.

The rule (L-DECON-UK) checks using premises ~ 7; that the type of; is a
model. Premise, ~ 73 makes sure that the two alternative return expressigraad
e3 are consistent with each other. The last premsise~ 7, checks that the type of the
pattern tag type is a model. The restriction operaidf., is used to define the result type.
Note that the restriction operator itself is not symmetric, but because of presnises
we have directly from the definition ef thatr, ||,= 75 ||,-

The rule (L-DECON-APP) is applicable when the deconstructor pattern is a model
application. Note that bindings far; andx, are added to the typing environment when
deriving the type foe,. Note also that the type that andz, are bound to is> because
the deconstruction only knows that it was a model application that was deconstructed. We
know nothing about the specific types of the sub-expressions, just that they must be of
model type.

The last rule (L-DECON-VAL) is applicable when the deconstructor pattern is a
model value. The pattern’s tagged typeis bound tox in the typing environment when
deriving the result foe,. Note thatr, is not checked for being a model type because the
embedded expression in a model value can be any type (typically not a model type).

10.2.3 Model Lifting

We saw in example (10.5) that a function can be applied to a value oklype>. The
function’s formal parameter can be of both the specific model &lp#g > or of the any
model type<>. However, in the application case, if there is a mismatch between expres-
sions of model type and expressions that are not models, there is an essential mechanism
for lifting non-models into models.

The purpose of this term translation is to lift expressions to model types when needed.
For example, consider an expression+ 3 wherex is of a model type. During eval-
uationx can potentially be replaced by an unknown, which will make the computation
fail. The purpose is to lift such terms, so that theperator and the second operandre
lifted to become models. This is done by insertirj expressions. The actual model
lifting is performed by the five rules (L-APPM1) to (L-APPM2)

144 10 Semantics of MKL

The rule (L-APPM1) type checks an application expression. flieis applicable
whenr, is a model type and;; is not. This is checked by the two premises;> ~ 7
andry; o4 7e. By encapsulating;; into a model type, the consistency check verifies
thatr, is either<> or a specific model that is consistent with;; >. The second premise
711 % 7o makes sure that the rule is exclusive with respect to rule (L-APP). If the premises
hold, the resulting expressiatj is lifted using aval -expression. Note also that the
application is translated to a model application.

The rules (L-APPM2) and (L-APPM3) consider the application cases whénde-
rived to be of type<>. The rule (L-APPM2) is applicable if; is a model type (either
any model type or specific). In such a case, the application is transformed to a model
application. The rule (L-APPM3) is applicablesf is not a model type. In such a case
e} is lifted to become a model. In both of these rules, the resulting tyge.is

The rules (L-APPM4) and (L-APPM5) are applicable wihgtris derived to be of type
<7 — 712>. (L-APP4) is applicable if» is a model type. If so, the resulting term is
transformed to a model application. Note also that the consistency checking makes sure
that the specific types are consistentyifvas a specific model type. Rule (L-APPM5) is
applicable ifry; ~ 7 and<ry1> # 7. In such a case we litt},.

10.3 Cast Insertion and Dynamic Semantics

For an interpreter or compiler implementation, the langugges typically the language
that should be used for execution. In our prototype implementation (explained in Chap-
ter 12) an extended version of this core language is used for evaluation. The big-step
semantics of\7” for implementing such an interpreter is given in Appendix C. How-
ever, in this section we are interested in reasoning about properties of the language, and
in particular to prove type safety of the language. However, proving type safety directly
on \7” is technically not feasible, since the consistency relation in e.g., the rule (L-APP)
makes it not possible to prove Preservation (see Chapter 10.4 for the Preservation lemma).
Instead, we define @ast insertion relatigrwhich translates expressionsiy” into a lan-
guage called\7 .. In the latter language, the type consistency relation between types are
replaced with equality, making the proof possible.

In contrast to*> and\}”, which have the same syntaX;7. is updated as follows:

Intermediate Language\; eE N DAL
Expressions e 4= (r<71)e
Values of models w == w:r|vQu|val v:r
Valueswith casts ¢ == w]|(r < 71)¢
Values v ou= Ar:iTelcl|é

One new expressiofr, < 7)e for casts is defined, where the expressids cast from
source typer; to target typers. The intuition is that expressionis of typer; and the
whole cast expressiofr, < 11)e is of typers.

We define new syntax for values of different categories. Let the meta-variable
ranges oveMod Values, i.e., values of model types. Moreover, we define a meta-variable

10.3 Cast Insertion and Dynamic Semantics 145

£ that ranges oveCast Values. This separation of values into different syntactic cate-
gories is necessary for making the language deterministic, i.e., that not more than one
rule of the runtime semantics is applicable at the same time.

10.3.1 Cast Insertion

Cast insertion is defined by a four-placast insertion relation
I tee~eé:r

wheree is an expression in;”, ¢’ an expression i\j,., 7 the resulting type, andl
the typing environment. The cast insertion relation is inductively defined using a set of
inference rules given in Figure 10.3 on page 154.

When there is a model lifting translation for an expressigihe expression is well-
typed with regards to a type system fof”. Because we do not make use of a specific
type system of\7”, we omit its definition and instead state the soundness of translation
with regards to the cast insertion relation.

Lemma 10.1 (Model Lifting is Sound)
If ' k7, e~ €' :7then there exists a#l’ such thatl’ ¢ ¢’ ~ ¢e”:7.

Proof: By induction on a derivation of +, e ~» ¢’ : 7. All cases are straightforward
using the definition of type consistency. O

Let us now define the type system fiy,, by a three-placéyping relation
I'kFe:r

wheree is an expression in; ., 7 its type, and" the typing environment. The typing
relation is inductively defined in Figure 10.3 on page 155.
The aim of performing the cast insertion is to make it possible to prove type safety of
the language. There are three separate cases where we need to remove the consistency
relation to be able to prove the preservation lemma.

The first case is the existenceqf ~ = in rule (L-APP). Trying to prove preserva-
tion of A*> by induction on a derivation df +;, e ~ ¢’:7 will fail on the (L-APP) case.
Hence, the trick in the cast insertion is shown in the conclusion of rule:

P|—061W€I11711—>7'12 F'—CQ?QWG/QITQ T11 ~ T2

(C-APP)
' Foepeg~ el ({1 < m)eh):iTio

By castinge), from 72 to 711, the expressiofir;; < 7)€, has typer;;, eliminating the
need for the premise; ~ 7.

The second case where casts are needed is for the rules (L-DECON-UK), (L-DECON-
APP), and (L-DECON-VAL). All these three rules are treated in the same way in this case.
Therefore we will concentrate on the (L-DECON-UK) rule. The objective is to remove
the premiser, ~ 73 and instead have, = 73. Consider rule (T-DECON-UK) were
bothe, andes derive the same typs. Because, ~ 73 in (L-DECON-UK), we can in
(C-DECON-UK) cast both, andrs to 75 becauses = 73 || 7,-

146 10 Semantics of MKL

The third case involving casts is the result of the problem thatlel applications
can be of both specific model typgs> and<> for somer. If both model types exist,
we cannot prove progress for the (T-DECON-APP) case, because we cannot derive the
specific types for the sub-values of in (T-DECON-APP). The solution we use is to
assume that the types of the sub-expressions of a model application are abkvalys
such a case, we must have an inversion lemma, stating that the sub-expressions are of
type <>. Note that we therefore have only one rule for model applicatiokjih: (T-
MODAPP). One problem with proving soundness of cast insertion is that the-typest
be the same. Note that the resulting type of (C-MODAPP2)is> and not<>. The
trick in (C-MODAPP?2) is that we first cast each sub-expression of the model application
to <>, and then cast the whole model applicatiortg,>.

Finally, we prove the soundness of cast insertion:

Lemma 10.2 (Cast Insertion is Sound)
IfT Fce~ e :7thenl’ e :T.

Proof: By induction on a derivation dff ¢ e ~ ¢’: 7. The proof is straightforward,
where the case (C-MODAPP2) uses Proposition 10.1 (g). O

10.3.2 Dynamic Semantics

We define the dynamic semantics &f . using operational semantics wimall-step
style, pioneered by Plotkin [126]. The shape of the single-step relation is

e|U—¢€|U

where expression is reduced ta’ in one step, and/ andU’ are starting and ending

states for the store of unknowns. The meta-varidbl€ U ranges over a (potentially
empty) set of unknowns. Hence, the operational semantics inctadrgutational effects

in terms of new unknowns that are created during evaluation. However, the unknowns
cannot be assigned values and could be considered as symbols that can only be compared
using equality.

Consider now the small-step semantics, defined as a set of inference rules in Fig-
ure 10.5 on page 157. The first eight rules of relatidil/ — ¢’ | U’ are computation
rulesthat reduce an expression one step. The next seven rulesrageuence ruleshich
determine the used evaluation strategy; in this case call-by-value.

Application

The rule (E-APPABS) is the standard application ryberéduction). The value; is
substituted forz in e;. The notationz — w;]e; stands for standard capture-avoiding
substitution, where; is substituted for alli: that appear free in;. For completeness the
definitions of substitution and the free variable functiol (e) are given in Figure 10.6
on page 158.

This leads us to the following convention:

Convention 2. All expressions that differ only with respect to names of binding variables
are exchangeable in all contexts.

10.3 Cast Insertion and Dynamic Semantics 147

Hence, for example, expressioks:r.z and\y :7.y are exchangeable in all contexts. Our
language only evaluatedosedexpressions meaning that the substituted expression will
never contain free variables and therefore renaming is not needed to avoid capturing.

The second rule for application is (E-DELTA) whergis evaluated to a constaat
instead of a lambda. We use the standard notation ®function for abstracting the
computation of built-in operators, i.é.(c, v) returns the result of applyingto v.

The two congruence rules (E-APP1) and (E-APP2) are used for evaluating application
expressions. For an expressiares, the rule (E-APP1) is first used for evaluatingto a
value. Then, the rule (E-APP2) evaluatgdo a value. Finally, either rule (E-APPABS)
or (E-DELTA) apply.

Unknowns, Model Applications, and Model Values

There are three kinds of model expressions: unknawns model valuesval v:7, and
model application values, @ v, .

The computation rule (E-NEWUK) creates new unknowns when evaluated. The
premiseu ¢ U means that we pick a fresh unknownthat is not in the set/. The
returned state is augmented with the new unknown. Note that the resulting unknown
expression:: <7;> is “tagged” with the type<r; > from thev-expression.

Using the unknown binder for creating new unknowns intentionally introduces the
side effect that two expressions containirgt unknown binders do not evaluated to the
same value. This effect is by design, for example recallGhecui t model, where two
Resi st or components are created. TResi st or model is a function that contains
let unknown binders for e.g., the current through the component. These unknowns must
be distinct, which is performed by the effect in the rule (E-NEWUK).

Unknowns can be supplied as arguments to functions. However, because unknowns
are symbols that cannot be bound to a value, there is no applicatios redethat eval-
uatese; to unknownu and then performs the application. Insteathadel application
expressiore; @ e, is used to create a data structure. A model application expression can
from a untyped point of view be seen as a tuple holding two expressions, which are by
rules (E-MODAPP1) and (E-MODAPP?2) evaluated to a value.

The last kind of model expressionnsodel valueswrittenval e;:7. A model value
embeds an expressien and stores the type of e;. Its evaluation rule (E-MODVAL)
evaluatesg; until it becomes a value.

Deconstructing Models

The previous subsection describes how model expressions are created and evaluated to
values. The last two computation rules (E-DECON-T) and (E-DECON-F) are used for
deconstructingnodels, i.e., unknowns: 7, model valueval v:7, or model application
valuesv; @ v;.

Consider now the expression

(u:<Int — Int>)@(val 5:1nt) (10.10)

which has been evaluated to a value. Because an unknown of function type, the
expression cannot be evaluated further. However, it can be deconstructed using the ex-
pressiondecon(v, d, es, e3), which can be read as “match valuewith patternd. If it

148 10 Semantics of MKL

matches, evaluate and returnafter substitution of values for pattern variablesglinf it
does not match, evaluate and return the valuefar

Now, consider the congruence rule (E-DECON) in Figure 10.5. The rule evaluates
the first expression;. Whene; is a value, either reduction rule (E-DECON-T) or (E-
DECON-F) apply. The value;, the deconstructor pattedh and the expression, are in
both rules given to thenatchrelation. If the match is true, the rule (E-DECON-T) applies
andej, is returned. If the match is false, the rule (E-DECON-F) appliesegrisireturned.
Note that the axioms (M-UK), (M-MAPP), and (M-MVAL) of the match relation checks
the shape of the expression (that it is an unknown, model application, or a model value).
Moreover, for (M-UK) and (M-MVAL) it is also checked that the type tagis equal to
the type tag of the pattern.

Leteczampie denote the example expression given in (10.10). The following examples
show the basic idea of the model deconstructor.

decon(ecgampie, v @Qy,xz,val 1.1:Real) |U — u:<Int —Int>|U
decon(eczampie; UK:Real ,z,val 1.1:Real) |U — val 1.1:Real |U
decon(eczample, @y, y,val 1.1:Real) |U — val 5:Int |U
decon(val 5:Int,val z:Int,z,20)|U —5|U
JIU —1[U
U —2]U

decon(u:<Int — Int>uk:<Int —Int>1,2
decon(u:<Int — I nt> uk:<Real > 1,2

10.3.3 Casts

The previous rules describe the fundamental semantics pf There are also three
computation rules (E-CAST-ARROW), (E-CAST-GAMMA), and (E-CAST-MODEL), as

well as one congruence rule (E-CAST) that handle casts. The casts semantics shall not be
seen as a property of the language, but only an approach for enabling a type safety proof.
The rationale for this statement is that a cast expression is first evaluated to an expression
(19 < 11)v using (E-CAST), and then handled by the following rules:

e (E-CAST-ARROW) - the case is broken up into two separate casts, by introducing
a new lambda abstraction.

e (E-CAST-GAMMA) - the cast is thrown away.

e (E-CAST-MODEL) - casts surrounding a model value gets thrown away before
deconstructing a model.

Note that the resulting value can include casts, which is also defined as a value.

10.4 Type Safety

In this section we prove type safety by first proving the usual progress and preserva-
tion lemmas for the intermediate languadg,.. Type safety forA=> is then estab-
lished using the soundness of model lifting (Lemma 10.1) and soundness of cast insertion

10.4 Type Safety 149

(Lemma 10.2). The proof strategy for type safety that we usathasigins in the syn-
tactic soundness approach by Wright and Felleisen [151], but is now typically organized
in a different way. We are using an approach similar to Pierce [124].

We start by proving basic lemmas about the typing relation. First, we prove the inver-
sion of typing relation.

Lemma 10.3 (Inversion of Typing Relation)

1. fT' F z:7thenl'(z) = 7.

. T F (u:m):7thent = 1, and<> ~ 1.

IfT" = Az:71.ex:7 then there exists & such thatr = ; — = and

Iyz:m Fegim.

IfT F c:7thenA(c) = 7.

IfT Fv(m):7thent = <7y >.

IfT" F (val e;:7m):7thent = <n>andl’ Fej:my.

IfT" F ey eo:7 then there exists &7 suchthafl® + e;:71 — 7andl’ + ex:711.

IfT' Fe1@Qeq:7thent =<>andl’ Fej:<>andl F ep:<>.

IfT F (2 = 71)e;:Tthent = andl +e;:7m andm ~ 7.

10. IfT" Fdecon(ey,uk:74,e2,e3): 7 then there exists & such that
I' Fep:mpandl Fey:7andl’ Fes:Tand<> ~ 7 and<> ~ 74.

11. IfI" Fdecon(ey, z1 Qxg, €2, e3): 7 then there exists & such that
I' Fep:mandl',z1:<>,29:<> Feg:7andl Fez:7and<> ~ 1.

12. IfT" Fdecon(ey,val x:74,e9,e3):7 then there exists & such that
I' Fer:mmandl,z:my Fex:Tandll Feg:7and<> ~ 7.

w N

©oNo g

Proof: Immediate from the definition df ¢’: . O
The next lemmas tell us the shape of a value, given its type:

Lemma 10.4 (Canonical Forms)

1. fT" Fov:ythendece C.c=w.
2. IfT" Fv:m — mthen(Jze. (Az:71.€) = v) Or (Je.c = v).
3. IfT' Fwv:rand<> ~ 7then(3u. u:7 = v) or (I v1. 7 = <TI>A
val vi:m =w)or (Juvy va. 7=<> A v11Quy =) or I £AT <= 11)E = v.

Proof:
1. By induction on a derivation of the stateméht- v:~.
2. By induction on a derivation of the statemént- v: 7 — 7.
3. By induction on a derivation of the statemé&nt- v: 7. Case (T-CONST)
uses Assumption Al. O

We are now ready to state one of the main lemmas of the proofativatl-typed expres-
sion is either a value or we can take a step:

Lemma 10.5 (Progress)
If - e:7 thene € Values or for all U there existd/’ ande’ suchthae | U — ¢’ | U'.

150 10 Semantics of MKL

Proof: By induction on a derivation of e: 7. Case (T-VAR) cannot occur, sineeis
closed. In cases (T-UK), (T-ABS), and (T-CONSA E Values. Case (T-APP) uses the
Canonical Form Lemma number 2. Cases (T-VAL) and (T-MODAPP) are straightforward.

Case (T-CAST): By induction hypothesis, can either take a step or it is a value.

If it can take a step, rule (E-CAST) apply. If it is a value, we perform case analysis
on values. Ife; € CastValues, thene is a value. Ife; is a lambda, Inversion Lemma
number 3 is used and (E-CAST-ARROW) apply.elfis s constant, Inversion Lemma
number 4 together with Assumption Al gives two subcases where (E-CAST-ARROW)
and (E-CAST-GAMMA) applies respectively.

Cases (T-DECON-UK), (T-DECON-APP), and (T-DECON-VAL) are proven in the
same manner. By induction hypothesiscan either take a step or is a value. If it can
take a step, (E-DECON) applies. In case of a value, the Canonical Form Lemma number
3 gives four cases. W, € CastValues (E-CAST-MODEL) applies. In the other cases
(E-DECON-T) or (E-DECON-F) apply. O

Assumption A2 (9-typability).
If A(c) =71 — mandl’ - v:7y thenT F 6(c,v): 7.

Towards proving the Preservation Lemma, we need for the case (T-APP) a Substitution
Lemma that in turn needs an Environment Weakening Lemma.

Lemma 10.6 (Environment Weakening)
IfI" Fe:7andl C IV thenl” Fe:T.

Proof: Straightforward induction on a derivation Bfl- e: 7. O

Lemma 10.7 (Substitution)
IfT,y:7 Fe:randl ke :7' thenl' F [y +— e'le:T.

Proof: Straightforward induction on a derivation Bf - e: 7, where case (T-ABS) uses
the Environment Weakening Lemma. O

Lemma 10.8 (Preservation)
IfTI" Fe:rande |U — €' |U’ thenT Fe':7.

Proof: By induction on a derivation of' F e: 7. Cases (T-VAR), (T-UK), (T-ABS),

and (T-CONST) are vacuously true. Case (T-NEWUK) is straightforward. Case (T-
APP) uses the inversion lemma, substitution lemma, and Assumption A2. Case (T-
CAST) has three cases, where case (E-CAST-ARROW) uses the Environment Weakening
Lemma. Cases (T-DECON-UK), (T-DECON-APP), and (T-DECON-VAL) use the Inver-
sion Lemma. O

Theorem 10.1 (Type Safety oh<>)

If -1, e1 ~ eq: 7 then there exists ags such that-¢ es ~ e3:7 and (ifes | U3 —*
es | Uy thenk eq: 7 and 4 € Values or there existe; andU; such thate, | Uy —
es | Us)).

10.5 Extending the Core 151

Proof: By applying Lemma 10.1, soundness of model liftingi-toe; ~ e : 7 we have

Fo ea ~ ez:7 for somees. Also, by soundness of cast insertion (Lemma 10.2), we have
F es:7. Byinduction on aderivationof| U —* ¢’ | U’ we have two cases: In the base
case (RTC-REFL} = ¢’ and we directly have ¢’: 7. By applying Progresste ¢ : 7

we show that’ is a value or there existd’ andU"” suchthat’ | U’ — e” | U”. For case
(RTC-STEP) we have by induction hypothesig’ : 7. Also, by applying Preservation to
assumptiore’ | U" — ¢” | U”, we obtain- ¢” : 7. By applying Progress to ¢’ : 7 we
reach the conclusion. O

10.5 Extending the Core

In this section, we discuss some essential parts when extending the core of MKL with
other constructs.

10.5.1 Other Expressions and the Bot Type

We do not see that other expressions, sudhfasxpressions, the list constructor, tuples,

and built-in ADTs for Map and Set, give any extra concern regarding the extra complexity
of model types. No other expressions are lifted to models than the expressions explained
in the previous section.

One detail that can be elegantly handled using type consistency is the type for the
error expression, i.e., an expression that should terminate the program. We give an
error the typeBot . The problem is however how to type this when the type system
does not have subtyping. One solution is to use the consistency relation. If we extend the
restriction operator; ||, with a rule forBot we get the following extended definition:

Restriction (extended) 7|+
<T>||<> = <>
<m> ||<7'2> = <7 HT2 >
T11 — T12 HT21*>7'22 = T11 ”7'21_) T12 HT22
71 |, = 7 if 7 #<m>and 7 #7111 — 712
andr; # Bot

for somers, 711, andro

I
\‘

Bot ||,

Lemma 10.9 (Consistency of Bot)

Vr.(Bot ~ T andr ~ Bot)

Proof: By rule 5 of the definition of restriction (extended) we h&a ||, = 7 and by
rule 4 we haver ||got = 7. HenceBot ~ 7 by using Definition 10.2.1. Becauseis
symmetric, we have ~ Bot . O

Hence, all types are consistent wBot . It turns out that this approach also solves the
problem of specifying types explicitly for the empty list in a language without type vari-

152 10 Semantics of MKL

ables. We simply give the empty list typdot] . TypeBot cannot be defined explicitly
by the user because this would break the type system.

10.5.2 Pattern Matching

We have in previous chapters showed that pattern matching is an essential part of the
language. However, pattern matching usireg ch-expressions are not part of the core
language presented in this chapter. Insteatic h-expressions are defined usidgrived

forms meaning that there is a translation step between the concrete syntactic form of a
mat ch-expression and an expression in an intermediate language based on the semantics
presented in this chapter. This translation has not yet been formally defined for MKL.

10.5.3 Lifting and Binary Operators

One problem of symmetry appears when lifting binary operators that can be partially
applied, e.g.(+) oftypel nt -> Int -> Int.Forexample,in expression

let x:<Int>in

(v x) 3

sub-expressio(+) x is lifted to a model application becausés of model type. Hence,
((+) @x) applied to3 is also lifted. However, if the order of operands(t®) is
reversed

let x:<Int>in

((#) 3) x

expressior(+) 3 will not be lifted because the argumehis not of model type. Be-
cause operataf+) is in curried form,(+) can be partially applied t8. Hence, the
value of(+) 3 is embedded into a model value instead of being translated into a model
application.

Our first attempt to solve this problem of non-symmetry was to include special rules
for binary built-in operators in the model lifting relation, i.e., as part of the type system.
However, this resulted in a very complicated type system. Informally, our solution in the
implementation is instead to add an extra match ruleléaron where model values with
embedded partially applied binary operators can be deconstructed.

10.5.4 Equality

In the full MKL language, we have a built-in polymorphic equality operator. In the current
version of the language, we define equivalence of values with binary refatipmeaning
syntactic equality up to renaming of bound variablegpnversion). This is satisfying for
constant terms, tuples, unknowns etc. in an interpreted setting. The approach works for
lambda expressions, but the current prototype implementation gets very slow because the
environments of the closures are compared. Alpha-equivalence is handled by nameless
representation of the environment, i.e., we use de Bruijn-indices [46].

Type and translation rules for equality can be defined as follows:

10.6 Chapter Summary and Conclusions 153

Fhpep~elim Thpea~ehim <Sobm <>~m <>~ m

(L-EQUAL1)
T bpep==ey~ (val e :m ==¢)):Bool
I' g 61'\/“)6/1:7'1 I I—LGQWCIQZTQ <>~T1 <>747'2 T1 ~ <Tp> (L-EQUAL)
I' ey ::eQW(e’l ==val 65:7’2)2800'
I e~ e I bpex~ ey TL ~ To
(L-EQUAL3)

' bp e ==ey ~ €} == ¢€}:Bool

Hence, if one of the operands is of model type and the other one is not, the expression
that is not a model is lifted (rules (L-EQUAL1) and (L-EQUALZ2)). If both operands are
models or none of them, no lifting occurs (L-EQUAL3).

Note that in contrast to an application expression, the equality operator is never lifted
to become a model. If that would be the case, it could not be used to compare e.g.,
unknowns. An alternative would be to have more than one equality operator, one that
is lifted and one that is not. However, at the current stage, we do not see any reason to
introduce this.

10.6 Chapter Summary and Conclusions

We have in this chapter presented a formal semantics of an essential core of the MKL
language. We have tried to formulate our semantics with rigor by making all definitions
as clear as possible.

The choice of small-step semantics, to have several intermediate languages, and to
insert casts are all choices due to the type safety proof. Our type safety proof increases
our confidence of the language, but we would at the same time stress that it does not
guarantee correctness between the formal semantics and an implementation.

154 10 Semantics of MKL

TFre~ceé:r

P(z) =7 (L-VAR) =>~n (L-UK)
PFrz~2im1 D Fruirm~ (uim):m
Ie:m F ~ el Ae) =
AL el R (L-ABS) =7 consm)

I Fr Ax:Ti.es ~ Ax:Ti.eh:m — T I'Fpe~c:im1

L-NEWUK
I' Fp I/(T1)WV(71)3<7’1> ()

I Frel~elim
T Frval er:m ~ (val ef:m):<m>

(L-VAL)

r FLelwelliTll—?le r FL GQWGIQCTQ T11 ~ T2

(L-APP)
' Freies~ el eh:Tio

IbFrep~eéeiimin =72 D Fres~ehima <mi>~72 711 £ T2

; - (L-APPM1)

I' Freiex~ (val e1:711 — 7'12)@ €5 :<T12>

I'bFrei~ej:<> I Fre ehiry <>~
D Lo 2 (L-APPM2)

I' Fpere2 ~ e1@ey:<>

' Fpep~ehi<> T kre ehime <>l

Lll SR R Ak Lalk: (L-APPM3)
T k1 eies~ ef@(val eh:m):<>
I }_L €1 ~ 6’12<T11 — T12> T }—L € ~> 6/22’7'2 <TIL> ~ T (L APPM4)

I' Fr el e~ e|@Qeh:<Ti>

IDbkrer~el:i<mn = 72> T hpea~ehima Tii~Te <Ti1> b1

T b1 erex~ ef@(val eh:m):<rio>

(L-APPMS5)

I bFrei~el:<> I Fres~ehimo <>~y
I' Fr ej@Qey ~ ef@eh:<>

(L-MODAPP1)

I Fre ~eéej:<miy — 112> T Fres~ehim <mi>~To
T Frei@es~s ef@Qeh:<mio>

(L-MODAPP2)

I'Fre ~ei:m1 I'Fres~es:mm I bFpes~es:Ts
<>~T To ~ T3 <>~ Ty

I 1, decon(er,uk: 74, e2,e3) ~ decon(e], uk : 74, 5, €5): (T2 ||s)

(L-DECON-UK)

I'Fre ~éj:m D, 21:<>,22:<> Fr e~ ey
I' Fres~ e5:73 <>~ Ty ~ T3
! ! !
I' k1 decon(er,z1 @2, ez, e3) ~ decon(e}, z1 Qxa, es,e3): (12 ||=)

(L-DECON-APP)

I' Fre ~eéej:m T,x:74 b oes ~ €7
I Fres~ e5:T3 <>~ To ~ T3
I’ i1 decon(er,val z:74,e2,e3) ~ decon(ey,val z:74,eh,e5): (T2 [|rs)

(L-DECON-VAL)

Figure 10.2: Model lifting

10.6 Chapter Summary and Conclusions 155

F(ZL’) =T1 <>~T
(C-VAR) (C-UK)
' bex~aim I Fo (uimi) ~ (uimi):m
Tox:im + 5 Alc) =T
T T e (C-ABS) (©=mn (C-CONST)
I' Fe Ax:Ti.e2 ~ A\x:Ti.eh:T1 — T2 I'Fece~cecim
(C-NEWUK)

T Fev(n) ~ v(m):<mn>

I' Fcer~el:m
I Foval er:m ~ (val ef:m):<m>

(C-VAL)

I'kFcer~eéiim—72 I'Foea~ehim m1~T2

(C-APP)
T ke et en~ el ((Ti1 < T2)es):Tia

I'Foel~el:<> T Foea~ehim <>~
I Feoe1@es ~ 1@ (<> < m)ey: <>

(C-MODAPP1)

I'Focel~el:<m — 112> [Foea~ eyt <T11>~ T
ef = ((><=<m - me>)el) ey = (<>« m)ep

T Foe1@ep ~ (<T9> <= <>)(efQey) :<T12>

(C-MODAPP2)

I'Foei~ei:m1 T'lFoeas~ehima T Foes~ e
<>~T To ~ T3 <>~ Ty Ts = To ||_r3
"o_ / "o_ ’
ey = (T5 < T2)eq €3 = (15 < T3)€h

— (C-DECON-UK)

I' ¢ decon(er, Uk : 74, e2,e3) ~ decon(ey,uk:74,e5,e5): 75

I'Fcel~el:mn I, 21:<>,29:<> Fo e ~ eh: 7o
I e 63“6;’317’3 <>~T1 Ty ~ T3 T4 = T2 H7'3
" / 1 !/
ey = (T4 < T2)ey e3 = (T4 < T3)e3

(C-DECON-APP)
I' ko decon(er, 1 @Qxa, e2,e3) ~ decon(el, x1 Qxa,eh,e5) 74

I' Fcel~el:m D,2:74 Fc ea~ ehimo
I I—cegwengg <> ~T T2 ~ T3 Ts = T2 ”7'3
1" ! " ’
ey = (T5 < T2)ey e3 = (15 < T3)ex

(C-DECON-VAL)
I' o decon(er,val x:74,e2,e3) ~ decon(el,val x:74,e5,¢e4):75

Figure 10.3: Cast insertion

156 10 Semantics of MKL

I(z) =71 <> ~7
—F— (T-VAR —— X X (T-UK
ThFx:mn () IF(uim):im ()
Dyz:m Fea:m Alc) =1
T-ABS ———— (T-CONST
I' FAz:mi.e0:711 — T2 () I'ten ()
(T-NEWUK) [Fen (T-VAL)
I Fuo(n):<m> T F(val e1:11):<m>
I'Fei:mii — 72 I Fesim (T-APP)
I' + €1 €2:T12
I''Fep:<> I' Fep:<>
T-MODAPP
I' FeQey:<> ()
I'Fe:n TL ~ T2 (T-CAST)
I'F(m<mnei:m
I'ei:m I' Fes:im I' Fes:m <>~ <> ATy (T-DECON-UK)
I' Fdecon(ei,uk:74,e2,e3): 72
I' Fer: Iop:<>,20:<> Feg: I' Fes: <>~
€1:T1 , L1 , L2 €2:T2 €3:72 T1 (T-DECON-APP)
I' +decon(ei,z1 Qxa,e2,e3): 72
I' Fer: Tixima Fea: I' Fes: <>~
an LT T e SeRE T (T-DECON-VAL)
I' Fdecon(ei,val z:74,e2,€3):72

Figure 10.4: Type System foA57

10.6 Chapter Summary and Conclusions 157

Computation Rules e|U—¢€ | U

(Az:11.e1)v1 | U — [z +— vi]er |U (E-APPABS) ¢1 v1 | U — 6(c1,v1) | U (E-DELTA)

ug U (E-NEWUK)
v(m) | U — u:<m> | U U {u}
matcws, d, e, 5
ftwi,d, ez, ¢3) , (E-DECON-T)
decon(wi,d,ez,e3) |U — €5 | U
—matchwi, d, ez, 5
ftwi,d, ez, e2) (E-DECON-F)

decon(wi,d, ez, e3) | U — es | U
(M —>1m<m—1v |U— \x:m1.{m2 < 1) (vi{13 < 11)x) | U (E-CAST-ARROW)
(v<=)1 |U — v1 | U (E-CAST-GAMMA)

decon((rg = 7'1>§1,d7617€2) | U— decon(£17d7€17€2) | U (E-CAST-MODEL)

Congruence Rules e|U—¢€ | U

e1|U—e€l |U e |U — ey | U’
. — (E-APP1) _ (E-APP2)
etes|U—ejex|U vieg |U —wviep|U
er|U—¢e | U e |U — ey | U’
. — (E-MODAPP1) —_ (E-MODAPP2)
e1Qes |U — €1@Qex | U v1Qesy |U — v1Qey |U

er1|U—¢e | U

val e1:m |U — val ej:m | U’

(E-MODVAL)

er|U— e} | U

decon(ei,d, ez, e3) | U — decon(el, d, ez, e3) | U’

(E-DECON)

er|U— e} | U
(e = 1Yer | U — (r2 = 11)ey | U’
Match Rules ‘ matcKe1,d, ez, e3) ‘
matchu:i,uk:11,e1,e1) (M-UK)

(E-CAST)

matchv1 Qua, 21 Qx2, €1, (Ax1:<>Ax2:<>.1) v1 v2) (M-MAPP)

matchval vi:7i,val z:7i,e1, (Az:Ti.e1) v1) (M-MVAL)
e|lU —* e |U

Reflexive Transitive Closure

€|U—>*€I|Ul €I|U/—>6N|U”

elU —* €| U’ (RTC-REFL
| | () e|U—>*6”|U”

(RTC-STEP)

Figure 10.5: Small-step operational semantics igr..

158 10 Semantics of MKL

Free variables FV(e)
FV(z) = {«}
FV(Ax:T.e) = FV(e)\{z}
FV(e1 e2) = FV(e1) U FV(e2)
FV(c) = 0
FV(u:T) = 0
FV(v(r)) = 0
FV(el@eg) = FV(el) U FV(@Q)
FV(val e:T) = FV(e)
FV(decon(ei,d,e2,e3)) = FV(e1)UFV(e2) U FV(es)
Substitiution
[z e]x e
x— ely y ifx#y

Ay 7.z — ele if x #yandy ¢ FV(e)
[z eler [z +— elez
c

[

[z e]Ay:T.e1
[x — eler ea
[z — e]c
[— elu:T u:T
i v(r)

[[z — e]e1@ [z — e]es

[val [z eler:T

[decon([z — €le1, d, [z — €]es, [z — €]es)

2 eJu(r)
x — ele1@ey

z —elval er:7

x — e]decon(er, d, ez, e3)

Figure 10.6: Free variables and substitution.

11

Elaboration Semantics

N Chapter 2, we defined thelaborationphase as the translation from a model to a
hybrid DAE. In this chapter, we discuss the elaboration phase with focus on two main
areas:.connection semanti@ndextracting model informatiarThis chapter is organized
as follows:

e We give an overview of the different activities that are typically involved during
elaboration in an compiler for an EOO language. We explain briefly when type
checking is performed on MKL models and how the instance hierarchy of the model
is collapsed (Section 11.1).

We explain the connection semantics for handling acausal connections in MKL, as
well as discuss how the semantics relate to Modelica’s informal connection seman-
tics. The semantics are formally defined using a recursive functional definition.
This is followed by an executable specification where the semantics are also speci-
fied as MKL functions (Section 11.2).

We discuss the problem of extracting simulation results from a model, i.e., how to
specify which variables should be presented to a user. We suggest a solution to
the problem using the construct pfobesand discuss pros and cons compared to
usinghierarchy namegSection 11.3).

11.1 Overview of Elaboration

The process of elaboration, where a EOO model is translated into an equation system can
informally be described to perform at least the following three main activities:

e Type checking of modelsCheck that parameterized models conform to the type
rules of the language and that basic operations and function calls are type correct.

159

160 11 Elaboration Semantics

For example, a function having one argument cannot be appligga arguments
and a plus operator cannot have a string as its left operand and an integer as its right
operand, etc.

e Collapsing the instance hierarchpuring this activity, new unknowns and equa-
tions are created for sub-components of a model. For example, if a model contains
two resistordR1l andR2, whereR1 is parameterized with 10 ohm, aR with 50
ohm, two equations are created = 10 * i1 andu2 = 50 x i 2. More-
over, unknowns, such as the voltage drop over the components must be different
for the components. Hencel andu2 must be different unknowns.

e Connection semanticsAcausal ports contain flow and potential variables, where
the former must sum-to-zero at connection points and the latter must have the same
potential at the connection point. This activity generates equations and unknowns
to enable acausal modeling.

In Modelica, all these three activities are typically performed at compile time in a Model-
ica compiler. In the Modelica specification, it is not specified in which order the activities
should be performed. Commonly, the two first activities are performed together, while
the last one could be performed in a separate phase.

MKL separates these activities into distinct phases. These activities are performed at
different point in time during the process:

1. Type checkings performed at compile time by the MKL compiler (or before eval-
uation in an interpretive setting).

2. Collapsing the instance hierarcigperformed at runtime when executing the MKL
program.

3. Connection equation generatigngenerated at runtime by a user defined function
that performs intensional analysis (inspects) the equation system of the model.

We will now briefly discuss the first two activities and then give a detailed description of
the connection semantics in Section 11.2.

11.1.1 Type Checking of Models

Of the described activities in the elaboration process, only type checking is performed at
compile time (or before evaluation in the interpretive setting). Because EOO models in
MKL are ordinary functions defined in an MKL program, type checking of a model is the
same as type checking a program.

For example, recall theechsys model described in Chapter 8:

l et MechSys =
let rl:Rotational in
let r2:Rotational in
let r3:Electrical in
DCMot or r1;
Inertia 0.2 rl1 r2;
Fl exi bl eShaft 120 r2 r3

11.2 Connection Semantics 161

The type checker will report a type error for argumegton the last line saying that a
rotational node was expected, but an electrical node supplied. Note that we have in this
example changed the type of the definition of no@¢o beEl ectri cal .

This kind of type errors is caught by the MKL compiler, even if the DSL for the
mechatronic domain was defined as a library in MKL itself. We have specified and dis-
cussed the type system for performing these checks in Chapter 10.

Note that certain kinds of checks are currently not performed directly by the type
checker. One such example is constraint delta checking, as presented in Chapter 6. This
checking can of course be performed at the equation level using intensional analysis on
the model, but in such a case we loose the property of isolating and locating the source
of the error - one of the main benefits of the constraint delta approach. We see it as a
challenge and future work to incorporate such a checking at the kernel language level,
without being dependent on properties of the DSL.

11.1.2 Collapsing the Instance Hierarchy

A model abstraction in MKL is created using ordinary higher-order functions. Creating
an instance of a model means passing arguments to the model so that an equation system
can be generated. For example, the type signature fdkdké st or model is

Real -> Electrical -> Electrical -> Equations

Hence, by applyindResi st or to three arguments (the resistance instance and two elec-
trical nodes), the function will be computed and an equation system will be returned.
Consequently, the formal semantics for collapsing the instance hierarchy is defined by the
operational dynamic semantics described in Chapter 10.

11.2 Connection Semantics

The connection semantics, i.e., the ability of the EOO language to handle acausal con-
nections, is handled differently in different languages. We will in this section formalize
the semantics of generating correct equations and unknowns for MKL. This semantics is
different from the Modelica semantics in several aspects. However, we will see that they
both give the same semantic behaviour, i.e., that we can define the same kind of compo-
nents and that the generated equation systems give the same solution after simulation.

11.2.1 A Minimal Circuit in Modelica

Let us first give an intuition for the Modelica approach of describing connection seman-
tics. Figure 11.1 shows a graphical view of the circuit. The circuit contains a direct current
constant voltage sourd®C, a resistoR, and a ground. The figure shows a visualization

of unknowns and their location after elaborating the components with a Modelica com-
piler. Both the voltage source and the resistor have a positive conhpdfiited square)

and a negative connectar(unfilled). The ground only has a positive connector. Each
connector creates two variablésfor current ands for voltage. These are defined in the
connector class:

1Remember that in Modelica ports are called connectors

162 11 Elaboration Semantics

DC.p.i R.p.i
DC.p.v R.p.v
V=12 DCi.i _ R.i
DC.v R=200 R.v
DC.n.i R.n.i
DC.n.v R.n.v
e2
G.p.i
G G.p.v

Figure 11.1: A minimal electrical circuit modeled using Modelica. To the right of
each component the unknowns are stated using dot notationDE.qp, v is the
potential variable for the positive connector in i@ component.

connector Pin
Real v;
flow Real i;
end Pin;

We use the prefix notation for defining variables, as customary in Modelica. For example
unknownsR. p. v andR. p. i define the two unknowns in the positive pin of residtor
The four unknown®C. v,DC. i ,R. v, andR. v are defined by the base clagsoPi n

nodel TwoPin " Supercl ass of conponents”
Pin p, n;
Vol t age v;
Current i;
equation
vV = p.V -
0 =p.i +
] =
end TwoPi n;
This base class is also contributing 3 equations. The first one defines the voltage drop
over the component. The second one states that the cprrérih the positive connector
should be equal but with opposite sign compared to the current in the negative connector
p. n. The reason for the opposite sign is Modelica’s convention that connectors always
describe the positive direction of flow into the component. The last equiatienp. i
states that the currentin the circuit is the same as the current flowing into the circuit. The
TwoPi n class generates the following equations for the voltage source

DC.v = DC. p.v-DC. n.v;
0 = DC. p.i+DC. n.i;
DC.i = DC. p.i;

and for the resistor

Rv = Rp.v-R n.v;

11.2 Connection Semantics 163

0=Rp.i+tRn.i;

Ri =Rp.i;

Each of the models also contribute one specific equation describing the behavior of the
component. For example, in the resistor case it is Ohm law

nodel Resistor "ldeal electrical resistor”
ext ends TwoPi n;
paraneter Real R "Resistance";

equation
Rxi = v;

end Resi stor;

generating equation
200*R i = Rv;
Similarly the constant voltage source

nodel Const ant Vol t age "Source for constant voltage"
paraneter Real V "Value of constant voltage";
extends Interfaces. TwoPi n;

equation
v =V,

end Const ant Vol t age;

generates the equation
DC.v = 12;
Finally, the ground model

nodel Ground "G ound node"
Interfaces.Pin p;
equation
p.v = 0;
end G ound;

contributes with one equation after elaboration
Gp.v = 0;

We have so far 14 unknowns but only 9 equations. There are obviously 5 equations
missing because the number of equations and unknowns must match. In the top circuit
definition

nodel MniCircuit
Resi st or R(R=200);
Ground G
Const ant Vol t age DC(V=12);
equation
connect (DC. p, R p);
connect (G p, DC. n);
connect (DC. n, R n);
end MniCrcuit;

164 11 Elaboration Semantics

we have threeonnect -equations, from which we shall generate new equations. Ac-
cording to Kirchhoff's current law, the sum of current flowing into a node is equal to the
sum of current flowing out, i.e., the current should sum-to-zero. Because the connection
relationships between components are in Modelica given by boamyect -equations,
the compiler should first forrsonnection sets. Also, for each connector part of the set,
information should be provided if the connector is connected from the outside or the in-
side, calledbutsideconnectors anéhsideconnectors. In this simple case, all connectors
are inside connectors because all the component that are connected are located inside
circuitM ni Circui t.

We now have two connection sets, corresponding to connection eddesle2. The
firstconnect -equationconnect (DC. p, R. p) generates the s¢DC. p,R. p}, and
the second twaonnect -equations the seG p,DC. n,R n}. Note that the first set
are all connected to nodel and the second set to nod2. Note also that if there would
have been a fourtbonnect -equationconnect (G p, R n), the same connection set
should have been generated.

According to the language specification, equations shall be generated so that potential
variables (voltage) are equal. Hence, for a set with cardinality— 1 equations need to
be generated. In the first SEDC. p, R. p}, corresponding to nodel, the equation

R p.v = DC. p.v;
is generated, and for the second 88t p, DC. n, R. n}, the equations

G p.v = DC. n.v;
R n.v = DC.n.v;

are generated. Following Kirchhoff’s current law, the sum-to-zero equation foreibde
is

DC.p.i +tR p.i = 0;
and for nodes2
DC.n.i+Gp.i+R n.i = 0;

Note that all unknowns for the currents can have positive sign because Modelica defines
the direction of flow to always be positiveto the component.

11.2.2 A Minimal Circuit in MKL

Let us first summarize a number of observations from the Modelica example:

e Equations that are describing the behavior of a component, for example Ohm’s law
200«R. i = R v orthe definition of the constant volta@€. v = 12 relate to
the current flowingthroughthe component, or the voltage droperthe compo-
nent. The exception is the ground component, where the unknown of the connector
was explicitly accessed, i.e., the equat@rp. v = 0.

2|t is calledconnection setim the Modelica specification, but should probablydmanector setsHowever,
to be compliant with the Modelica specification, we still use the term connection set.

11.2 Connection Semantics 165

V=12 DC_i Re200l | |RL

Figure 11.2: A minimal electrical circuit visualized graphically. To the right of
each component the unknowns for a corresponding MKL model are stated. The
arrows surrounding the nodes indicate the direction of how the sum-to-zero equation
is computed.

e The unknown for voltage in connectors that are connectedR.g.,v andDC. p. v
always denote the same value and this value always correspond to a connection
node (e.gel), which in turn corresponds to a connection set.

e The number of sum-to-zero equations that are generated is equal to the number of
connection nodes in the circuit, assuming that all connectors are connected.

Let us now walk through the same mini circuit example using the MKL approach for
connections. Consider the following top level code for mddeti Model .

let MniCrcuit =
let el:Electrical in
let e2:Electrical in
Resi st or 200. el e2;
Constant Vol tage 12. el e2;
Ground e2

The first observation to be made is that we do not have any connect-equations. Instead,
we connect the components by supplying nodes to the component. A node, just like most
other constructs in MKL, is simply an unknown with a specific type. In the electrical
domain, nodes are defined with tyggect ri cal , which is defined in the standard
library fileel ectri cal . nkl .

type El ectrical Node
type Electrical = <El ectrical Node>

Hence, the typ&l ectri cal is atype alias for the node model type. Because
El ectri cal Node is a user defined type, it can be recognized using pattern matching
during intensional analysis of the model.

Models are, as previously discussed, defined as functions. For example, the model

166 11 Elaboration Semantics

let Resistor R Real -> p:Electrical -> n:Electrical -> Equations =
let i:Current in
let v:Voltage in
El ectrical Branch i v p n;
R+*. i =v

takes the resistance, as well as two electrical nodes as input. The goal of the elaboration
process is to get a set of equations, and because the return type of these models is the type
Equat i ons, applying the model to its arguments, including the nodes, is the same as
model instantiation. Note that this is possible because unknowns are first class and nodes
are unknowns.

Now, consider Figure 11.2. In this case, we have only 6 unknowns, each correspond-
ing to the current flow through the connector (e, i , R_i , andG_i) and thevoltage
drop over the component (ardC_v, R v, andG_v). We use the underscore notation
to make a distinction from the Modelica example. These unknowns are the unknowns
explicitly defined in theResi st or model, theConst ant Vol t age model

| et ConstantVoltage V:Real -> p:Electrical -> n:Electrical ->
Equations =
let i:Current in
let v:Voltage in
El ectricalBranch i v p n;
v =V

and theGr ound model

let Ground p:Electrical -> Equations =
let i:Current in
let v:Voltage in
El ectrical RefBranch i v p;
v = 0.

Contrary to the Modelica semantics, we have no connectors that define unknowns. The
ports, by contrast to Modelica’s connectors, are just normal formal parameters to which
unknowns can be passed, which are here representing nodes.

Recall now our earlier observation that all potential variables in a connection set cor-
responds to the same unknown and that each connection set corresponds to one node.
Hence, we give our first informal rule for the node elaboration

Rule 1 - Unknown potentials: for each node in the circuit, create an un-
known representing the potential in the node.

Following this informal rule on the nodesl ande2 in Figure 11.2, we generate two
more unknowns, denoted

el v
e2_v

The earlier observation also stated that we shall generate a sum-to-zero equation for each
node due to Kirchhoff’s current law . However, we must with great care choose signs
for the currents. This is our first use of the definitionsbofinches In both the voltage
source and in the resistor, we have a definitioftloéct r i cal Br anch. The intuition

11.2 Connection Semantics 167

of a branch is that it states the path of flow through a comporetatden two nodes. Itis
defined in the standard library fied ect ri cal . nkl :

I et Electrical Branch :
<Real -> Real -> Electrical Node -> El ectrical Node -> Eqs>

Hence, an electrical branch is also an unknown defining a function model type. Consider
again the definition insidResi st or . The first argument t&l ectri cal Branch is

the unknown current, the second argument the unknown voltage. The third argument is
the positive node and the fourth argument the negative node. Hence, by matching on the
branch, we can decide if the branch is pointing with its positive or negative side towards
a node. From this follows the third rule:

Rule 2 - Sum-to-zero equations:For each node: in the circuit, create a
sum-to-zero equation, such that the unknown flow variables for the branches
connected to node get a positive sign if the branch is pointing in the positive
direction to the node, and a negative sign if it is pointing in the negative
direction. For reference branches, the positive sign is always used.

In Figure 11.2, the direction of the branches are marked as arrows in the components.
Using this approach, we generate two sum-to-zero equations for the example:

DCi + Ri =0.
-.DCi -. Ri + Gi =0.

In the ground model, we have &h ect ri cal Ref Br anch, defined as follows

let Electrical RefBranch : <Real -> Real -> Electrical Node -> Eqgs>

The ref branch takes an unknown current and an unknown voltage as inputs, batenly
node. Such a node can be seen as branch for directly accessing the reference values of
node. In the case of the ground component, this unknown is reference in the sum-to-zero
equation, but not in any other equations.

We have now two potential unknowns for the noddsande2 and two sum-to-zero
equations. However, each of the components has two unknowns resulting in six unknowns
that do not have any related equation. The first three of the missing equations are already
defined explicitly in the model defining the components behavior. These are:

200. *. Ri =RV
Gv = 0.
DC v = 12.

Hence, we now have in total 8 unknowns and 5 equations. What equations are missing?
The equations defining the voltage drop over the component:

Rule 3 - Relative potential equations:For each branch in the circuit, create

an equation stating the voltage drop between the unknowns defined for the
connected nodes. For reference branches, state that the voltage drop is equal
to the potential of the connected node.

Following Rule 3, we get

168 11 Elaboration Semantics

Rv =elv-. e2_v
DCv = el v -. e2_v
Gv = e2. v

We now have 8 equation and 8 unknowns. Why did we get 8 equations while the
Modelica compiler generated 14 equations? First, in Modelica, several unknowns are
generated for the same potential variable, representing the same node. In this case, 4
unknowns were generated, instead of two that are needed in the MKL semantics, i.e., 2
more unknowns. Secondly, the current unknowns are both represented for the flow inside
the component as well as through the connectors in Modelica. In total, this is 4 more
unknowns and corresponding equations in Modelica. Note that the ground component
includes the two unknowns in both cases.

After this informal introduction, we are now ready to formalize the connection se-
mantics.

11.2.3 Formalization of the Connection Semantics

Let N be a finite set of nodes and € N denote a node element. LEtbe a finite set
of unknowns and: € U an unknown. A branch is a quadrugtes, w,,, n1,n2) € Bpin,
whereu is a flow unknowny,., a relative potential unknowm,; a first andn, a second
node connected to the branch. Uet,u,,,n1) € B,.; be a reference branch, where
uy is the flow unknownu,.,, a relative potential unknowm; a connected node. Set
By, is the set of binary branches aitl.; is a set of unary reference branches. Let
B = Byin U B,y denote a set of all branches. Let the p@airu,) € P denote the
potential unknown associated with nodeand letP be the set of such pairs. We define
an expression and a list of equationg’ with the grammar rules

ex=etele-e|0]|u
E:=(e=e)-Fle

where+ and- are plus and minus operatofsthe value zero, and an unknown. The
term(e=e) - E is the cons of an equation onto an equation tiss empty list.

Figure 11.3 defines the connection elaboration semantics as a set of recursive function
definitions. Each of the functions is categorized according to the informal rules described
in the previous section.

In Rule 1. unknown potentials are generated for each node. A funakpot is
defined, which takes a tuple as input, where the first eleiveistthe set of nodes and the
second elemertf a set of unknowns. The sEtis used for generating unigue unknowns.
The function returns a se®, i.e., a mappingn, u,) between the nodes and the new
unknowns representing potential values. The function is total when the guard’ is
interpreted as generating a new fresthat is not in the set.

In Rule 2, a list of sum-to-zero equations are generated. It consist of one main func-
tion sumzeroand one help functiosumexpr The functionsumzerotakes a tuple as
input, where the first eleme¥ is the set of nodes and the second elenigithe set of
branches. For each € N, the function creates the sum-to-zero expression using the
help functionsumexpr The first three cases of the body consider binary branches by
matching on the quadruple:s, u,p, n1,n2). Only nodes that are directly connected to

11.2 Connection Semantics 169

Rule 1 - Unknown potentials UKpo{ N, U)

0
ukpo(N — {n},U U {u}) U{(n,u)} if n € Nandu ¢ U

ukpot), U)
ukpo(N, U)

Rule 2 - Sum-to-zero equations sumzerdN, B)

sumzerdl), B) =c
sumzer¢N, B) = (sumexptn, B) =0) - sumzer¢N — {n}, B) ifneN

sumexptn, B)

sumexptn, B — {b}) + uy if (uy,urp,n1,n2) =band

n =ny andn # na
sumexptn, B — {b}) - uy if (uy,urp,n1,n2) =band

n # ny andn = n»
sumexptn, B U {b}) = ¢ sumexptn, B — {b}) if (wg,urp,n1,n2) =>band

((n # n1 andn # no) or

(n =ny andn = n2))

sumexptn, B — {b}) + uy if (uy,urp,n1) =bandn =n;

sumexptn, () 0

sumexptn, B — {b}) if (ug,urp,n1) =bandn # n;
Rule 3 - Relative potential equations relpot P, B)

relpo(P, () =€
(Urp =tup1 - up2) - relpof P, B — {b}) if (uy,urp,n1,n2) =b
and(ni, up1) € P
relpof{ P, B U {b}) = and(nsz, up2) € P
(urp =up1) - relpo{ P, B — {b}) if (up,urp,n1)="5
andni,up1) € P

Connection elaboration ‘ conelalfN, B, E,U) ‘

conelahN, B, E,U) = (E',U") if P = ukpotN,U)
E' = E & sumzer¢N, B) & relpot P, B)
U =UU{u| (n,u) € P}

Figure 11.3: Formalization of MKL's connection semantics.

the considered branch are added to the expression. The last two cases handles reference
branches in the same manner. Note th@expression is inserted at the end of the recur-

170 11 Elaboration Semantics

sion. This zero expression can easily be eliminated by alsodating unary minus in
the expression. However, it makes the definition less readable and is therefore avoided in
this formalization.

In Rule 3, we generate the relative potential equations. In the electrical domain this
corresponds to the voltage drop over a component. The funetipot takes a tuple as
argument where the first element is a Betonsisting of the tuplén, u,) € P, wheren
is a node and, a potential unknown associated with the node. For each branch, we pick
out the associated potential unknowns for the connected nodes. The list of equations is
generated recursively.

Finally, the last function definitiononelab takes a quadruple as argument. The first
elementN is the nodes of the model and the second eleni®tite branches. The third
elementF is a list of equations that already exist in the model, e.g., equations such as
Ohm’s law. The fourth element are the unknowns defined in the circuit, e.g., the current
flowing through a component or the voltage drop over a component. The function returns
a tuple consisting of the elaborated list of equations and all unknowns of the model. Note
that we are using the symbel for an infix left associated list append operator.

We define the following limitations on what can be considered valid input to the
conelabfunction.

Proposition 11.1 (Valid input for connection elaboration)
For a valid input quadruple (N,B,E,U) holds

1. If (ug, urp,n1,n2) € Bthen{uys,u,p,} C U and{ni,no} C N
2. If (uy, upp,m1) € Bthen{uy,u,p} CU andn, € N

Note that nodes that are not connected to a branch are allowed as input, but will result in
equations of fornt = 0, which should be discarded.

11.2.4 Composition, and Multiple States

We will now discuss the connection semantics for when parts of a model are used to con-
struct a new model. Consider Figure 11.4, which consists of three circuits. Figure 11.4a
shows a simple circuit calle@ r cui t A, where an inductor and a capacitor is connected

in parallel, which are in turn connected in series with a resistor. These three components
are composed into another model, illustrated in Figure 11.4c. The new model has two
ports (or connectors) to which the internal components are connected. Finally, in Fig-
ure 11.4b, we show a new model nant@d cui t Bwhere an instance of the new model

is created and then connected. HenCer cui t AandCi r cui t B models the exact
same circuit, but abstracted in different ways.

Elaborating with Modelica

When elaboratindCi r cui t A in Modelica, we get an equation-system containing 27
equations and 27 unknowns. However, when elaborating ci@uitui t B, we get 32
equations and 32 unknown. When we simulate the two circuits, we see that they get the
exact same simulation result. Why are then 5 more equations generat@d foui t B

11.2 Connection Semantics 171

(a) (b) (©)

eel eel

SC
[

ee2
i -

CircuitA CircuitB SubCircuit

Figure 11.4: lllustration how parts of a circuit can be composed into a new model
abstraction. Figure (a) shows the full circuit and Figure (c) shows how three of the
components are composed into a new model. Figure (b) shows how an instance of
the model in (c) is used. At the end, the models in Figure (a) and Figure (b) model
the same circuit.

thanCi r cui t A? The reason is that the abstracted model now contains two new connec-
tors, each contributing with two unknowns. The last new unknown is the voltage drop
over component M.

In G rcuit B, the Modelica connect semantics need to take into consideration if
connectors ar@side or outsideconnectors. The same connector can both be an inside
and outside connector, depending on if the current connection set are elaborated from the
inside or the outside of a component. WHheéinr cui t B is elaborated, it starts by first
elaborating its sub-components. When 8&component is elaborated, the connections
between the componer®sC, andL are elaborated. In the case of equations for potential
variables, there is no difference, e.g., the equation bet@&mpositive connector and
the resistor is

SC.p.v = SC.R p.v;

Similarly, between the resistd, the inductoiL and the capacito€, two equations are
generated to make the potential equal

SC. L.p.v SC. C. p.v;
SC. R n.v SC. C. p.v;

For the sum-to-zero equations, it is a bit different. First, consider equation
SC.C.p.i +SC.L.p.i +SC. R n.i = 0;

which is the sum-to-zero equation for the connection set between comp@@rss
SC. L, andSC. C. All the connected connectors are hémside connectors because the
connectors belong to components that are inside the model that is currently elaborated.

172 11 Elaboration Semantics

The opposite, amutsideconnector, is an connector that is connecting to the outside of
the model. Consider the following equation:

(-SC.p.i) + SCRp.i =0;

This is the sum-to-zero equation between compoB8€EX# positive connector (an outside
connector) and resist@C. R's positive connector (an inside connector). According to
the Modelica specification, outside connectors shall have negative sign. The reason for
this is to make the signs right when connecting the new component.

Elaborating with MKL

Now, let us conside€i r cui t Amodeled in MKL:

let CircuitA =
let eel:Electrical in
let ee2:Electrical in
let el:Electrical in
Resi stor 150. eel el;
Inductor 0.1 el ee2;
Capacitor 0.01 el ee2;
Si neVol t age 220. 50. eel ee2;
Ground ee2

When elaborating this model, we get 13 equations and 13 unknowns. This is approxi-
mately half of the 27 equations generated@rr cui t Ain Modelica. We simulate and
check that the both circuits give the same behavior. The reason for the differences is again
that MKL does not have unknowns in the ports.

Now, if we compose the three sub-components Resistor, Inductor, Capacitor into an-
other model

| et SubConponent p:Electrical -> n:Electrical =
let el:Electrical in
Resi stor 150. p el;
Inductor 0.1 el n;
Capacitor 0.01 el n

and then use this i@ r cui t Bwe have the following model:

let CircuitB =
let eel:Electrical in
let ee2:Electrical in
Si neVol t age 220. 50. eel ee2;
SubConponent eel ee2;
Ground ee2

When elaboratingi r cui t B we get 13 equations and 13 unknowns. Hence, for both
modelCi r cui t AandGi r cui t B, MKL gives 13 equations, but in the Modelica case,
Circui t Agave 27 equations ard r cui t B 32 equations. Why is nai r cui t B
generating more equations in the MKL case? Because the elaboration semantics of MKL
does not generate new equations when models are composed. The reason for this is as
follows:

11.2 Connection Semantics 173

Consider again model tt&ubConponent . The body of the model is almost exactly
the same as line 4-7 in mod@l r cui t A. The difference is only the name of the nodes.
When the modeBubConponent is instantiated inCi r cui t A, the nodesel and
ee2 are supplied to the function and then substituted into the bo@ubfConponent .
Hence, after collapsing the instance hierarchy of the model, and before connection elabo-
ration is performed, the mode® r cui t AandCi r cui t B are equivalent.

Models with Several States

In certain domains and for certain models the model should have different flow values on
different sides of the component. In Modelica this is implicitly solved because the con-
nectors have their own flow variables. However, because the corresponding MKL model
only has one flow variable for each branch, which is given byHhect r i cal Br anch,
it would perhaps be hard to model such domain models. Fortunately, this not the case.

A typical example when this occurs is when modeling rotational 1D mechanics. Ex-
ample models are inertia and ideal gear. Let us study the latter a bit closer. An ideal gear
can be modeled as follows, by following the conventions in the Modelica standard library:

| et ldeal Gear ratio:Real -> flangeA Rotational ->
flangeB: Rot ati onal -> Equations =
l et tauA Torque in
l et tauB: Torque in
let phiA Angle in
let phiB:Angle in
Rot at i onal Ref Branch t auA phi A fl angeA;
Rot at i onal Ref Branch tauB phi B fl angeB;
phi A = ratio *. phiB;
0. =ratio . tauA +. tauB

In an ideal gear, both the torque and the angle at each side should be different. The linear
relationship is given by the parameteat i o and the relation is modeled by the two last
equations. Instead of having one branch over the component, we define two reference
branches and thus generate unknowns for bothnge A andf | angeB. Recall the con-
nection semantics in Section 11.2.3. In the case of a reference branch in the mechanical
domain, the angleghi A andphi B, which are the potential variables, will be equal to

the connected node. Hengehi A andphi B will be the absolute angles férl angeA

andf | angeB. The flow variable in the reference case, i.e., the torq@esA andt auB
represent the flow at each side of the component.

11.2.5 Executable Specification

In MKL, intensional analysis of models can be used to inspect the equation system. Also,
new models can be created by synthesizing new models. Hence, we can transform a
model A into a modelB according to some transformation rules.

We will now demonstrate this principle by creating an executable specification of the
connection semantics. The elaboration semantics is defined in the standard library file
el abor ati on. nkl and can be found in Appendix D.7. The full executable specifica-
tion corresponding to the definition in Section 11.2.3 fits approximately into two and a

174 11 Elaboration Semantics

half page of source code. Hence, we would also like to demdadtrat the functional
style of transforming a model can be considered as an expressive alternative.

The implementation is pure functional and declarative with the exception of the gener-
ation of unknowns, which is part of the MKL semantics. There are also some differences
in this executable specification compared to the formal definition in Section 11.2.3. The
most important one is performance. Implementing the formal definition as defined in the
previous section is possible, but generates a very slow solution that does not scale. The
main reason is that for each node= N in the functionsumzerothe functionsumexpr
is called and then recursively applied for edch B. Hence, we can directly say that the
asymptotic lower bound i€(| V|| B|) which is not scalable for an executable solution.

We will now walk through the source code for the connection semantics function by
function. First, consider the header of the main function:

| et el aborateConnections isBranch: (<> -> Bool) ->
i sRef Branch: (<> -> Bool) ->
nodel : Equati ons ->
Equations =

The functionel abor at eConnect i ons takes as its first two arguments two predicate
functions, used to check if a certain branch is a branch or not. For example, when used in
the mechatronic domain, the first function that could be supplied is

I et isMechatronicBranch b:<> =
match b with
| *"Electrical Branch -> true
| " Rotational Branch -> true
| _ -> false

By separating out this predicate, the functelrabor at eConnect i ons can easily be
used for different domains. The third formal parameteri®del of typeEquati ons.
We know that a system of equations is a MKL model and that we therefore can inspect
this data. The return type is al&muat i ons, hence we define a model transformation,
where both the source and target models are of the same type.

The functiorel abor at eConnect i ons contains several local functions. Consider
the first helper function:

| et addNode node: Node -> nodenap: NodeMap -> NodeMap =
i f Map. nem node nodenap then nodenmap
el se let u:<Real> in Map.add node u nodenap
in
which uses type aliasés

type Node = <>
type Unknown = <>
type NodeMap = (Node => Unknown)

The functionaddNode takes a node as input and if it does not exist as a key in the node
map, it is added with a new fresh unknown of typiReal >. This function will be used
when looking up nodes in the model and then to create unknown potentials for that node

3Type aliases does not give any improved type checking, but makes the code more readable.

11.2 Connection Semantics 175

(recall Rule 1). The function also makes sure that if an unknpatential is already
created for the node, it will not create a new one.
The next function defines the generation of sum-to-zero expressions

| et sunexpr branches: BranchSet -> ExprMap =
| et worker branches: BranchLi st -> emap: Expr Map -> ExprMap =
mat ch branches with
| (bi v pn)::bs when isBranch b ->
let emapl = if Map.mem p enap
then Map.add p ((Map.find p emap) +. i) emap
else Map.add p i enmap in
l et emap2 = if Map.nemn enapl
then Map.add n ((Map.find n emapl) -. i) emapl
else Map.add n (-. i) emapl in
wor ker bs emap?2
| (bi v p)::bs when isRefBranch b ->
|l et emapl = if Map. nem p enap
then Map.add p ((Map.find p emap) +. i) emap
else Map.add p i enmap in
wor ker bs emapl
| [T -> emap
in worker (Set.tolList branches) (Map.enpty)
in
Five new type aliases are used in this function

type Expr = <>

type Branch = <>

type ExprMap = (Node => Expr)
type BranchSet = (Set Branch)
type BranchLi st = [Branch]

The functiorsunexpr takes a set of branches as input and returns a map where the key is
a node and the value is an expression. The local funeiiorker takes a list of branches
and the expression map (node to expression) and creates a new expression map. The func-
tion implementssumexprn Rule 2 for sum-expressions, i.e., it matches either a binary
branch (first match case) or a reference branch (second match case). Note that the model
functionb is here a pattern variable and the check that it is a branch is done i éhne
guard, by calling the predicate functios Br anch. The function sBr anch is a formal
parameter to the main functial abor at eConnect i ons. Note that this variable is
accessible becauseinexpr is a local function teel abor at eConnecti ons.

The pattern variable is the flow unknown and is the relative potential unknown.
We use the naming convention for the electrical domain here, but the elaboration function
is not specific to that domain. The last pattern varialpleendn are the positive and
negative nodes connected to the branch.

The main activity that the match cases do is to first check if an expression exists for
the node. If it exists, a new expression is created, where the current is added

Map.find p emap) +. i

in the case when the node is connected to the positive side of the branch, and subtracted

176 11 Elaboration Semantics

(Map.find n emapl) -. i

in the case when it is connected to the negative side of the branch. Note that because both
the value returned frorotMap. fi nd n emapl) and variabla are model types, this
whole expression will be a model type.

Note also that the insertion of new expressions is purely functional, i.e., we use the
ADT Map which implements a declarative map container. Insertion and lookup of values
for theMap ADT hasO(logn) complexity, where: is the number of elements in the map.

The actual generation of sum-to-zero equations is performed bsutheer o func-
tion:

| et sunzero m Equati ons -> branches: BranchSet -> Equations =
|l et worker elist:ExprList -> Equations =
match elist with
| (_,e)::es ->e = 0.; worker es
| [1 ->m
in worker (Map.toList (sunexpr branches))
in

The functionsunezer o callssunexpr , generates a list of expressions and then creates
sum-to-zero equations directly. An informal analysis gives the asymptotic upper bound
complexity forsunezer o to be O(|B| log|B|), where|B| is the number of branches.
The improvement, compared to the formal definition in Section 11.2.3 is that the function
suneer o only performs one pass over the branches and during this pass inserts and adds
elements to a map &(log |B|) time. We know that the size of the expression map re-
turned fromsunexpr is smaller or equal to the size of the branch set cdilednches,
because each step in the recursiosimexpr is at most adding one element. Hence,
the iteration over the expression listsmnezer o does not make the complexity worse.

The last local function for the connection elaboration is the fungiionent i al s:

| et potentials nodel:Equations -> (Equations, BranchSet) =
| et worker m Equations -> nodenap: NodeMap ->
branchset: BranchSet -> (<>, NodeMap, BranchSet) =
match mwith
| bi v pn whenisBranch b ->
| et nodemap2 = addNode n (addNode p nodemap) in
let eq = (v = (Map.find p nodenap2) -.
(Map. find n nodemap2)) in
(eq, nodemap2, Set. add m branchset)
| bi v p when isRefBranch b ->
| et nodemap2 = addNode p nodermap in
let eq = (v = (Map.find p nodenap2)) in
(eq, nodemap2, Set. add m branchset)
| el ; e2 ->
| et (elb, nodemapl, branchsetl) =
wor ker el nodemap branchset in
| et (e2b, nodemap2, branchset2) =
wor ker e2 nodemapl branchsetl in
(elb ; e2b, nodemmp2, branchset?2)
| _ -> (mnodenap, branchset)

11.3 Extracting Model Information 177

| et (nodel, ,branchset) =
wor ker nodel (Map.enpty) (Set.enpty)
in (nmodel, branchset)
In
The functionpot ent i al s generates both new potential unknowns for the nodes (Rule
1) and adds relative potential equations (Rule 3). The local funetimrker recur-
sively traverses the equation system (third case with pag#érn e2). The first two
match cases match a binary branches and reference branches respectively. The function
addNode is now used to add both the positive and the negative nodes to the node map
(described earlier). The values of this map are the new potential unknowns. The only
equations that reference the potential unknowns are the relative potential equations gen-
erated in the first two match cases, e.g., the line
let eq = (v = (Map.find p nodemap2) -.
(Map. find n nodenap2)) in

from the first match case. We create a new equation bound to the vagimblEhe new
equation includes the unknowns looked umiodenap2, which are associated to the
corresponding nodes.

The last part of functiorel abor at eConnect i ons makes use of the locally de-
fined functions described above:

| et (nodel 2, branchset2) = potentials nodel in
sunzero nodel 2 branchset 2

First, functionpot ent i al is applied to the model supplied to the main elaboration func-
tion. A transformed model is returned, which includes new relative potential equations
together with unknown potentials for the nodes. Functiohent i al s also returns the
branchset for the model. This set is then later used in funstiorzer o for generating

the sum-to-zero equations. Hence, only funcpaoi ent i al needs to traverse the equa-
tion system. The functiosunzer o adds the new sum-to-zero equations on top of the
equation system afodel 2 and returns the final system of equations.

11.3 Extracting Model Information

A mathematical model can be used for several different things. The application area
that we have discussed mostly in this thesis is for simulation. However, if a model after
elaboration consists of thousands of equations, there must be a strategy for how to extract
for example the simulation results of a particular variable, e.g., for the purpose of plotting.
We call this themodel information extraction problem

11.3.1 Hierarchy Naming vs. Probing

There are several approaches for solving the model information extraction problem, which
all have their pros and cons. We see two main alternatives for extracting information as
the result of using a model:

1. Hierarchy namingnhere all unknowns in the model have a unique textual name
that can be used for identifying the corresponding unknown.

178 11 Elaboration Semantics

2. Probingwith a language construct for “probing” information from particular un-
knowns in the model. The probes are added into the model.

The first approach, hierarchy naming, is used in, e.g., Modelica. For example, assume
that a main modeCi r cui t has as a sub-component a resistor component cilléd
resistor model has a variable calledwhich defines the voltage drop over the component.
Hence, when the model is elaborated into an equation system, the unknown for the voltage
drop has the nam€i rcuit. R v. Hence, Modelica tools, such as Dymola [45] or
MathModelica [91] support a tree browser view after simulation, where the user can click
on different variable names to inspect the simulation result.

The alternative approach, which we cplobingis when an element, a “probe”, is
added to the model, which indicates which unknown should be extracted. This could
be done both visually using a GUI or textually, by inserting a language statement or
expression. For example, MapleSim [90] is using this approach.

We see both pros and cons with both alternatives. With the hierarchy naming ap-
proach, each unknown has always a unique name that can be understood by a user. How-
ever, for large models with thousands of equations and several levels in the hierarchy, it
can become fairly hard to get an orientation by looking at variable names in a tree view.
The main problem with this approach is that the tree view for inspecting the variable
names is not the same view as the one for the source code because it is created according
to the instance hierarchy. However, the pros with this approach is that the model does
not need to be altered before simulation. Moreover, the decision of which variables that
should be inspected can be postponed to after the simulation.

The alternative of using probes forces the user to modify the model before simula-
tion. However, with good software tool support, this does not necessarily mean that it is
cumbersome for the user. A benefit with this solution is that the user has the same view
for both modeling and the variables that should be inspected. In the simplest case, probes
need to be inserted before simulation. However, if the model is compiled in a kind of
debug mode, it might be possible that these probes can be added after simulation, and
thus making use of the simulation result already available.

A major difference of the two approaches is hopenthe language’s internal form
should be to the user. To enable hierarchy naming, the names used in the model must be
preserved during simulation. Comparing to ordinary program languages and compilers,
this means that the model must be compiled in debug mode where symbol names are
stored. Moreover, when making use of anonymous functions, it is less clear how this can
be achieved because no names are available at modeling time. An analogy for probes and
programming is that probes can be seen as a way of creating traces in the model, i.e., to
decide in the model what information that should be printed out. Another difference is
their ability to handlevariable structured systeims., when the number of equations and
variables change over time. Obviously, this poses new challenges for model information
extraction because the set of unknowns cannot be decided upon compile time.

11.3.2 Modeling with Probes in MKL

The choice of how to extract information from a model is not encoded into the language.
Instead, there are standard libraries which define the way information can be extracted.

11.3 Extracting Model Information 179

Direct hierarchy naming is difficult to accomplish in MKL bes&Lin the same way as
in other functional languages, the actual identifier name is not important for the computa-
tion result. Internally, the compiler and runtime system can be using indexes or pointers
for variable lookup.

Let us consider theot kaVol t er r a model again:

let LotkaVolterra =
| et growt hRateRabbits = 0.04 in
| et deat hRat eRabbits = 0.0005 in
| et deat hRat eFoxes = 0.09 in
let efficiencyGowthFoxes = 0.1 in
l et rabbits: Population in
| et foxes:Population in
Init rabbits 700.;
Init foxes 10.;
der (rabbits) = growthRateRabbits *. rabbits -.
deat hRat eRabbits *. rabbits *. foxes;

der (f oxes) = effici encyG owm hFoxes *. deat hRat eRabbits =*.
rabbits . foxes -. deathRateFoxes *. foxes

probe "foxes" = foxes;

probe "aninal s" = foxes +. rabbits

We have now added two more equations, both with one probe each. The probe construct
is not built into the language. It is defined in the standard libraxgtel i ng. nkl :

| et probe : <String -> Real >

Hence, a probe is an unknown of a function model type. The function takes as input a
String, and returns as resultReal . The string is the name that then later can be
used to identify the unknown, e.g., when plotting the simulation result. Note that we in
the probe' ani mal s" also are probing the value that is the result of adding foxes and
rabbits.

IntheLot kaVol t er r a example, the probes were explicitly referencing an expres-
sion using an equation. However, for probing the information from components within a
certain domain, is should be easy to access the information relevant for that domain. Now,
let us consider théechSys model again:

| et MechSys =
let rl:Rotational in
let r2:Rotational in
let r3:Rotational in
DCMot or r1;
Inertia 0.2 rl r2;
Fl exi bl eShaft 120 r2 r3;
SpeedSensor (probe "onega") r3

In the example, we are usingsensorfor extracting the wanted information. These sen-

sors are themselves models and can be used for example to extract speed information, and
then use this information in a feedback loop for a control system. Such sensor models
are also available in the Modelica standard library, and we have modeled here the same
behavior. The definition of the speed sensor is

180 11 Elaboration Semantics

| et SpeedSensor w Signal -> flangeB: Rotational -> Equations =
l et phi:Angle in
Rot at i onal Ref Branch 0. (-.phi) flangeB;
w = der (phi)

Recall the definition of th&i gnal type
type Signal = <Real >

i.e, theSpeedSensor gives an output signal of the angular velocity for the node, by
differentiating the signgbhi , i.e., the angel. Recall the line

SpeedSensor (probe "onega") r3

of theMechSys model. Here we measure the speed of no@ewhich will be the last

node of the 120 elements shaft. We supply a probe calledega” to the speed sensor,
which results in that we can measure the angular velocity and associate it with the name
n Orrega" X

11.3.3 Elaboration Semantics of Probes

The semantics for how probe information is extracted from a model is defined in the
standard library fileel abor at i on. nkl in Appendix D.7. The source code is listed
below:

type ProbeMap = (String => [Signal])

| et addProbe s:String -> u:Signal -> ps:ProbeMap =
if Map.nems ps then Map.add s (u::(Map.find s ps)) ps
el se Map.add s [u] ps

| et el abor at eProbes nodel : Equati ons -> (Equati ons, ProbeMap) =
let elab e:<> -> ps: ProbeMap -> (<>, ProbeMap) =
match e with
| "probe (val s:String) -> let u:Signal in (u,addProbe s u ps)
| el e2 ->
let (elb,psl) = elab el ps in
| et (e2b,ps2) = elab e2 psl in
(elb e2b, ps2)
| _ -> (e, ps)
in elab nodel (Map.enpty)

The functionel abor at ePr obes takes an equation system as input and returns a tuple
with the updated equation systems and a mapping of probes. Th&typgeeMp is a
mapping between the string values and a list of signals. The strings are the names given
for the probes in the model, and the signals are the unknowns that are associated with
the corresponding probes. Because a model can contain probes with the same names
(e.g., several instances of a model containing a probe with a specific name), we need to
associate a probe name with a list of signals and not just one single signal.

The local functiorel ab recursively traverses the model, both equation systems and
expressions. When a probe is matched (the first match case), we extract the string value

11.4 Chapter Summary and Conclusions 181

s. Then, we create a new unknownwhich is replacing the probe, i.e., the transformed
model will have unknowns where the probes were located.

Recall that in thd_ot kaVol t er r a example, we introduced new equations, but no
new explicit unknowns. The unknown is therefore introduced by the probe itself. Sim-
ilarly, for the SpeedSensor, the probe will introduce a new unknown and supply it
as an argument t8peedSensor . If we are counting equations and unknowns for the
SpeedSensor , we will see that it is over-determined, i.e., it has one equation too much.
The unknown from the probe restores the balancing.

The actual generation of the probe mapping is handled by funatiai®r obe. This
probe mapping, which is one of the outputs frehmabor at ePr obes, can then be used
by other transformations. For example, if we want to code generate/export the equation
system into another target language, e.g., a flat Modelica form, this probe map can be
used for giving names to variables that should be easily accessible. On the other hand, if
the simulation should be conducted by a library in MKL, the probe mapping can be used
for giving names of the output data of the simulation. Hence, the aim of making the probe
functionality as a separate function is to enable reuse and extensibility of the library.

11.4 Chapter Summary and Conclusions

We have in this chapter given both an informal overview of the elaboration process in
MKL and also formally specified both the connection semantics and how to extract infor-
mation out of models using probes. We have also given an informal explanation of the
connection semantics in Modelica.

We can see that the connection semantics in Modelica and MKL are different, but
give similar modeling capabilities. Semantically, we argue that the MKL approach is
simpler because it separates the phases of type checking, collapsing the model hierarchy,
and generation of connect equations into distinct phases.

From a modeling point of view, it is of course very subjective which approach is
preferable, e.g., iEonnect -equations should be used, or if connections are defined by
using nodes. The benefits that we see from a theoretical language point of view is that
the nodes semantics are very natural and fit well into the framework of a typed functional
language based on an effectful extension of the lambda calculus.

182 11 Elaboration Semantics

12

Implementation, Verification, and
Evaluation

I N Part Il we illustrated different aspects of MKL, including several application exam-

ples, metaprogramming examples, and formal semantics. In this chapter, we discuss,
verify, and evaluate our solution in relation to the problem area presented in Section 1.3.
The chapter is structured as follows:

e We give a brief overview of thgrototype implementatioof MKL and discuss its
current capabilities and limitations (Section 12.1).

e We briefly explain the implementation of two ways of using the model (Section 12.2).
e We explain how theverificationof our solution has been performed (Section 12.3).

e We evaluatediscuss, and analyze our approach according to the areas presented in
the problem area: safety aspects, expressiveness aspects and extensibility aspects.
We also briefly discuss some performance aspects of the prototype implementation
(Section 12.4).

12.1 Implementation

The MKL prototype is implemented as an interpreter in OCaml 3.11.2 [74]. The aim of
the prototype at this stage is not to be a full fledged simulation environment that can be
used directly in industry. Instead it is a research prototype used for exploring different
ways of using metaprogramming for EOO languages.

Consider Figure 12.1, which shows a box-and-line diagram for the execution view for
the architecture of the implementation.

A . nkl file is given as input to the left in the figure showing the translation process.
Itis translated in a number of sub-phases, followed by evaluation (execution) of the pro-
gram. If there were no errors during translation and execution, the program outputs its

183

184 12 Implementation, Verification, and Evaluation

/ Symbol Table
/ Y

Lexical | Syntax

Analyzer Analyzer
Tt | @
WKL ® @ (@ Pattern Type checking Translate ®
source File Includer Desuger Compilation|— "2% - “slation ™I de Bruijn & ——» Evaluation —
code file T-AST| Top-Level | S-AST| S-AST S-AST| Closures |R-AST Result
Lexical Cyclic P l ‘ .
error dependency ef';gr Name lookup error Type error Runtime error

error

Figure 12.1: Outline of the architecture for the MKL prototype implementation.

results and terminates. We call the phases (1) - (5pthic semantics\We say that the
last step (6), evaluation, is described by th@amic semantics

12.1.1 File Includer and Symbol Table

The first phase, th&le includer is a simple module system for handlingcl ude state-
ments. The file includer first performs lexical and syntax analysis on the input file. The
top-level statements in the file are inspected, one of which is the include statement. For
each include statement, this procedure is recursively performed. The file included by the
include statementis read and lexical and syntax analysis is performed. The process detects
and reports cyclic dependencies between definitions as well as eliminates all duplications
of the top level definitions.

During the lexical analysis new identifiers are detected and added to the syobiadb/
table (illustrated at the top of Figure 12.1). A unique relationship is created between the
Unicode string of the identifier and an integer value. Two hash tables are defined, one
mapping strings to integers, the other one mapping integer values to strings. During the
static semantics phases, the integer value is used for fast access and comparison. If an
error is detected (the arrows at the bottom of the Figure 12.1) a user message is written
to the standard output, where the string representation of identifiers are looked up in the
symbol table.

12.1.2 Desugaring

The output from the file includer phase is a top-level AST, denoted T-AST. The T-AST
contains the following four top elements:

e | et -bindings where a value is bound to a value. This includes top-level function
definitions. For example,

let double x:Int = x * 2

12.1 Implementation 185

e New definition of unknowns. These are constructed in the syntax analyzer when
parsingl et -expressions of forrhet x: T'i n, wherex is the new name andl its
type. For example, the definition of an equation with an unknown equation value

let Eq : <Real -> Real -> Egs>

e New type declarations of the fortry pe =. For example, the definition of electrical
nodes:

type El ectrical Node

e Type aliases of the formype 2= T, wherex is the new alias for typd'. For
example, the type alias for signals

type Signal = <Real >

Note thati ncl ude elements are also top-level elements, but these are removed and
processed in the previous phase by the file includer.

Phase (2), calledesugar top-levetranslates the T-AST into static analysis AST
denoted S-AST. Top-levelet -style bindings are translated into local definitions, i.e.,
using thel n form. Also, new types and type aliases are substituted in all terms following
the definition, so that the all top-level elements are eliminated and an S-AST is returned
as the result.

During this phase, name environments for both types and terms are used when travers-
ing the AST. If a name is not found, a compile time error is reported to the user. The
symbol table and information annotations on the terms are used for good error reporting,
i.e., that the original names are used and line and row number of the error is reported.

The third phase, callepattern compilationare mat ch-expressions translated into
primitive constructs of the S-AST. The procedure for the pattern compilation is stan-
dard and is implemented according to the techniques explained by Peyton Jones and
Wadler [122].

12.1.3 Type Checking and Model Translation

During phase (4), S-AST terms are type checked according to the type systems presented
in Chapter 10. Because the types of formal parameters are explicitly stated in the pro-
gram, the type checking can be directly performed in a bottom-up fashion on the AST.
During type checking, the AST is also translated so that unknowns cannot be accidentally
evaluated, i.e., terms are lifted to become models, as explained in Chapters 9 and 10.

12.1.4 Program Evaluation after Translation

In phase (5) of the static semantic analysis the S-AST is translated to a runtime AST,
denoted R-AST. In the S-AST, name bindings have been handled by using names and
named environments. Before evaluation, the AST is translated into a nameless represen-
tation of terms using a technique inventeddiy Bruijnin 1972 [46]. Also, the R-AST

also includes closure terms, i.e., terms that contains both a term and its environment. The
evaluation (interpretation) of the program is now performed using a recursive function
defined in OCaml.

186 12 Implementation, Verification, and Evaluation

12.2 Uses of Models

One of the main objectives with the MKL approach is to make it possible to use models
in different ways, and that the semantics for the uses is implemented in libraries. We will
now briefly explain two cases of using the models:

e Exporting the DAE to flat Modelica
e Simulate the DAE

12.2.1 Exporting the DAE to Flat Modelica

After elaborating a model to a DAE, it could sometimes be useful to export the model into
another format. Specific library functions could be written for different target languages,
such as XML or flat Modelica. In this case, we will exemplify the latter.

The whole export source code can be found in the library file
expor t nodel i ca. nkl , available in Appendix D.10.

The aim of the export function is to generate a flat Modelica file, i.e., a Modelica
source code file that only contains equations and variables. For example, if the export
function is executed on theot kaVol t er r a model presented in previous sections, the
output is as follows:

nodel LotkaVolterra

out put Real animals = uk3;

out put Real foxes = uk2;
protected

Real uk3;

Real uk2;

Real ukl(start=10.,fixed=true);

Real ukO(start=700.,fixed=true);

equati on
der (ukO) = (0.04 * ukO - 0.0005 * ukO * ukl);
der (ukl) = (5e-05 * ukO * ukl - 0.09 * ukl);
uk2 = ukl;

uk3 = (ukl + uk0);
end Lot kaVol terra;

In the protected part of the generated model the four unknowns are neeack 1,uk 2,
anduk3. These names are generated by the export functions because unknowns can only
be compared for equality and match the type. The first two equations are the equations
stating the LotkaVolterra dynamics, while the last two equations were given due to prob-
ing. At the top, twoout put variables are given. In this exportModelica function, we
use the probe names to name these output variables. Note also that we usé the
equations for generating Modelica’s syntax for start attributes.

Consider the following listing of the function for prettyprinting an expression.

l et pprintExpr expr:<> -> String =
match expr with
| el +. e2 -> "(" ++ pprintExpr el ++ " + "
++ pprintExpr e2 ++ ")"

12.2 Uses of Models 187

| el -. e2 -> "(" ++ pprintExpr el ++ " -

++ pprintExpr e2 ++ ")"

el . e2 -> pprintExpr el ++ " * " ++ pprintExpr e2

el /. e2 -> pprintExpr el ++ " / ++ pprint Expr e2
-. e -> "(-" ++ pprintExpr e ++ ")"

N non

el e2 -> pprintExpr el ++ " ++ ("
++ pprintExpr e2 ++ ")"

| *der e -> "der (" ++ pprintExpr e ++ ")"
| "sine-> "sin(" ++ pprintExpr e ++ ")"
| 'cos e -> "cos(" ++ pprintExpr e ++ ")"
"log e -> "l og(" ++ pprintExpr e ++ ")"

|

| "10gl0 e -> "l oglO(" ++ pprintExpr e ++ ")"
| "time -> "tinme"

| uk: <Real > -> nkvar uks expr

| val r:Real -> real 2nodelicaString r

Each case matches a certain form of expression. For example, we use the infix notation
of matching binary operators. For matching application to a function, we use the pattern
expression starting with an apostrophe. For example, the line:

| "log e -> "log(" ++ pprintExpr e ++ ")"
is equivalent to
| x e when x == log -> "log(" ++ pprintExpr e ++ ")"

The line matching an unknown is calling a functioskvar which takes a data structure
representing all unknowns as its first formal parameter, and this particular unknown as
its second. All unknowns in the circuit have been given a unique integer value. Hence,
nmkvar looks up the integer value fexpr and prints out the string.

The rest of the source code in Appendix D.10 should be self explaining.

12.2.2 Simulating the DAE

The second example of using a model is to simulate the model using an external DAE
solver. However, the semantics for how to extract the equations, iterate over the simu-
lation interval, store data, etc., is carried out in a MKL library. The standard library file
si mul ati on. nkl in Appendix D.9 shows a listing of the source code.

The main simulation function is called nul at e:

| et simulate nodel: Equati ons -> steptine: Real -> endtine: Real ->
Si mul ati onResult =
| et (nodel 2, probes) = el aborate nodel in
| et probelist = Map.toList probes in
l et ukmap = makeUkMap nodel 2 in

| et residual = nmakeResi dual nodel 2 ukmap in
let (yy,yp) = nakelnitVal ues nodel 2 ukmap in
let id = initConditionCorrection ukmap in

|l et state = DAESol ver.nake yy yp id residual in
let simoop currtine:Real -> acc:[StepVal] -> [StepVal] =
if currtime >=. endtine then acc

188 12 Implementation, Verification, and Evaluation

el se
| et stepval = nakeStepVal currtime yy probelist ukmap in
| et newti me = DAESol ver.step steptine state in
if newtinme == 0. then acc

el se simoop (newtinme +. steptine) (stepval::acc)
in
(makePr obeNanes probelist 1,revResult (simoop 0. []) [])

This function takes as input a model, the step size, and the end time of the simulation.
First, it elaborates the model and gets a mavdel 2 together with theor obes map-

ping. The sixth line callsrakeResi dual for generating the residual function for the
DAE. The residual is a list of expressions, where each expression represents the differ-
ence between the left hand side and the right hand side of each equation. The residual
function is a callback function that is called when initiating the external solver, using
DAESol ver . make. The residual function itself should have type

type Residual = Real -> {Real} -> {Real} -> [Real]

where the firstargumentis the current time, the second argumeReslaarray with val-
ues for the unknowns, and the third an array with values for the differentiated unknowns.
The function that generates the residual is

| et nekeResi dual nodel : Equati ons -> ukmap: UkMap - >
ctime:Real -> yy:{Real} -> yp:{Real} -> [Real] =
let real Expr e:<> -> Real =
match e with
| (val f:(Real -> Real -> Real)) el e2 ->
f (real Expr el) (real Expr e2)
| (val f:(Real -> Real)) el ->f (real Expr el)
| val v:Real ->v
| "time -> ctine
| der x ->(match x with
| uk:Signal -> Array.get yp (fst (Map.find x uknap))
| _ ->error "Derivatives only allowed on unknowns")
| uk:Signal -> Array.get yy (fst(Map.find e ukmap))
| _ -> error "Unsupported nodel construct"
in
l et traverseEq m Equations -> acc:[Real] -> [Real] =
match mw th
| el ; e2 -> traverseEq e2 (traverseEq el acc)
| el = e2 -> (real Expr el -. real Expr e2) :: acc
| _ -> acc
in traverseEq nodel []

When creating the residual, the functimak eResi dual is partially applied to the equa-
tion system and ankmap function. The rest of the function should be fairly straightfor-
ward.

For details, see the full source code listening in Appendix D.9.

12.3 \Verification 189

MKL Modelica
Test Name Domain | Method Equations | Equations
1 SimpleCircuit Electrical SIT 23 46
2 ComposedCircuitA Electrical SIT 18 37
3 ComposedCircuitB Electrical SIT 18 42
4 DriveLine Mechanical SIT 42 53
5 Gear Mechanical SIT 30 41
6 GearDamper Mechanical| S/T 45 57
7 OneTorque Mechanical SIT 16 21
8 TwoTorques Mechanical SIT 20 32
9 SnelnertiaDamper Mechanical| S/T 40 48
10 LotkaVolterra Plain DAE SIT 6 3
11 Mechsys120 Mechatroni¢ T 1588 2922

Table 12.1: Experimental results when modeling and simulating different systems
using the modeling kernel language compared to the Modelica tool Dymola. In the
column “method”: S = simulated with MKL,T = translated to flat Modelica from
MKL.

12.3 Verification

Different aspects and features of MKL have been discussed in previous chapters, but how
do we know that the semantics is correct? Actually, we shall first ask ourselves by what
we mean by correct semantics. Because the semantics of the language is the definition of
the language, in what aspect can it be correct or incorrect?

One aspect is the relation between the static semantics and the dynamic semantics,
i.e., to prove or justify type safety of the language. Even though this is a strong property,
it does not guarantee that programs and models behave as expected.

Another part of the semantics is the elaboration semantics with the connection se-
mantics for elaborating acausal connections. In what way can we prove or justify that this
semantics is correct?

Our approach to justify the correctness of the semantics with regards to what a user
can expect of such asystem is to verify the system against a state of the art solution. We
have chosen to view the way of modeling in Modelica as the specification and then verify
that we can model the same model components in MKL and that they give the same
simulation results. This approach can be viewed as a high level system test, where we
tests the following aspects of the system

e The dynamic semantics for collapsing the instance hierarchy, i.e., that the semantics
for models and unknowns works as expected (semantics described in Chapter 10).

e The connection semantics for analyzing the equation system and generating con-
nection equations (semantics described in Chapter 11).

Consider Table 12.1, which shows the tests that have been performed.

Tests are performed in the electrical domain, mechanical domain, and the combina-
tion, the mechatronic domain (see column three). A standard library for both the mechan-
ical and the electrical domain has been created, where a portion of the continuous-time

190 12 Implementation, Verification, and Evaluation

model components of Modelica’s standard library componeetsdeled in MKL (see
Appendix D for a list of the model part of the library).

Column four of Table 12.1 titlednethodstates how the verification was conducted.
The letter]” stands fottranslation Each such test follows this procedure:

1. The modelis created in Modelica using standard components in Modelica standard
library. Sensor components are inserted into the model and connected for later
inspection.

2. The same model is created by using components from MKL's standard library. This
library has been modeled according to the Modelica library. Sensor components are
inserted into the model in the same way as in the Modelica model.

3. The Modelica model is simulated using Dymola 6 [45]. Data from the sensors are
plotted and visualized. The number of equations after elaboration were read out
from the translation log and added to column 6 of Table 12.1.

4. The MKL model was translated and exported to a flat Modelica file using the MKL
transformation code in Appendix D.10. The number of equations is counted and
the result value is given in column 5 in Table 12.1

5. The flat Modelica file generated in the previous step is simulated using Dymola 6.
The sensor variables are plotted and visualized.

6. The plotted results from the Modelica model and the translated Modelica model are
visually compared.

These tests have verified the elaboration semantics and the capabilities for intensional
analysis of models. Tests also marked with the lefterhich stands fosimultationalso
verifies the MKL simulation implementation. For the simulation verification, the first
three steps of the above were performed. This was followed by the following steps:

1. The MKL model is simulated using the MKL librasj rmul at i on. nkl , which
is listed in Appendix D.9. The underlying numerical DAE solver is IDA from the
SUNDIALS solver suite [68]. The result of the sensor variables is plotted using
GNU Plot v3.8h.

2. The plotted result from the MKL and the Modelica simulations were compared.

All tests, except test 11, are performed using both MKL simulation and translation to
Modelica. In case 11, the IDA SUNDIALS solver could not find a consistent initial
solution. Because we have not implemented Pantelides algorithm [118] for index re-
duction, and the IDA Sundials solver can find consistent initial conditions for so-called
semi-explicit index-one problems [68], we believe that test 1 is a higher-index problem.
However, the test with translation gave the same simulation result.

1The equation count includes equations for sensors and probes. This is the reason that the number can
mismatch compared to other counting of equations stated earlier in this thesis. Note also the exceptional test
case 10, where MKL has more equations than in Modelica. The reason is that probes give extra unknowns and
thus also equations. These equations for probes is also the reason why the model becomes a DAE instead of an
ODE.

12.4 Discussion and Evaluation 191

12.4 Discussion and Evaluation

In the following subsections we will discuss and evaluate the MKL approach according
to the following aspects introduced in Section 1.3:

e Safety Aspects
e Expressiveness and Extensibility Aspects

We will also briefly discuss performance aspects regarding the current prototype imple-
mentation.

12.4.1 Safety Aspects

In the problem area discussion, we described three main challenges regarding error han-
dling:

e Detecting the existence of an error early.
e |solating the fault implied by the error.
e Guaranteeing that the faults do not exist.

Because MKL is a language for defining EOO construct using defining standard libraries,
error detection and fault isolation can be considered from several different perspectives.

System Modeling Errors

System modeling errors can be introduced by the modeler by entering wrong or illegal
equations. The type system of MKL can detect and isolate certain kinds of errors, such
that nodes from different domains do not mismatch. We regard this early static checking
and fault isolation as very beneficial from a modeling perspective, compared to if the
language would have been dynamically typed. The static checking in this regards can be
seen as similar to the one in Modelica, but the difference is that in MKL new language
constructs (consider e.g., probes or initial values) in almost all cases can be added to the
language using libraries. Even these new constructs will be type checked at compile time.

However, several modeling errors will still not be detected by the type checker, e.g.
constraint errors or physical unit of measurements errors. We have in earlier work stud-
ied both of these properties in the context of Modelica, but not yet for MKL, i.e., the
constraint delta approach is not yet adapted and implemented for MKL. However, initial
observations have been made that the constraint delta approach could be made much sim-
pler by using MKL's connect semantics. Consider the following model of an inductor,
where we have printed out the constraint delta value for each part:

I et Inductor L:Real -> p:Electrical -> n:Electrical -> Equations =

let i:Current in Ca=-1
let v:Voltage in Ca=-1
El ectrical Branch i v p n; Ca=1

L = (der i) =v Ca=1

192 12 Implementation, Verification, and Evaluation

The constraint delta value for specific unknowns, here thesatirr, and the voltage
obviously haveCx = —1. Recall from Section 11.2.2, that for each branch, in this case
anEl ectri cal Branch, rule 3 states that a potential equation should be added for that
branch. Hence, a branch (both the binary and the reference branch) always kag.

The last line shows an ordinary equation, which unsurprisinglyas= 1. Hence, we

can directly see that the model is balanced.

What about the other unknowns and equations that are generated during elaboration?
There are two cases. Rule 1 states that an unknown potential should be added for each
node in the model. Rule 2 states that a sum-to-zero equation should be added to each
node in the model. Hence, these two rules always cancel out each other and their delta
contribution is zero.

We believe that this approach is simpler and more intuitive to understand than using
Modelica’s connection semantics (compare with the constraint delta algorithm described
in Chapter 6). However, we leave as future work to incorporate this into MKL's type
system.

Language Design and Specification Errors

We have in this work formally specified the core of the MKL language. This could be
regarded as beneficial in the sense that it becomes less ambiguous and open for interpre-
tation. However, extending such a specification is not trivial and would affect an imple-
mentation substantially. Our approach therefore tries to move the semantic extensions of
the language into libraries, so that the core can be untouched. Compared to, e.g., Mod-
elica and VHDL-AMS, these languages can grow by adding newlelingabstractions
without changing the semantics of the language. However, to extend how the models
can beusedtypically needs language extensions. In the Modelica case, this is often ac-
complished by adding new annotations and then informally describing the meaning of
these annotations in the language specification. In contrary, in the MKL approach, these
extensions are described in libraries. Hence, we avoid the problem of language and spec-
ification errors by not introducing this kind of new construct in the language. However,
the question is if the language is expressive enough, so that these semantic extensions can
be described in libraries. We will discuss expressiveness aspects in the next section.

Tool Implementation Errors

If a language is implemented and used by just one software tool/compiler, there is a risk
that the implementation becomes the reference implementation describing the language.
However, if several tools exist that should be able to use models created by other tools, it
is vital that they treat the models in the same way. In MKL we have the same challenge as
for other languages that the implementation must follow the specification. We have tried
to mitigate this problem by formally specifying the core of the language using operational
semantics. However, the main contributing idea in MKL is that the semantics for how to
usemodels is not part of the language. Instead, by implementing the simulation and
translation steps in a library, we get an executable specification that can be shared directly
by different tool vendors.

12.4 Discussion and Evaluation 193

12.4.2 Expressiveness and Extensibility Aspects

We will now discuss how well MKL solves the problem of expressiveness and extensibil-
ity of an EOO language.

Expressiveness of Modeling Constructs

Evaluating the expressiveness of a programming language is a subjective task. If the
languages that should be compared are Turing complete, they can all be used to solve the
same problem. In such a case the expressiveness of the language states how “easy” it is
to express a certain task. For example, if we consider the continuous-time aspect of an
EOO languages where the problem can be specified as a DAE system of equations, the
expressiveness power of the system would mean how “easy” it is to model a system.

In Chapter 8, we introduced the idea of higher-order acausal models, and showed that
in the MKL setting we use ordinary higher-order functions to define the models. We
showed how this could be used to parameterize models with other models, how a model
can create new models, and how models could be recursively defined. In Modelica, sev-
eral of these modeling tasks can be performed With -equations (expressing repeating
connections), modeledec! ar e (parameterizing a model with another model) and con-
ditional components for selecting if a model instance should exist or not. Comparing these
language constructs with HOAMs regarding expressiveness is like comparing apples and
oranges, i.e., it is subjective to personal preferences and tastes. However, we argue that
HOAMs can model most of these special constructs in one uniform way. Hence, this
enables simpler and more concisely specified language specifications.

Expressiveness of Translation Constructs

It is a well known fact that statically typed languages can reduce the expressiveness of
a language. For example, in the current version of MKL, we do not support parametric
polymorphism. Hence, we need to write several similar functions, e.g., af oéw
function for each type it can operate on. This is a limitation in the current MKL language.
An extension to support parametric polymorphism is planned as future work.

In contrast, in a language where the type checking is performed at runtime, we gain
expressiveness/flexibility, but loose the property of compile time checking and early error
feedback.

Our design where a model can be of either a specific type,.gt >, or a model
of any type<> is an attempt to find a good trade-off. As we discussed earlier, the spe-
cific model type is used to check the correctness of models during modeling. However,
by relaxing type equality checks to a consistency check where for exampeconsis-
tent with <l nt >, we get an expressive semantics for traversing and inspecting models.
However, the expressiveness comes at a price. For example,

let vl = ((val(+)) (val 3)) (val 10)

defines an a model where the prefix variant of the plus operator is applied to two integer
models. The match expression

let v2 = match vl with
| xy ->x false

194 12 Implementation, Verification, and Evaluation

matches the model and extrastswhich is(val (+)) @val 3), where the model
application has been written out explicitly with infix opera@mHoweverx has now type

<> because the static type checker cannot know what specific model type the left term of
the model has. Hence, f al se creates a valid expressidrval (+)) @val 3) @

(val fal se). This transformation can be regarded as nonsense, but is still legal from
a type checking point of view. Now, let us define a function foo for deconstrueting
andv2:

let foo vi<> -> String =
match v with
| x + (val y:Int) -> int2string y
| _ ->"Not an Int"

Parametev is of any model type. If we applffoo to v1, we get as result10", using

the first mathch case because we match that the value typelistanHowever, if we
applyf oo tov2, we get as resulilot an | nt. Hence, even if we can create bogus
model terms during transformation, we cannot extract using pattern matching terms that
violate the types, i.ei,nt 2st r i ng cannot in this case accidentally get a boolean value

as an argument. We should again note that this is our believed type safety of the system,
it is not yet proven.

From our preliminary tests of implementing both elaboration semantics, code genera-
tion and export of flat Modelica, as well as simulation code, we have found that the static
checking has helped us to find many bugs in the programs. The risk of creating bogus
transformations, as the one above, has surprisingly not been a problem so far. However,
our tests are as yet far too small and limited to draw any general conclusions in this matter.

Extensibility

Extensibility of a language concerns how easy it is to add new language constructs to
the language. If the language has a large, complex, and informal language specifica-
tion, it might be hard to predict the consequences of adding a particular language feature.
Moreover, if there exist several different compiler/simulation tools implemented for the
language, new language constructs can give major consequences for each implementation.

In Chapter 4 we argued that the most preferable way to grow a language (to extend
it) is growth by new user defined abstraction®., that the language is not changed at
all. In for example Modelica or VHDL-AMS, this is accomplished for the modeling
part by enabling a library developer to create new libraries in different physical domains.
However, in the Modelica case, it has turned out that several new language constructs
need to be added at each language revision (every 1-2 year). These changes are needed to
enable better support for new model libraries. Moreover, the actual use commands, e.g.,
simulation, checking, etc., of the models cannot be specified by the user, these are defined
in the implementation of the used software tool.

In contrast to Modelica, our approach emphasizes the use of new user defined ab-
stractions even for how the model is used. For example, if the language has support for
specifying initial values to variables, and later it is decided by the language design com-
mittee that a library also needsitial equationsthe definition of MKL does not need to
be changed. For example, by adding the following two lines

12.4 Discussion and Evaluation 195

40 T T T T T
MechSys —+—
CircuitHierarchy --->x---

35 —

30 [—

Time (s)

20 .

0 1 1 1 1 1
0 100000 200000 300000 400000 500000 600000

Number of equations

Figure 12.2: Elaboration time in relation to the number of generated equations.

let InitEquation : <Real -> Real -> Egs>
let (=) : <Real -> Real -> Egs> = InitEquation

we have defined a way to specify initial equations using the infix operat@f course,

the actual semantics for how to handle these equations must be specified by elaboration
functions, but this can be done in a library instead of in a software tool such as a model
compiler. We see the following main benefits with this approach

e Tool vendors do not need to update their product for each library extension

e Library developers becomes less dependent on tool vendors, i.e, they can extend
the language themselves

e The likelihood that a model will behave the same way in different tools increase.

We believe that the examples and implementation of this thesis work give the evidence
that this is indeed possible.

12.4.3 Performance Aspects

Performance of simulations, i.e., the time it takes to simulate a model, is important. In
this thesis we have implemented an interpreter for evaluation and verification of our solu-
tion. However, we argue that performing a performance comparison between our current
interpreted implementation with available Modelica implementations would be subject to

196 12 Implementation, Verification, and Evaluation

bias. Firstly, we do not know if the Modelica implementatiorsfattening, sorting equa-
tions, and also performing other kinds of symbolic manipulation. On the other hand, our
solution is interpreted, while for example both Dymola and OpenModelica are running
compiled code for the elaboration phase. Also, keep in mind that the comparison is for
different EOO languages, MKL in our case and Modelica for Dymola and OpenModelica.

However, a performance aspect that is interesting regardless if the solution is inter-
preted or compiled, is how well it scales. In this case, we are interested in how the elapsed
simulation time increases with respect to the size of the model. The size of a model can be
measured in different ways, e.g., number of submodels, number of branches etc. We have
chosen to use the number of equations generated after elaboration as the measurement of
size. The rationale for this choice is that we can compare models with different structure
and domains.

We have performed experiments with two different models. The first model, called
MechSys is the model with a flexible shaft that was presented in previous chapters. The
parameter that has been changed to get different measurements is the number of elements
in the shaft. For example, in the largest test case 40000 elements of the shaft generated
520026 equations. The test model kgchSys is listed in Appendix D.11.

In the second experiment call€lir cui t Hi er ar chy, a model consisting of three
electrical components was created. This model was then instantiated to three new com-
ponents, which were connected. This procedure were performed recursively, generating
442873 equations for 11 levels. The test modelG@br cui t Hi er ar chy is listed in
Appendix D.11.2.

Consider now Figure 12.2 that shows the elapsed simulation time in relation to the
number of generated equations for the two models described above.

TheCi r cui t Hi er ar chy has a few measurement points with larger equations sizes.
The reason is that 10 hierarchy levels generate 147628 equations and 11 levels generate
442873 equations. For larger equation sizes the underlying OCaml runtime system gen-
erates an error.

Two obvious observations can be made from the graph. Both cases grow approxi-
mately with the same factor and the growth is not entirely linear. However, when consid-
ering that half a million equations is many equations if it would have been a model used
in practice, we would argue that the solution in these cases can be considered scalable.
However, we shall also notice that the elaboration phase is a minor source of the total
simulation time, compared to symbolic manipulation and numerical simulation. Hence, it
is premature to draw too many conclusions from these tests.

12.5 Chapter Summary and Conclusions

We have in this chapter given an overview of the prototype implementation of MKL as
well as shown examples of two ways of using models: for continuous-time simulation
and exporting Modelica code.

We explain how the prototype has been verified by simulating several example models
using both MKL and a Modelica environment. Finally, we discuss and briefly evaluate
our solution from a safety perspective, expressiveness and extensibility perspective, and
performance perspective.

12.5 Chapter Summary and Conclusions 197

We can conclude that our approach gives similar possibilifiesntinuous-time mod-
eling as a state-of-the-art modeling language Modelica. However, MKL does not yet
support hybrid modeling and it is therefore hard to compared larger models from e.g.,
Modelica Standard Library (MSL). The main difference of MKL and languages such as
Modelica is the ability in our approach to not only create reusable modeling libraries, but
also to create libraries for inspecting, translating, and using models.

198 12 Implementation, Verification, and Evaluation

Part Il

Related Work and Concluding
Remarks

199

13

Related Work

N this chapter we discuss the most closely related work. The chapter is structured as
follows:

e We first give a short overview of the most prominent equation-based modeling lan-
guages available. We then discuss how MKL is related to these languages (Chap-
ter 13.1).

e We discuss related work related to Modelica semantics (Chapter 13.2), as well as
MKL semantics (Section 13.3).

13.1 Equation-Based Modeling Languages

In this section, we discuss and describe different equation-based modeling languages pri-
marily used for physical modeling. For some of the languages we also directly compare
to MKL. At the end of the section, we summarize the main differences and similarities
between our approach and the discussed languages.

13.1.1 Modelica and Predecessors

Modelica is an equation-based object-oriented (EOO) language designed for modeling
large and complex physical systems [104]. For a brief overview of the language, see
Chapter 2.

The design of the language is an international effort to create a unified object-oriented
language for system modeling and simulation [55]. Language designers of a number
different equation-based modeling languages have actively participated in the design of
Modelica [51]. We now briefly present some of the predecessor languages.

201

202 13 Related Work

The language Dymola (Dynamic Modeling Language) was intrediny EImqvist in
1978 [47]. Itintroduced concepts for facilitating creation of large models by hierarchical
composition of sub-models. Dymola stands todaylgnamic Modeling Laboratorgnd
is a commercial product based on the Modelica environment [45].

The Omola language by Andersson [6] is an object-oriented acausal modeling lan-
guage that makes use of several concepts from OOP, including the class concept and
inheritance. The language handles both discrete and continuous-time systems.

Another early language for object-oriented acausal modeling is the Natural Model
Format (NMF). This language was first developed and introduced for building simula-
tions [128].

Yet another language is SIDOPS+ [16] that supports block-diagram and bond graph
models. It was intended as a open language that focused on modeling of mechatronic
systems.

Smile is a simulation environment developed for energy systems that is based on
object-orientation and equation-based modeling principles [82]. A variant of the Smile
system called Smile/M is extended with the capability to also compile Modelica mod-
els [50]. The Smile system separates the modeling language from the experimental de-
scription language. The modeling language is an extension of Objective C [50].

ObjectMath is an extension of Mathematica for equation-based, object-oriented mod-
eling [58]. The language combines object-oriented, constructs such as classes and inheri-
tance, with the computer algebra facilities of Mathematica.

13.1.2 Extensions to Modelica

There are also a number of languages defined as extensions to the Modelica language.
MOSILAB is a modeling and simulation tool for modeling of structurally dynamic
systems [112]. It is implemented as an extension to the Modelica language adding state-

charts for modeling discrete model switches.

Optimica is an extension to Modelica for compact formulation of both static and dy-
namic optimization problems [5, 79]. A key aspect of the extension is that the formulation
of the optimization problem is independent of the numerical algorithm that is used for
solving the optimization problem.

Both of these extensions show the need for extensibility of an EOO language. Also,
Optimica is an example where Modelica models are used for other purposes than simula-
tion.

13.1.3 VHDL-AMS

VHDL-AMS is a hardware description language (HDL) used for describing digital, ana-
log, and mixed-signal systems [10]. It is an extension to VHDL also supporting analog
signals; i.e., continuous-time models. It is an ISO standard [72].

A VHDL-AMS model is defined by arentity and one or morerchitectures The
entity is the interface of the model and the architecture its implementation. In Modelica,
the class type specifies the interface and the model itself is the implementation. Similarly,
in MKL, the type of the function abstracting the equation system is the interface, while
the body of the function containing equations is the implementation.

13.1 Equation-Based Modeling Languages 203

In VHDL-AMS, quantitiesrepresent the unknown variables in a DAE [40]. The lan-
guage supports three kinds of quantities: free, branch, and source quantities. A free
guantity is a signal that can be used for causal modeling. A branch quantity is used for
modeling conservative energy systems, i.e., acausal modeling. A source quantity is for
modeling of frequency and noise. The free quantity is similar to MKL's standard library’s
definition of Si gnal . In VHDL-AMS, terminalsare created by a specific nature, e.g.,
theel ectri cal nature. These terminals are then connectgabitsof entities. Termi-
nals and MKL nodes are similar and connecting to a port is basically the same as passing
a node to a model function in MKL.

Branch quantities can be declared inside architecture bodies. Branch quantities are
used for definingacrossandthroughquantities (same as potential and flow variables in
Modelica). This has a direct correspondence to branches as defined in MKL. In fact, the
naming and idea of branches is inspired by VHDL-AMS.

13.1.4 Verilog-AMS

Verilog-AMS is a hardware description language (HDL) that is an extension to Verilog
with analog and mixed-signals [3]. In Verilog-AMS, signals are associated with nodes,
which are connected to ports of components. Also, models of conservative energy systems
have potential and flow values associated with each node. In Verilog-AMS, branches
are the paths between two nodes through a component. Each branch has the potential
difference and the flow. Hence, the basic structure for defining branches, nodes, flow
etc. is similar between MKL'’s standard libraries and Verilog-AMS. However, an essential
difference is that the MKL language itself does not include these constructs, while they
are part of the Verilog-AMS language.

13.1.5 gPROMS

gPROMS is an equation-based language used for combined lumped and distributed pa-
rameter processes. It was introduced in 1992 by Barton [13] in his PhD thesis and has
evolved to become a commercial product. Its main application domain is chemical process
modeling. The language is based on three kinds of entities: models, tasks, and processes.
The model describes the continuous-time behavior of the modeled system, including dis-
crete changes. Tasks describe the disturbance and external actions on the system. The
process describes the complete simulation experiment. The language has later been ex-
tended by Oh and Pantelides to support mixed integral, partial differential, and algebraic
equations (IPDAESs) [115].

13.1.6 Hybrid Chi

Hybrid x (Chi) [59, 146] is a hybrid specification formalism that can describe discrete-
event, continuous-time, and hybrid systems. The language is a concurrent language based
on Communicating Sequential Processes (CSP) (the discrete-event part), and differential
algebraic equations (DAES) (the continuous-time part). The language does not yet sup-
port acausal connections. Its syntax and semantics has been formalized using structured
operational semantics [146, 145].

204 13 Related Work

13.1.7 Functional Hybrid Modeling and Hydra

Functional Hybrid Modeling (FHM) is a paradigm that combines functional programming
and non-causal (acausal) hybrid modeling [109, 110]. The concept of Functional Hybrid
Modeling (FHM) is a generalization of Functional Reactive Programming (FRP) [150],
which is based on reactive programming with causal hybrid modeling capabilities. Both
FHM and FRP are based signalsthat conceptually are functions over time. Unlike FRP,
which only supports causal modeling, the aim of FHM is to support acausal modeling with
structurally dynamic systems.

The most developed language within the FHM paradigiysira which is created
by Giorgidze and Nilsson during recent years [61, 62, 63]. However, the basic ideas for
the language were sketched already in 2003 by Niletoal.[109].

Similar to MKL Hydra is supporting continuous-time modeling using DAEs. Both
languages are supporting a kind of model abstraction that is first-class, sgited rela-
tionsin Hydra. Signals in FHM are time-varying values, i.e., a function from time to a
value.

In FHM/Hydra, there are two distinct levels: the functional level and the signal level.
The former deals with time-invariant expressions, e.g., signal-relations and the latter with
time-varying quantities, e.g., signals. Signal relations sigdal relation applicationare
used for composing equation systems. That is, in FHM, there is a separation between
function application at the functional level and signal relation application at the signal
level. In contrast to FHM, MKL uses function abstraction and function application both
for unknowns (representing signals during simulation) and for constant values.

Hydra is implemented as an embedded DSL using Haskell with the Glasgow Haskell
Compiler (GHC) extensions as the host language [63]. Itis designed to support structural
dynamic systems where the numerical simulation result is computed using the SUNDI-
ALS solver suite [68] and the residual function is just-in-time (JIT) compiled using LLVM
[86]. Itis using amixed-levelembedded approach, combining both shallow embedding
(domain-specific syntax is expressed directly in the host language) and deep embedding
(making use of interpretation and compilation). We shall also note that embedding is an
implementation technique for Hydra that is not required by the FHM paradigm.

Currently, there does not exist any published formal semantics for Hydra or FHM,
besides the formalization available for the host language (Haskell). However, the formal-
ization of the semantics has been one of the main objectives for MKL.

13.1.8 Sol

Sol is a equation-based modeling language designed for modeling and simulation [154].
Its design is based on Modelica, but the objective of Sol is be a minimal research language
for simulating variable-structure systems. In his PhD Thesis, Zimmer [155] develops a
methodology for dynamic processing of differential-algebraic equation for arbitrary struc-
tural changes of the equation systems. The Sol language is used to test and evaluate the
methodology within several different domains.

13.2 Modelica Semantics 205

13.1.9 Acumen

A recently developed modeling language called Acumen [153] is aimed for bridging the
gap between analytical models and simulation code. It supports continuous-time model-
ing of PDEs, discrete-time modeling using event-driven functional reactive programming
(E-FRP), and hybrid models. It has so far been evaluated in the mechanical domain.

13.1.10 Comparison to MKL

Similarly to all of the above mentioned languages, MKL can be used for continuous-
time modeling and simulation using DAEs. However, we have not yet evaluated the
approach for hybrid systems. Compared to Sol and FHM, which both have been designed
for structurally dynamic systems, MKL has not yet been extended with such language
feature. However, as stated in the future work (Section 14.2), we believe that MKL can
be a good platform for experimenting with structurally dynamic systems.

According to Definition 8.2.1 on page 115 FHM/Hydra and MKL are the only ones
of the above mentioned languages that have full support for higher-order acausal models.
Modelica has a construct callecedecl ar e that can parameterize models with other
models, but models cannot be passed to or created by functions.

In contrast to all the above languages, the semantid¢wwf to usethe models can
also be specified in MKL libraries. This enables extensible formal executable specifica-
tions where important language features are expressed through libraries rather than by
adding completely new language constructs. For example, probes (Section 11.3), export
of equation systems (Section 12.2.1), and simulation (Section 12.2.2), are all constructs
implemented as MKL libraries.

We have formally defined both the static and dynamic semantics for a core part of the
MKL language as well as proven type safety for the core language. This formalization
includes both phase 1 (type checking) and phase 2 (collapsing the instance hierarchy)
of the elaboration process (recall Section 11.1 on page 159). Moreover, because phase
3 (the connection semantics) is specified as an executable library within MKL, we have
formalized most of the elaboration semantics

13.2 Modelica Semantics

In this section we discuss some related work regarding Modelica semantics. First, we
state previous work on specifying the elaboration semantics. Second, we discuss related
work on types and isolating faults in models.

13.2.1 Natural Semantics

Already in 1998 Kagedal and Fritzson [84, 85] defined a formal specification for a sub-
set of the Modelica language. It washmtural Semantic§81] specification expressed

in the executable specification language Relational Meta-Language (RML) [120]. This
work influenced the design of the language and the official Modelica specification. The

1Since we in this thesis have not formalized translation steps e.g., pattern compilation and other constructs,
e.g., lists and tuples, we do not want to claim that the whole process has been formalized.

206 13 Related Work

executable specification has gradually evolved and is nowdbe base for the Open-
Modelica project [117]. In 2006, the code base was automatically translated from RML
to Meta-Modelica [56] with the purpose of making it more accessible to software en-
gineers in the Modelica community. Hence, today the project is more intended to be a
complete implementation of the language than a specification itself.

13.2.2 Instance Creation

Mauss has made several contributions towards formally describing the elaboration process
(calledinstance creatiom his work) of a subset of Modelica, i.e., the translation process
from a Modelica model into a system of equations [95]. His published work describes an
algorithmic specification approach that focuses on Modelica’'s complex look-up rules and
modification semantics, including redeclaration of classes and components. Semantics
for describing restrictions on validity of a model, such as types, restricted classes, and
most prefixes are not considered.

13.2.3 Modelica Types

To the best of our knowledge our work on the type concept in Modelica is the first study

to introduce and differentiate between class types and object types. An overview of the
type concept was given by Fritzson [51, Section 3.14] in 2004, but it did not include the

insights about class types and object types that are discussed in this thesis.

13.2.4 Balanced Models

In September 2007, a new version 3.0 of the Modelica specification was released [103].
The largest change in the language was the new constraint that all models in the Modelica
language must blcally balancedmeaning that the number of unknowns and equations
must be equal at every hierarchical level of a model [116]. The exception is for partial
models, which are not checked. Enforcing local balancing of models is basically the
same as stating that constraint delta and effect delta (see Chapter 6) should be zero in
all connectors and models. However, even if the approaches are similar, there are some
distinct differences.

The balanced model concept in the Modelica specification has taken a "top-down"
approach and defines its solution for the whole Modelica language. The constraint delta
approach is given for a small subset of the Modelica language, with the purpose of stating
a detailed algorithm.

The Modelica specification requires that modelsaveaysbalanced, with the excep-
tion of partial classes. The constraint delta concept as explained in Chapter 6 is more
flexible, and accepts that sub-components are over or under-determined, as long as the
global model has a constraint delta of zero. Both of these approaches are justified by
examples and tests.

It should also be noted that the idea of using these approaches were developed in
parallel within Dynasim and by the author during year 2006. At the time of the publication
of the constraint delta approach [28], the paper handed out and discussed at the Modelica
Association design meeting. During the late 2006 and early 2007, further interaction and

13.3 MKL Semantics 207

discussions have occurred between the author of this thegiggdin, and members of
the Modelica Association.

Finally, it should also be noted that there is a paper by Nilssional.[109] from
2003, where the idea to incorporate information about the balance between equations and
unknowns into the type system is stated. However, no information or strategy on how this
should be conducted is presented.

13.2.5 Structural Checking of Models

There has been a number of attempts to perform more sophisticated analysis for detecting
and isolating constraint errors. Instead of just counting equations and unknowns, these
methods try to determinate if the system of equations is structurally singular, and in such
a case isolate the fault.

An early attempt of semiautomatic debugging technique was suggested by Bunus
& Fritzson [29]. They implemented a system called AMOEBA (Automatic Modelica
Equation-Based Analyzer), which performs a graph algorithm on the flat system of equa-
tions. The source of the error is then traced back to the original component. Hence, this
approach can detect faults that goes undetermined by the constraint delta approach (the
system is singular but the number of equations and unknowns match). However, in the
case of an illegal number of equations and variables, the simple counting approach is
sufficient.

Nilsson [108] outlines an approach to perform check of structurally singular systems
at the type level. The idea is similar to our work on the structural constraint delta, but
instead of just annotating each type with a single integer value, Nilsson suggests to expose
information about which variable that appears in which equation. However, to not make
the type as large as the whole system of equations, Nilsson suggest a way to approximate
the structural information for the types.

13.3 MKL Semantics

In this section we first discuss types and dynamic semantics related to the formalization of
semantics of MKL. This is followed by discussion about related techniques for metapro-
gramming.

13.3.1 Formal Semantics

The formalization of the dynamic semantics of the core of MKL (Chapter 10) is given
using small-step semantics. An alternative would be to use big-step semantics, also called
natural semantics [81]. We choose the small-step style because of the possibility to use
the progress and preservation lemmas for proving type safety [124].

The embedding of values in model value expressials ¢ : 7 and the use of the any
model type<> is inspired by the work of Abadet. al.[1] about dynamic typing in a
statically typed language. In their work they provide a language construct dghechic
that is packaging a value together with its type. Such an term has theDiymamic
(note the capital letter) that can later be deconstructed usiympease construct. A type

208 13 Related Work

system usinggradual typingallows both static and dynamic type checking in a single
programming language [132, 133]. #pe consistencyelation is used instead of type
equality. We have adopted a similar approach using type consistency, where the any
model types<> is consistent with specific model typgs> for some typer. The main
difference compared to MKL's type system is that in gradual typing any type is consistent
with the dynamic type (denot&d), but in MKL only model types can be consistent with

<>,

The concept ofjeneralized algebraic data types (GADTsh powerful generaliza-
tion of algebraic data types that is part of languages such as Haskell, Standard ML, and
OCaml [123]. GADTSs have in the literature appeared under different names, such as
guarded recursive data types [152], equality-quantified types [131], and first-class phan-
tom types [39]. GADTSs can for example be used when embedding DSLs in a host lan-
guage (e.g., Haskell) and then check if a program in the DSL is well-typed. This has some
similarity to MKL's approach to type checking with specific model types. Potentially an
approach where GADTSs are used in MKL'’s type system could preserve type information
of specific model types during transformation of models. However, it is not clear whether
incorporating GADTs would preserve the expressiveness of the current MKL approach,
or how the concepts of unknowns and model lifting would be incorporated. We regard
this as interesting future research.

Lava is tool for specifying, designing, and implementing hardware [15]. Its language
is an HDL embedded into Haskell. Similarly to MKL, Lava is using higher-order func-
tions to compose circuits together. However, Lava is designed for digital circuits and is not
concerned with the connection semantics appearing in acausal languages. Claessen [41]
describes two approaches for solving the problem in a lazy language that circuits are
graphs but viewing them using algebraic data types makes it not possible to distinguish
them from infinite trees. He both suggests an approach using monads [149] and an ap-
proach calletbbservable sharinglhe latter makes the graph sharing observable by ex-
tending the language with non updateable reference cells and an equality test for sharing
detection. Because MKL is a call-by-value language we have taken a less sophisticated
approach using the(7) expression to generate new unknowns that can be used to rep-
resent nodes in a circuit. These nodes can then be directly compared using an equality
operator.

Instead of using the-calculus as the basic calculus for MKL, tlpattern calculus
by Jay [77] could be an alternative. It is an expressive calculus where patterns are part
of the core calculus. However, we have in this thesis taken a more traditional approach
and formulated our language as an extension to the lambda calculus. Hence, the pattern
matching operations are not part of the core language but instead defined as a translation
to the the core language.

13.3.2 Metaprogramming in EOO Context

Most Modelica tools support some kind of scripting facility that can be used to program-
matically start simulations and collect results. In the Dymola and OpenModelica cases
the script language is a subset of Modelica. Some tools also opens up APIs for inspecting
and traversing the abstract syntax tree of a model.

A limited form of metaprogramming facility for OpenModelica was presented in [9],

13.3 MKL Semantics 209

and followed up by the work of Fritzsoet.al. in 2005 [56], where the Modelica lan-
guage was extended with pattern-matching operations and transformations on ASTs. The
current language, called MetaModelica, is a heterogeneous metalanguage, meaning that
the metaprogramming language and the object language are not the same. In [127] Pop
shows how MetaModelica is used as the implementation language of OpenModelica.

In contrast to MetaModelica MKL is a homogeneous metaprogramming language in
the sense that it can create models and inspect the models in the same language.

13.3.3 Metaprogramming in General Purpose Languages

During the last two decades, there has been extensive research in the area of statically
typed languages aimed at extensional metaprogramming, for example MetaML [140,
143, 144] and its dialects (e.g., MetaOCaml [142]). In these so called multi-stage lan-
guages code can be created, combined, and executed.

MKL is not performing intensional analysis on the program code, but on the values of
a model type. Because models are treated as data and cannot be executed, the typing gets
much easier. Hence, we call our approach intensional anaysisodels

Static metaprogramare metaprograms that execute before the load time of the pro-
gram or code that it manipulates [43]. A popular way of compile time metaprogramming
is to make use of the template system of C++. Hence, programs can be generated before
execution. Template Haskell [130] is another example of compile time metaprogram-
ming. MKL does not support any compile time metaprogramming. During compile time,
expressions are lifted to be models, so that they can later be inspected.

210 13 Related Work

14

Concluding Remarks

N the following final chapter, we state the conclusions (Section 14.1), and outline future
work (Section 14.2).

14.1 Conclusions

This thesis concerns the problem of designing and defining semantics of equation-based
object-oriented (EOO) modeling languages. We have studied this problem area in two
contexts, corresponding to Part | and Part Il of the thesis. In the first part, we study
the state-of-the-art EOO languaddodelicaboth by discussing the current language’s
properties, and proposing new language solutions. In the second part, we present a new
research language called thmdeling kernel language (MKL)h MKL, reusable acausal
models, based on differential algebraic equations, can in a way analogous to what is done
Modelica be defined in model libraries. In contrast to Modelica, the semantiiamto

usethe models, i.e., operations on models, are also defined in MKL libraries, and not in
language specifications or separate software tools.

The problem area of designing and defining the semantics of an EOO-language con-
cerns trade-offs between several aspects of the language. We have focused on the trade-
offs between safety, expressiveness, and extensibility. We have studied these aspects
within three research areas:

e Understanding the semantics of the Modelica language
e Early detection of modeling errors
e Expressive and extensible formal semantics

211

212 14 Concluding Remarks

14.1.1 Understanding the Semantics of the Modelica Language

Studying the semantics of Modelica is interesting and important per se. The language is
the state-of-the-art EOO language today and widely used both in academia and in industry.
However, the language is large and very complex with an informal language specification.
Hence, the semantics of the Modelica specification is hard to interpret unambiguously. We
have discussed and analyzed two research questions concerning this area.

The first question concerns if there is a way to restructure an existing large informal
specification so that it becomes less ambiguous and still understandable for a general
audience. We discuss different alternatives and propose a middle-way approach for Mod-
elica, where the grammar for ASTs shall be formally defined and the translation between
AST variants is informally described. Moreover, we discuss different ways of growing an
EOO language in general and Modelica in particular. The conclusion is that the objective
should be to design the language so that it can grow by allowing the user to define new
abstractions in the language, and in such a way make the language more extensible.

The second research question concerns the meaning/semantics of types in Modelica
and how it relates to the language’s concept of classes. We have analyzed the type concept,
which was only indirectly described in the Modelica language specification at that time.
The conclusion and also the main contribution of this work was the insight that Modelica
has two categories of typeslass typesand object types The reason is that Modelica
has a structural type system making types and classes separate concepts. We explain the
findings by giving several examples, as well as defining a concrete syntax for specifying
the types. It was also concluded that Modelica’s prefixes are part of the types and a
categorization of an interpretation of the specification was proposed.

14.1.2 Early Detection of Modeling Errors

The third research question concerns the problem of determining if a model is over- or
under-constrained before elaborating a model. It is trivial to detect how many equations
and unknowns you have after elaboration. However, if the numbers do not match, it is
non-trivial to isolate the fault and give good user feedback for where the error is located
in the model.

We propose a novel concept that we cgtuctural constraint deltalhe basic idea
is simple; each type is annotated with an integer value stating the difference between the
number of equations and the number of unknowns of a model’s type. An algorithm is
detailed for computing the constraint delta value, which turns out to be fairly complex
mainly due to the connection semantics of the Modelica language. We successfully tested
the solution on a small subset of Modelica, but from that evaluation it is hard to give any
guarantees of correctness for a full Modelica implementation.

The work on structural constraint delta was first published in 2006 [28] and later
somewhat influenced the concept of balanced models for Modelica 3.0, released in 2007.
In retrospect, with the acceptance of introducing this non-backwards compatible change
to the Modelica language, we conclude that the idea of determining over- and under-
constrained systems by considering the balancing of models is applicable in practice.

We would also like to emphasize that the idea of structural constraint delta is not lim-
ited to Modelica, and ought to be useful for EOO languages in general. In Section 12.4.1,

14.1 Conclusions 213

we briefly discussed how it can be used in MKL. The introductibrcanstraint delta

into MKL's type system is considered future work, but preliminary investigation shows
that the method for computing the value seems simpler in the case of MKL'’s connection
semantics than for Modelica.

14.1.3 Expressive and Extensible Formal Semantics

From the earlier study of Modelica, we have concluded that it is hard to formalize such
a large and complex language. Our study of Modelica can be viewed as a top-down
approach, trying to analyze something that is large and exists. Our next research question
concerns the opposite - a bottom-up approach to the design problem.

The fourth question for this thesis concerns the possibility to formally define an EOO
language, base it on the proved theory of the simply typed lambda calculus, and achieve
the same expressive power as state-of-the-art EOO languages. The result of our work
in this area is the first version of our research language MKL. MKL is fundamentally a
statically typed functional language with metaprogramming capabilities, that is based on
the lambda calculus. We have formally defined the core of the language using small-step
operational semantics together with inference rules describing the static type system. This
language is based on the simply typed lambda calculus, extended with metaprogramming
constructs for handling unknowns and model types. Moreover, we also proved type safety
for the core language.

We introduce the concept dfigher-order acausal models (HOAMsyhere models
can be passed around as first class citizens in the language. By giving examples from the
electrical and mechanical domain, we show the expressive modeling power, and also ar-
gue that several language constructs in Modelica can be subsumed or expressed by using
HOAMs. We conclude that HOAMs, demonstrated by using MKL, give a high expres-
siveness for modeling continuous-time acausal systems. However, for hybrid systems,
further research is needed to draw any general conclusions.

We have earlier concluded that a preferable approach of growing an EOO language
is that the user can add new language constructs, without the need of language changes.
The fifth and last research question concerns the possibility to design a language where
not only modeling constructs can be extended by the user, but also semantics for using
models (i.e., meta-operations on models).

The solution that we have investigated using MKL is to put the semantics for defining
EOO language constructs such as ports, equations, initial value definitions, and probes
into MKL libraries. Then, instead of informally specifying e.g., elaboration and simu-
lation semantics in a separate language specification, we have put the formal executable
specification of the semantics into MKL libraries. These libraries can then be used to
inspect, analyze, and transform models using metaprogramming techniques. Our initial
experimental attempts include full elaboration of generating flat form of DAEs from MKL
source models, simulating the DAE using numerical DAE solvers, and to generate flat
Modelica code from MKL models. We have also compared and discussed our connection
semantics with Modelica’s approach.

An MKL interpreter has been implemented to verify and evaluate our solution. We
have verified by testing at a system level that models in MKL and Modelica behave simi-
larly. Performance tests have also been conducted, where the main conclusion is that the

214 14 Concluding Remarks

elaboration phase is scalable.

Finally, we regard our work with the research language MKL as a first attempt of
using metaprogramming techniques wititensional analysis of modedsithin the EOO
language area, i.e., the ability to defining both reusable model libraries as well as reusable
libraries for manipulating models within the same language. The approach has been eval-
uated on a non-trivial set of continuous-time models and our hope is that this work should
inspire for future research in the field where more complex models (e.g., multi-body and
fluid systems) as well as other uses (e.g., optimization, grey-box system identification, and
model reductions) can be realized using metaprogramming techniques within the same
language.

14.2 Future Work

Compared to other language paradigms, EOO languages can be seen as a fairly young
field. However, new opportunities and problems arise when we introduce concepts from
the computer science field in general and the programming language theory field in par-
ticular. Examples of such concepts are higher-order functions and metaprogramming
techniques. Our work in this thesis is an attempt to go in such a direction. Nevertheless,
there are still many outstanding issues and interesting problems left for future research.
In the following chapter we highlight some of them.

14.2.1 Extensional Metaprogramming

We have in this thesis described how we use metaprogramming for intensional analysis
of models by inspecting and traversing their content. In Chapter 12, we have given an
example program for how models can be simulated by using an external DAE solver.
Such a solver needs a residual function that computes values based on the DAE. In the
example we compute this vector value by interpretation, i.e., we traverse the system of
equations and compute the resulting value. However, an idea for future work is to utilize
extensional metaprogrammin@29] for code generation of a function to compute the
residual before the simulation. The hypothesis would be that if the generated code is just-
in-time compiled, we could get simulation performance comparable to simulation systems
that statically compile the residual. We believe that multi-stage programming [141, 143]
could be the right choice because this also conforms to a statically typed environment. We
have so far performed preliminary tests of multi-stage programming in an MKL extension,
where we can simulate the system using extensional metaprogramming. However, our
current test prototype is interpreted and therefore only limited speedup is gained. It has
been shown that e.g. in MetaOCaml [31], good speedups have been achieved. However,
several research challenges remain, where one of them is efficient integration with the
runtime environment for the generated residual function and the numerical solver system
(e.g., Sundials [68]).

14.2.2 Hybrid and Structural Dynamic Systems

In this thesis we have focused on continuous-time systems. We do not currently see any
major challenges of defining simple hybrid constructs directly within MKL, e.g., to define

14.2 Future Work 215

apre andr ei ni t construct similar to Modelica:

let reinit : <Bool -> Real -> Real -> Eqs>
| et pre: <Real -> Real >

A reinit equation could then be defined as
reinit (x >=. 0.) v ((pre v) . -.1.)

where the first argument is the condition, the second argument the unknown that should
be reinitialized, and the third argument the expression if the event occurs.

However, how a more general solution can be created is more interesting. For ex-
ample, that f -expressions are applicable for models as well, where the guard can be an
unknown. In the general case, the aim would be that any expression could be switched if
the guard changes over time. Because models are first class in MKL, this would imply that
we obtain a structurally dynamic system, where instances of models can switch over time.
Structurally dynamic systems with a fixed number of states have previously been devel-
oped in MOSILAB [112]. Other research results within this area are Functional Hybrid
Modeling (FHM) [62, 109] and the research language Sol by Zimmer [155]. We believe
that MKL could potentially be a good framework to further explore structural dynamic
systems.

14.2.3 Code Generation and Time Aspects

To achieve high confidence of cyber-physical systems, i.e., systems that mix physical
dynamics with software and networks, it is vital that such systems can be modeled and
simulated at design time. Hence, it is necessary that both the physical model of the plant
and the model of the controller reflect the reality of the real physical system together with
generated code running on embedded computer systems. One major problem when de-
signing embedded systems today is the non- deterministic behavior of computation, i.e.,
it is very hard to estimate the timing of executing embedded code [87]. Traditionally,
simulated controllers are idealized to take zero time for computation, resulting in differ-
ent dynamic behavior between the simulated system and the real system. Synchronous
languages [14] used for code generation of discrete-time systems are predictable and
repeatable, but currently lack a sound integration with acausal modeling languages with
continuous-time behavior. To mitigate these issues, the research challenge would be to
establish a way of automatically extract timing information for the target platform for
code generation and then include these timings into the simulated system. The simulated
system should closely match the real system; giving higher confidence of the modeled
system at an early stage of the system design process. We believe that MKL could be a
good platform to experiment with such a design.

14.2.4 Structural Constraint Delta

We do not expect that it is too difficult to add the structural constraint delta concept to
the type system of MKL's. However, it is more challenging to make it flexible and not

dependent on built-in functionality, e.g., that the type system must explicitly know the
difference between aBl ectri cal Branch, the independent variabted me and an

216 14 Concluding Remarks

ordinary equation. Hence, there must be a way to describe ilatigeiage what kind of
construct that contributes to constraint delta.

14.2.5 Polymorphism, Type Classes, and Algebraic Data Types

MKL is a small research language that lacks basic functionality that you expect from a
functional language. The most important constructs that would be useful are parametric
polymorphism, type classes, and algebraic data types. Adding these language features
might be less of a research challenge and more of a development work. However, further
investigation must be conducted to see how these language constructs interact with the
model type presented in this thesis.

14.2.6 Efficient Compilation

The current implementation prototype of MKL is interpreted. However, to make this so-
lution useful in practice, we believe that a compiled system should be developed. One
alternative would be to implement the compiler and then to use e.g., LLVM [86] as the
backend. Another alternative would be to use an existing functional programming lan-
guage as the backend, e.g., to generate OCaml code that can later be compiled and exe-
cuted.

14.2.7 More Complex Modeling

Further case studies and experiments on more advanced modeling tasks should be investi-
gated, to see how far MKL can be used. For example, case studies of implementing fluid
systems or multi-body systems could be the next step. In the fluid case, Modelica’s new
stream connector is a interesting construct to study [104]. Moreover, other constructs that
could be investigated is the possibility to add partial differential equations.

14.2.8 Uses Beyond Simulation

We have in this thesis showed how to use models in two ways; for simulation and for
export to flat Modelica code. However, there are many other potential uses of models. For
example, the work by Akessaat. al.[5] on optimization of Modelica models. Caseba

al. [34] propose several uses of models besides simulation, whede! reductions one
application area. Another application area couldjbey boxsystem identification [88],
where the equations for the model are known and parameters should be estimated by
using measured data from a real system. We see as interesting future work to explore the
possibility to use the MKL approach of implementing the semantics of these uses into
MKL libraries.

Syntax of MKL

In this appendix we define the concrete syntax for MKL*a® well as an abstract syntax
for the intermediate language of the prototype implementation.

A.1 Concrete Syntax

A.1.1 Notational Conventions

Terminal symbols are reserved words written with bold typewriter font (eef., i f),

text enclosed between double quotes (€.g"." ("), or tokens written in upper case
(e.g., Ul NT, | DENT). Nonterminal symbols are written using lower case letters and
typewriter font. Enclosing text in curly brackets{(" and “}”) means repetition
zero or more times. Enclosing text in square bracket$ &ifid “] ") indicates that the
item is optional.

A.1.2 Comments

Comments are sequences of characters betiveend*/ . Comments may be properly
nested. One line comments start with where the following sequence of characters on
the same line is the comment.

A.1.3 Lexical Structure

The input sequence of characters are assumed to be Unicode Fiedollowing tokens
are defined during lexical analysis:

1In previous work, we published a technical report about MKL and a lambda calculus for connection seman-
tics [17]. The semantics for that language and the one presented in this thesis are not the same.
2htt p: // www. uni code. or g/

217

218

A Syntax of MKL

An identifierl DENT is a non-empty sequenceletters(A,... Zanda,... z), digits
(0,...9), and underscore |, where the first character must not be a digit.

An unsigned integer constablt NT is a non-empty sequence of digits (.. 9).

An unsigned real constatiREAL is an unsigned integer constant followed by a
dot (.), possibly followed by an unsigned integer constant, possibly followed by
exponential symbols€gande), which is followed by an unsigned integer constant,
possibly prepended with a sign characteo(-). Examplesl2. ,91. 2, 2e8, and
3.12e- 2.

A string constanSTRI NGis a sequence of character between quot@swhere

the character sequence can contain escape sequences, each starting with the escape
charactek . Possible escape sequences are horizontal ta}y fetvline § n), dou-

ble quote ("), and escape charactén ().

A primitive constantPRI M Tl VE is a built-in constant or function, represented
as a sequence of letters, where the start of the sequen@® isFor example
@nt _mul .

A.1.4 Reserved Words

The following are reserved words, that may not be used as identifiers.

Array DAESol ver I nt Li st Map Real
Set String el se error fal se fst
fun if in include |et mat ch
snd t hen true type val when

A.1.5 Top-Level

top ::=
let letpat param{ "->" param} Let binder with parans
"=" expr top
| let letpat "=" expr top Let bi nder
| let letpat ":" ty "=" expr top Let binder with type
| let letpat ":" ty top Let unknown with type
| type IDENT top Type decl aration
| type IDENT "=" ty top Type synonynous
| include |IDENT top Include file
| ECF
A.1.6 Types
ty ::=
tyarrow Arrow type for Map

tyarrow "=>" ty

tyarrow ::= Arrow type for functions

A.1 Concrete Syntax

219

tyatom
tyatom"->" tyarrow

tyatom::=

Al.7

expr

| et pat

| DENT

I nt

Real

Bool

String
oy
oty 1T
Li st tyatom
"ty "}
Array tyatom
Yty {0ty))

param::=

cons ¢

op ::

T
nen gy ms

Map tyatomtyatom

Set tyatom

DAESol ver

Expressions

fun IDENT ":" tyatom"->" expr
let |letpat param{ "->" param}
"=" expr in

l et pat_atom "=" expr in expr
let letpat ":" ty "=" expr in expr
if expr then expr el se expr

let letpat ":" ty in expr

mat ch expr with matchcases
Array "." IDENT { atom}+

Map "." IDENT { atom}

Set "." IDENT { atom}

DAESol ver "." IDENT { atom}
cons

| DENT

I DENT ":" tyatom

op

op "::" cons

Identifier
I nteger type
Real type
Bool ean type
String type
Unit type
Li st type

Array type

Tupl e type

Any nodel type
Speci fic nodel type
Map type

Set Type

DAE Sol ver instance type

Functi on abstraction
Local let binders

| F- expression

Local | et unknown
Mat ch expressi on
Array operation

Map operation

Set operation

DAESol ver operation

Sinple let pattern

Paraneter with type

Cons

Qperators

220

A Syntax of MKL

app_l eft

| op operator op

operator ::=

*

>="

|
|
|
|
|

A

A

e
>_V-'

app_left ::=
atom

| app_left atom

| fst atom

| snd atom

| val atom

| error atom

atom:: =

| DENT

| true

| false

| U NT

| UREAL

| STRI NG

| PRIMTIVE

(I

| expr { "," expr } "]"

| expr { "," expr } "}"

I ")

I

expr { ",

expr } ")"

A.1.8 Pattern Matching

mat chcases :: =
"|" pattern [when expr] "-
| matchcases "|"
"->" expr

pattern ::=
pat _op
| pat_op "::" pattern
pat_op ::=
pat _|eft
| pat_op OP pat_op

pat _left ::=
pat _atom

S0

expr
pattern [when expr]

Appl i cation

First tuple el enent
Second tupl e el enent
Model val ue constructor
Error

Identifier

True

Fal se

Integer literal

Real (float) literal
String literal
Primtive operation

Enpty |i st
Li st

Array

Unit literal
Tupl e

Mat ch cases

Cons pattern

Pat t ern oper at or

A.2 Abstract Syntax 221

pat _left pat_atom

|

| fst pat_atom First elemof a tuple

| snd pat_atom Second el emof a tuple

| val IDENT ":" tyatom Model val ue pattern
pat _atom:: =

| DENT Pattern variabl e

| true True

| false Fal se pattern

| UINT Unsi gned Integer literal

| UREAL Unsi gned Real literal

| STRI NG String literal

|ty Unit literal

| "'" atom Pattern expression

[A Enpty |ist

| "[" pattern { "," pattern} "]" Li st pattern

| UK COLON tyatom Unknown pattern

| "(" pattern { "," pattern} ")" Tupl e pattern

| " Wl dcard pattern

A.2 Abstract Syntax

This section defines an abstract syntax for representing an intermediate language of MKL.
The result of parsing the concrete syntaxrignslatedinto an abstract syntax tree de-
scribed in this section. The most essential translation steps are:

e File inclusion (see Section 12.1.1).

e Desugar top-level constructs, meaning substitution of type synonymous and trans-
lation of top let-binders into local binders.

e Pattern compilation/translation. The process translatgsc h-expressions into
primitives for deconstructing models, lists and tuples.

e Type checking and model lifting (see Chapter 10 for a formal treatment of the core).

The objective of the abstract syntax for this intermediate language is to give the reader of
this thesis a better understanding of which other language constructs that are part of the
language, besides what was presented about the core. The aim is not to be a full language
specification. Basic definitions:

Variables z,y,z € X

Unknowns u €U

Integers 1 €7

Constants c¢e€ C = {true,fal se}UIntU Real U String

222

A Syntax of MKL

A.2.1 Types

Types in the language are defined as follows:

T u=

Comments:

Bool

I nt

Real
String
T—T

()

(7]

(Ti zEl..n)
<7>

<>

Bot
pseudo,
{7}
T=>T
Set 1
DAESol ver

Boolean type
Integer type
Real type
String type
Function type
Unit type

List type

Tuple type
Model type

Any model type
Bot type

User defined pseudo type
Array type

Map type

Set type
DAESolver type

e The four first typedBool , | nt, Real , andSt ri ng is represented as the ground
typel" in Chapter 10.

o All types, except for Bot typ®ot , and the user defined pseudo tyjseudo, can
be syntactically defined by the user (compare with the types of the concrete syntax).

e The bot typeBot is used as the type the element of an empty list or an empty array.

e Each pseudo type is assigned a unique af pseudo,). The pseudo type is created
by giving it a name using theype syntax, e.g.t ype Egs creates a new pseudo
type. All places after this definition where tygpgs is used will be the same pseudo

type.

e TheDAESol ver solver type is the type of an instance of the ADT DAESolver.

A.2 Abstract Syntax 223

A.2.2 Expressions

e = x Variable
| Az:Te Lambda abstraction
| ee Application
| ¢ Constant
| wu:r Unknown
| v(r) New unknown creation
| e@e Model application
| val e:7 Model value
| decon(e,d,e,e) Model deconstructor
| fixe Fixed-point
| ifetheneelsee If-expression
| e==e Equality test
| e::e List constructor
| T[] Empty list
| 1case(e,x,x,e,e) List case
| (ei iel..n) Tuple
| proj ifrome Projection
| adt Built-in ADT
| adtop e; ‘€1 Built-in ADT operation
| errore User defined error
Comments:

e The list case expressidrcase(v, 1, x1, €1, e2) deconstructs a list. If v has the
shape of a cons valug : : vy, vy is substituted forz; andwv, substituted for, in
e; that is the resulting expression.«ihas the shape of an empty list, expression
is the resulting expression.

e Projectionpr oj i f r omo returns element numbeifrom v, wherev is assumed
to be have the shape of a tuple.

e Expressionudt is the value of atypér}, => 7, Set 7, orDAESol ver.

e Expressiomudtop v; *'™ calls a built-in ADT operation.

e Expressiorer r or v stops execution of the program and returns an error message

v, Wherev is assumed to have ty(8t r i ng.

A.2.3 Values
v on= Axr:T.e Lambda abstraction

| ¢ Constant
| u:r Unknown
| v@w Model application
| val v:r Model value
| vitw List constructor
| T[] Empty list
| ('Ui iel..n) Tuple
|

adt Built-in ADT

224 A Syntax of MKL

Built-in Abstract Data Types

All types of functions are stated using curried form, but partial application is not syntacti-
cally allowed. Type variables for the built-in abstract data types (ADTSs) are written with
a prepended single quote, e.ga.

B.1 Array

Array operations for a random access array.

Array.length : {"a} -> Int

An expressiorf Array. | engt h a) evaluates to the length (the number of elements) of
arraya.

Array.make : Int ->'a -> {’ a}

An expressiorf Array. make n e) creates anew array of lengtffilled with elemene.

Array.get : {"a} ->Int ->"a

An expression Array. get a k) evaluates to element with indéxin arraya. The
first element has number 0.Kfis outsiderange O tarray. | ength a - 1,thenthe
program terminates.

Array.set : {"a} ->Int ->"a -> ()

An expressior{ Array. set a k e) destructively updates arrayat indexk with ele-
mente. If k isoutsiderangeOtdrray. | ength a - 1,thenthe programterminates.

225

226 B Built-in Abstract Data Types

B.2 Set

A pure functionalSet .

Set.size : Set "a -> Int

An expressior(Set . si ze s) evaluates to the cardinality (the number of elements) of
sets.

Set.enpty : Set 'a

An expressior Set . enpt y) evaluates to an empty skt

Set.add : "a -> Set 'a -> Set 'a

An expressiorf Set . add e s) evaluates to a new set that contains all elemestpifis
element.

Set.nem: 'a -> Set 'a -> Bool

An expressiori Set . mem e s) evaluates to true if elemeatexists in ses, else false.

Set.renbve : 'a -> Set 'a -> Set 'a

An expressior{ Set . renove e s) evaluates to a new set containing all elements of
except fore.

Set.toList : Set 'a -> [’a]

An expressiorf Set . t oLi st s) evaluates to a list representation of set

B.3 Map

A purely functional finite map.

Map.size : ('a =>"'b) -> Int

An expressiori Map. si ze n) evaluates to the number of elementsrin

Map. enpty @ ("a => 'h)

An expressiolg Map. enpt y) evaluates to a new empty map.

1The type of the element of thBet is here expressed as a type variable, but will internally use Bete
during type checking.

B.3 Map 227

Map.add : "a ->'b -> ("a=>"h) -> ("a =>"h)

An expressior(Map. add k v m) evaluates to a new map that contains all key/value
pairs of mapmplus a new a binding between kkyand valuev. If k already exists imm
the previous binding is removed.

Map.find : "a->("a =>"h) ->"b

An expressior(Map. fi nd k m) evaluates to the value bound to kkyin mapm It
terminates the program if the element is not found. Note:Neg@ nembefore calling
Map. find.

Map.nmem: 'a -> ('a => 'b) -> Bool

An expressiorn(Map. mem k n) evaluates ta r ue if there exists a binding of kel in
mapm elsef al se.

Map.renove @ 'a -> ("a =>"'b) -> ("a =>"Dh)

An expressiolfMap. renove k m) evaluatesto a new map containing all key/value pairs
in mapm except for a binding of kel that is removed.

Map.toList : ("a =>"'h) ->[("a,'b)]

An expressior(Map. t oLi st n) evaluates to a list of tuples containing all key/value
pairs in mapm

228 B Built-in Abstract Data Types

B.4 DAESolver

ADT DAESolver interfaces the IDA solver from the SUNDIALS suite [68].

DAESol ver. make : {Real} -> {Real} -> {Real} ->
(Real -> {Real} -> {Real} -> [Real]) -> DAESol ver

An expression DAESol ver. make yy yp id res) evaluates to a new instance of a
DAE solver. Argumenyy is an array of initial values for vectarand argumenyp the
initial values for vectory. Argumenti d is an array ofReal specifying a differential
variable (value 1.0) or an algebraic variable (value 0.0). Argurndris used for correc-
tion of initial conditions. Argument es is the supplied residual function that has type
(Real -> {Real} -> {Real} -> [Real]),whereits first parameter is the in-
dependent variable of time, parameter 1 the dependent variable yégtand parameter

2 the vectory(t). The output residual is returned as a lisRefal .

DAESol ver.step : Real -> DAESol ver -> Real

An expressior DAESol ver . step t s) integrates the DAE over a time, wherds the

next time a computed result is desired enés the DAESolver instance. The result of

the function call is the time reached by the solver. If the returned time is zero, an error
occurred. The result of the computation is destructively updated in the arrays supplied to
DAESol ver . nake.

Big-step Semantics of MKL Core

Evaluation Rules e|lU = e|U

(BS-ABS) (BS-UK)
w:r| Ui = w:ir|Us

Ar:te|Up = dx:te| U

€1|U1 :>)\£CZT.€3|U2

ey | Uy = v | U x—wvileg | Us = vy | U

2| 2 1| 3 [1] 3| 3 2| 2 (BS-APPABS)
el 82|U1 = ’UQ|U4

€1 | Uy = C| U,
es | Uz = v2 | U vy = d(c,v
2| Us 2| Us 3 = (¢, v2) (BS-APPCONST)

(BS-CONST)

c|U; = c|U; erez|Ur = v3|Us

u ¢ U1
(BS-NEWUK)
v(t)|Ur = u:<r>| U U{u}

81|U1=>1)1|U2 62|U2:>1}2|U3
(BS-MODAPP)
1@ ey | U, = 11Quy | Us

81|U1 :>1)1|U2

(BS-MODVAL)
val e;:7|U; = val vi:7|Us

e1 | U1 = v | U matchvy, d, ea, e eh | Uy = vy | U
1| Ur 1| U2 lvy,d, ez, €5) 5| Uz 2 | Us (BS-DECON-T)
decon(el,d, 62,83) | Ui = v | Us

e1 | Ui = v | U —matchv1, d, es, €} e3 | Uy = v | U:
1| Ur 1| Uz Hv1,d, ez, e3) 3| U 3| Us (BS-DECON-F)
deCOﬂ(el,d/7 62,63) | U = vs | Us

229

230 C Big-step Semantics of MKL Core

matcu:7,uk: 7, e, e) (BS-M-UK)

matchval v:r,val x:7,e, (Az:7.€) v) (BS-M-MVAL)

matchv, @ vg, 11 Q x9, €, (Ax1 : <> Az2:<>.€) U1 V2) (BS-M-MAPP)

The big-step semantics above is defined for languggeising syntax in Figure 10.1 on
page 138.

MKL Library

This appendix lists the MKL source code of the MKL library. The figure below outlines
dependencies between different modules in the library.

Base
Modeling
/ A \
Electrical Mechanical Elaboration

‘\“

MechatronicElaboration

AnalogElectrical RotationalMechanical / \

Simulation ExportModelica

231

232 D MKL Library

D.1 Base

let (nmod) : Int ->1Int ->Int = @ nt_nod

let (+) : Int ->1Int ->Int = @ nt_add

let (-) : Int ->1Int ->1Int = @ nt_sub

let (*) : Int ->1Int ->Int = @ nt_nul

let (/) : Int ->1Int ->1Int = @nt_div

let (<) : Int ->1Int -> Bool = @nt_I|ess

let (<=) : Int ->1Int -> Bool = @nt_I|ess_equal
let (> : Int ->1Int -> Bool = @@nt_great

let (>=) : Int ->1Int -> Bool = @nt_great_equal
let (!=) : Int -> Int -> Bool = @@nt_not_equal

let (+.) : Real -> Real -> Real = @eal _add

let (-.) : Real -> Real -> Real = @eal _sub

let (*.) Real -> Real -> Real = @®eal _nul

let (/.) Real -> Real -> Real = @eal _div

let (<.) Real -> Real -> Bool = @®eal _|ess

let (<=.) Real -> Real -> Bool = @eal _| ess_equal
let (>) : Real -> Real -> Bool = @eal _great

let (>=.) Real -> Real -> Bool = @®eal _great_equal
let (!=.) : Real -> Real -> Bool = @@ eal _not_equal
let (!) : Bool -> Bool = @ool _not

let (&&) Bool -> Bool -> Bool = @ool _and

let (]]) Bool -> Bool -> Bool = @ool _or

let (--) Int -> Int = @nt_neg

let (--.) : Real -> Real = @@eal _neg

let print : String -> () = @®rint

| et bool 2string : Bool -> String = @ool 2string
let int2string : Int -> String = @Ynt2string

let real2string : Real -> String = @eal 2string
let int2real : Int -> Real = @@nt2real

let real2int : Real -> Int = @®eal 2i nt

| et string2bool : String -> Bool = @@tring2bool
let string2int : String -> Int = @®tring2int

let string2real : String -> Real = @@®tring2real
let isBool String : String -> Bool @@ sbool string
let isReal String : String -> Bool @ sreal string
let islntString : String -> Bool = @sintstring

let sin: Real -> Real = @®in

let cos : Real -> Real = @®os

let tan : Real -> Real = @@an

let asin : Real -> Real = @asin
let acos : Real -> Real = @®cos
let atan : Real -> Real = @tan
let sinh : Real -> Real = @®inh
let cosh : Real -> Real = @®osh
let tanh : Real -> Real = @®anh
let ceil : Real -> Real = @®eil

let floor : Real -> Real = @@ oor

let log : Real -> Real = @@ og

let 10ogl0 : Real -> Real = @ o0gl0

let sgrt : Real -> Real = @®qrt

let exp : Real -> Real = @@xp

let (~.) : Real -> Real -> Real = @®@xponentiation

let substr : String ->1Int ->1Int -> String = @®&tring_substr
let strlen : String -> Int = @®tring_strlen

let (++) : String -> String -> String = @®tring_concat

D.2 Modeling

let printLine s:String -> () =
let _ =print sinprint "\n"

let printintLine i:Int -> () =
printLine (int2string i)

let printRealLine i:Real -> () =
printLine (real2string i)

D.2 Modeling

i ncl ude Base

type Egs

type Equations = <Eqs>

type Signal = <Real >

| et der : <Real -> Real>

| et EquationSysNode : <Eqs -> Eqs -> Egs>
let Eq : <Real -> Real -> Egs>

let Init : <Real -> Real -> Eqs>

let InitGuess : <Real -> Real -> Eqs>

let tine : <Real >

| et probe : <String -> Real >

let (=) : <Real -> Real -> Eqs> = Eq
let (;) <Egs -> Egs -> Eqs> = Equati onSysNode

D.3 Electrical

i ncl ude Mbdel i ng

type El ectrical Node
type Electrical = <Electrical Node>
l et Electrical Branch :
<Real -> Real -> Electrical Node -> El ectrical Node -> Eqs>
l et Electrical RefBranch : <Real -> Real -> Electrical Node -> Eqs>
type Vol tage = <Real >
type Current = <Real >

D.4 AnalogElectrical

include Electrical
i ncl ude Mechani cal

| et Resistor R Real -> p:Electrical -> n:Electrical -> Equations =
let i:Current in
let v:Voltage in
El ectrical Branch i v p n;
Rx*. i =v

| et Capacitor C. Real -> p:Electrical -> n:Electrical -> Equations =
let i:Current in
let v:Voltage in

234 D MKL Library

El ectrical Branch i v p n;
C . (der v) =i

let Inductor L:Real -> p:Electrical -> n:Electrical -> Equations =
let i:Current in
let v:Voltage in
El ectricalBranch i v p n;
L *. (der i) =v

|l et Gound p:Electrical -> Equations =
let i:Current in
let v:Voltage in
El ectrical RefBranch i v p;
v = 0.

let SineVoltage V:Real -> f:Real -> p:Electrical -> n:Electrical ->
Equations =
let Pl = 3.1415 in
let i:Current in
let v:Voltage in
El ectrical Branch i v p n;
v =V=x, sin(2. *. Pl =, f *. tine)

| et ConstantVoltage V:Real -> p:Electrical -> n:Electrical -> Equations =
let i:Current in
let v:Voltage in
El ectrical Branch i v p n;
v =V

let EMF k: Real -> p:Electrical -> n:Electrical -> flange: Rotational ->
Equations =

let i:Current in

let v:Voltage in

| et w Angul arVel ocity in

let phi:Angle in

l et tau: Torque in

El ectricalBranch i v p n;

Rot at i onal Ref Branch tau phi fl ange;

w = der(phi);
k . w=v;
tau = k *. i

| et Vol tageSensor output:Signal -> p:Electrical -> n:Electrical ->
Equations =
El ectrical Branch 0. output p n

| et Potential Sensor output:Signal -> p:Electrical -> Equations =
El ectrical Ref Branch 0. output p

| et CurrentSensor output:Signal -> p:Electrical -> n:Electrical ->

Equations =
El ectrical Branch output 0. p n

D.5 Mechanical

i ncl ude Model i ng

D.6 RotationalMechanical

type Rotati onal Node
type Rotational = <Rotational Node>
I et Rotational Branch :

<Real -> Real -> Rotational Node -> Rotational Node -> Eqs>
I et Rotational RefBranch : <Real -> Real -> Rotational Node -> Eqs>

type Angul arVel ocity = <Real >
type Angul ar Accel eration = <Real >
type Angle = <Real >

type Torque = <Real >

D.6 RotationalMechanical

i ncl ude Mechani cal

let Spring c:Real -> flangeA Rotational -> flangeB: Rotati onal

Equations =
l et tau: Torque in
let relphi:Angle in

Rot at i onal Branch tau rel phi flangeB fl angeA;

tau = ¢ *. rel phi

| et Danper d:Real -> flangeA Rotational -> flangeB: Rotational

Equations =
l et tau: Torque in
let relphi:Angle in

Rot at i onal Branch tau rel phi flangeB fl angeA;

tau = d =. der(relphi)

let Inertia J:Real -> flangeA Rotational
Equations =
| et tauA Torque in
l et tauB: Torque in
let phiAAngle in
| et phiB:Angle in
let phi:Angle in
I et w Angul arVel ocity in
I et a:Angul ar Accel eration in
Rot at i onal Ref Branch tauB phi B fl angeB;
Rot at i onal Ref Branch tauA phi A fl angeA;
phi A = phi;

phi B = phi;

w = der (phi);

a = der(w);

J *. a =tauA +. tauB

l et |deal Gear ratio:Real -> flangeA: Rotational

Equations =
l et tauA Torque in
| et tauB: Torque in
| et phi AAngle in
let phiB:Angle in
Rot at i onal Ref Branch tauA phi A fl angeA;
Rot at i onal Ref Branch tauB phi B fl angeB;
phi A = ratio *. phiB;
0. =ratio . tauA +. tauB

I et Fixed angle:Real -> flangeB: Rotational

-> Equations

-> flangeB: Rot ati onal

-> fl angeB: Rot ati onal

->

236 D MKL Library

l et tau: Torque in
Rot at i onal Ref Branch tau angl e fl angeB

| et Constant Torque tau: Real -> flangeB: Rotational -> Equations=
let phi:Angle in
Rot at i onal Ref Branch tau phi flangeB

| et Torque tau:Signal -> flangeB: Rotational -> Equations =
let phi:Angle in
Rot at i onal Ref Branch tau phi fl angeB

| et TorqueSensor tau:Signal -> flangeA: Rotational ->
flangeB: Rot ati onal -> Equations =
Rot ati onal Branch tau 0. flangeB flangeA

| et Angl eSensor phi:Signal -> flangeB: Rotational -> Equations =
Rot ati onal Ref Branch 0. (-.phi) flangeB

| et SpeedSensor w: Signal -> flangeB: Rotational -> Equations =
let phi:Angle in
Rot ati onal Ref Branch 0. (-.phi) flangeB;
w = der (phi)

| et AccSensor a:Signal -> flangeB: Rotational -> Equations =
let phi:Angle in
I et w Angul arVel ocity in
Rot at i onal Ref Branch 0. (-.phi) flangeB;
w = der(phi);
a = der(w)

| et Rel Angl eSensor phi Rel : Signal -> flangeA Rotational ->
flangeB: Rotati onal -> Equations =
Rot ati onal Branch 0. phiRel flangeB fl angeA

| et Rel SpeedSensor w: Signal -> flangeA: Rotational ->
flangeB: Rot ati onal -> Equations =
l et phiRel:Angle in
Rot at i onal Branch 0. phi Rel flangeB fl angeA;
w = der (phi Rel)

| et Rel AccSensor a:Signal -> flangeA Rotational ->
flangeB: Rotational -> Equations =
| et phiRel:Angle in
I et w Angul arVel ocity in
Rot at i onal Branch 0. phi Rel flangeB fl angeA;
w = der (phi Rel);
a = der(w)

D.7 Elaboration

i ncl ude Model i ng

type Expr <

type Node = <>

type Unknown = <>

type Branch = <>

type NodeMap = (Node => Unknown)

D.7 Elaboration 237

type NodeMapLi st = [(Node, Unknown)]

type BranchSet = (Set Branch)

type BranchLi st = [Branch]

type ExprMap = (Node => Expr)

type ExprlList = [(Node, Expr)]

type ProbeMap = (String => [Signal])
type InitVal Map = (<Real > => (Real , Bool))
type UkSet = (Set <Real >)

type UkMap = (Signal => (Int,Bool))

| et el aborateConnections isBranch: (<> -> Bool) ->
i sRef Branch: (<> -> Bool) ->
nodel : Equati ons ->
Equations =
| et addNode node: Node -> nodenap: NodeMap -> NodeMap =
if Map. mem node nodenap then nodenap
el se let u:<Real > in Map.add node u nodenap
in

| et sunexpr branches: BranchSet -> ExprMap =
| et worker branches: BranchLi st -> enap: Expr Map -> ExprMap =
mat ch branches with
| (bi v pn)::bs when isBranch b ->
let emapl = if Map.nmemp emap
then Map.add p ((Map.find p enap) +. i) enap
else Map.add p i enmap in
let emap2 = if Map.memn emapl
then Map.add n ((Map.find n emapl) -. i) emapl
else Map.add n (-. i) enmapl in
wor ker bs emap2
| (bi v p)::bs when isRefBranch b ->
let emapl = if Map.memp emap
then Map.add p ((Map.find p emap) +. i) enap
else Map.add p i enmap in
wor ker bs emapl
| [1 -> emap
in worker (Set.toList branches) (Map.enpty)
in

| et sunzero m Equations -> branches: BranchSet -> Equations =
| et worker elist:ExprList -> Equations =
match elist with
| (_,e)::es ->e = 0.; worker es
| [1 ->m
in worker (Mp.toList (sunmexpr branches))
in

| et potentials nodel:Equations -> (Equations, BranchSet) =
| et worker m Equations -> nodemap: NodeMap ->
branchset: BranchSet -> (<>, NodeMap, BranchSet) =

match mwith
| bi v pn wenisBranch b ->

| et nodemap2 = addNode n (addNode p nodemmp) in

let eq = (v = (Map.find p nodemap2) -

(Map. find n nodemap2)) in

(eq, nodemap2, Set. add m branchset)
| bi v p when isRefBranch b ->

| et nodemap2 = addNode p nodenap in

238

D MKL Library

let eq = (v = (Map.find p nodemap2)) in
(eq, nodenap2, Set . add m branchset)
| el ; e2 ->
| et (elb, nodenapl, branchsetl) =
wor ker el nodenmap branchset in
| et (e2b, nodenap2, branchset2) =
wor ker e2 nodenmapl branchsetl in
(elb ; e2b, nodenmp2, branchset?2)
| _ -> (mnodenap, branchset)

in
| et (nodel, ,branchset) =
wor ker nodel (Map.enpty) (Set.enpty)
in (nodel, branchset)
in

| et (nodel 2, branchset2) = potentials node
sunzero nodel 2 branchset 2

| et addProbe s:String -> u:Signal -> ps: ProbeMap
if Map.mems ps then Map.add s (u::(Map.find
el se Map.add s [u] ps

| et el aborat eProbes nodel : Equati ons -> (Equati ons, ProbeMap)

let elab e:<> -> ps: ProbeMap -> (<>, ProbeMap)
match e with

ps)) ps

| "probe (val s:String) -> let u:Signal in (u,addProbe s u ps)

| el e2 ->
let (elb,psl) = elab el ps in
let (e2b,ps2) = elab e2 psl in
(elb e2b, ps2)
| _ -> (e, ps)
in el ab nodel (Map.enpty)

l et initValues egs:Equations -> InitVal Map =

| et get eqs: Equations -> acc:lnitVal Map -> InitVal Map =

match eqs with
| el ; e2 -> get e2 (get el acc)

| Init x (val v:Real) -> Map.add x (v, false) acc
| I'nitGuess x (val v:Real) -> Map.add x (v,true) acc
I

_ -> acc
in get eqgs (Map.enpty)

| et unknowns eqs: Equations -> UkSet =
let get e:<> -> acc: UkSet -> UkSet =
match e with
| el e2 -> get e2 (get el acc)
| "tine -> acc
| uk:<Real> -> Set.add e acc
| _ -> acc
in get egs (Set.enpty)

| et noUnknowns egs: Equations -> Int =
Set. si ze (unknowns eqs)

| et noEquations eqs: Equations -> Int =
match eqs with

| el ; e2 -> (noEquations el) + (noEquations e2)

| el =e2 ->1
| _->0

D.8 MechatronicElaboration

239

| et real Unknowns egs: Equations -> (Int, UkMap) =
let get e:<> -> acc: (Int,UkMap) -> (Int, UkMap) =
match e with
| el e2 -> get e2 (get el acc)
| "time -> acc
| der x ->
(match x with
| uk:<Real > ->
let (k,ukmap) = acc in
if Map. nem e uknap
then (k, Map.add e (fst (Map.find e ukmap),true) ukmap)
el se ((k+1, Map.add e (k,true) ukmap))
| _ ->error "lllegal diffrentiation of expression")
| uk:<Real > ->
if Map.neme (snd acc) then acc
el se ((fst acc)+1, Map.add e (fst acc,false) (snd acc))
| el -> acc
in get egs (0, (Map.enpty))

| et makeUkMap eqs: Equations -> UkMap =
snd (real Unknowns eqs)

D.8 MechatronicElaboration

i ncl ude Mechani cal
include Electrical
i ncl ude El aboration

| et isMechatronicBranch b:<> =
match b with
| "Electrical Branch -> true
| "Rotational Branch -> true
| _ -> false

| et isMechatronicRefBranch b:<> =
match b with
| "Electrical RefBranch -> true
| ' Rotational Ref Branch -> true
| _ ->false

| et el aborate nodel: Equati ons -> (Equations, ProbeMap) =
| et (npdel 2, probes) = el aborat eProbes nodel in

(el abor at eConnecti ons i sMechat roni cBranch
i sMechat r oni cRef Branch nodel 2, pr obes)

D.9 Simulation

i ncl ude Mechat roni cEl aborati on

type StepVal = (Real,[Real])
type SimulationResult = ([String],[StepVal])

type Residual = Real -> {Real} -> {Real} -> [Real]

| et makeResi dual nodel : Equati ons -> uknmap: UkMap ->

240 D MKL Library

ctime: Real -> yy:{Real} -> yp:{Real} -> [Real] =
| et real Expr e:<> -> Real =
match e with
| (val f:(Real -> Real -> Real)) el e2 ->
f (real Expr el) (real Expr e2)
| (val f:(Real -> Real)) el ->f (real Expr el)
| val v:Real ->v
| "tinme -> ctinme
| der x -> (match x with
| uk:Signal -> Array.get yp (fst (Map.find x ukmap))
| _ ->error "Derivatives only allowed on unknowns")
| uk:Signal -> Array.get yy (fst(Map.find e uknap))
| _ -> error "Unsupported nodel construct"
in
l et traverseEq m Equations -> acc:[Real] -> [Real] =
match mwith
| el ; e2 -> traverseEq e2 (traverseEq el acc)
| el = e2 -> (real Expr el -. real Expr e2) :: acc
| _ -> acc
in traverseEq nodel []

| et makel ni t Val ues nodel : Equati ons -> ukmap: UkMap -> ({Real },{Real}) =
let initval map = initValues nodel in
l et size = Map.size ukmap in
let yy = Array. nake size 0. in
let yp = Array. make size 0. in
let setvals initvals:[(Signal, (Real,Bool))] -> {Real} =
match initvals with
| (u,(v,_))::xs ->
let _ = Array.set yy (fst (Map.find u ukmap)) v in setvals xs
[[1 ->vyy
in (setvals (Mp.toList initvalmp) , yp)

| et makeStepVal currtine:Real -> yy:{Real} ->
probes:[(String,[Signal])] -> ukmap: UkMap -> StepVal =
| et nkvals probes:[(String,[Signal])] -> [Real] =
mat ch probes with
| (s,u::us)::ss -> (Array.get yy (fst(Map.find u ukmap)))::
(mkvals ((s,us)::ss))
| (s,[])::ss -> nkval s ss
[1 ->1]

in (currtinme, nkval s probes)

| et nakeProbeNames probes:[(String,[Signal])] -> n:Int -> [String] =
mat ch probes with
| (s,u::us)::ss ->
let s2 = s ++ (if n>1then " " ++ int2string n else "") in
s2:: (makeProbeNanes ((s,us)::ss) (n+l))
| (s,[])::ss -> nakeProbeNanmes ss 1

[11 ->1]

let initConditionCorrection ukmap: UkMap -> {Real} =
let id = Array. make (Map.size ukmap) 0. in
| et worker uklist:[(Signal,(Int,Bool))] -> {Real} =
mat ch uklist with
| (u,(i,true))::us ->1let _ = Array.set idi 1.0 in worker us
| _::us -> worker us
| [] ->id

D.10 Export Modelica 241

in worker (Mp.toList uknmap)

let revResult Ist:[StepVal] -> acc:[StepVal] -> [StepVval] =
match Ist with
| x::xs -> revResult xs (x::acc)
| [1 -> acc

| et sinulate nodel: Equations -> steptine: Real -> endtine: Real ->
Sinul ati onResult =
| et (nodel 2, probes) = el aborate nodel in
| et probelist = Map.toList probes in
| et ukmap = nakeUkMap nodel 2 in
| et residual = nakeResidual nodel 2 ukmap in
let (yy,yp) = nakelnitValues nodel 2 ukmap in
let id = initConditionCorrection ukmap in
let state = DAESol ver.make yy yp id residual in
let simoop currtine:Real -> acc:[StepVal] -> [Stepval] =
if currtime >=. endtinme then acc

el se
| et stepval = nekeStepVal currtinme yy probelist ukmap in
let newtime = DAESol ver.step steptine state in
if newtine == 0. then acc

el se simoop (newine +. steptinme) (stepval::acc)
in
(makePr obeNanes probelist 1,revResult (simoop 0. []) [])

let pprintSinulation res:SinulationResult -> String =
l et (names,stepvals) =res in
|l et psteps step:[StepVval] -> first:Bool -> String =
match step with
| (t,x::xs)::xxs when first ->
real 2string t ++ "\t" ++ psteps ((t,x::xs)::xxs) fal se
| (t,x::xs8)::xxs ->
real 2string x ++ "\t" ++ psteps ((t,xs)::xxs) false
| (t,[])::xxs -> "\n" ++ psteps xxs true

|-

in psteps stepvals true

I et printsimnodel:Equations -> steptinme: Real -> endtine:Real -> () =
print (pprintSinmulation (sinulate nodel steptinme endtine))

D.10 Export Modelica

i ncl ude Mechat roni cEl aborati on

I et nmkvar uks:(Int,UkMap) -> e:<> -> String =
match uks with
| (_,m) -> "uk" ++ int2string (fst (Map.find e ma))

| et pprintModelica nane:String ->

probelist:[(String,[Signal])] ->
nodel : Equations -> String =

I et uks = real Unknowns nodel in

| et real 2nodelicaString r:Real -> String =

if r < 0. then "(" ++ real2stringr ++ ")" else real2string r
in
I et pprintUnknowns us: (Int,UkMap) -> initval map:lnitValMap -> String =

242 D MKL Library

let initstr u:Signal -> String =
if Map.nmemu initval map then
let (initval,guess) = Map.find u initvalmp in
"(start=" ++ real 2string initval ++
(if guess then "" else ",fixed=true") ++ ")"
else ""
in
let prn us:[(Signal,(Int,Bool))] -> String =
match us with
| (u,_)::us ->" Real " ++ nkvar uks u ++
initstr u ++ ";\n" ++ prn us
|11 ->
in prn (Map.toList (snd us))
in
| et pprintExpr expr:<> -> String =
match expr with

el +. e2 -> "(" ++ pprintExpr el ++ " + " ++ pprintExpr e2 ++ ")"
el e2 -> "(" ++ pprintExpr el ++ " - " ++ pprintExpr e2 ++ ")"
el e2 -> pprintExpr el ++ " %= " ++ pprintExpr e2

*
el /. e2 -> pprintExpr el ++ " / " ++ pprintExpr e2
-, e -> "(-" ++ pprintExpr e ++ ")"
N

el

"l ogl0 e -> "l oglO(" ++ pprintExpr e ++ ")"
“tine -> "tine"

uk: <Real > -> nkvar uks expr

val r:Real -> real 2nodelicaString r

I

|

I

|

I

| . e2 -> pprintExpr el ++ " A" 4+ "(" ++ pprintExpr e2 ++ ")"
| "der e -> "der (" ++ pprintExpr e ++ ")"
| "sine-> "sin(" ++ pprintExpr e ++ ")"
| "cos e -> "cos(" ++ pprintExpr e ++ ")"
| "tan e -> "tan(" ++ pprintExpr e ++ ")"
| "asin e -> "asin(" ++ pprintExpr e ++ ")"
| "acos e -> "acos(" ++ pprintExpr e ++ ")"
| "atan e -> "atan(" ++ pprintExpr e ++ ")"
| "sinh e -> "sinh(" ++ pprintExpr e ++ ")"
| "cosh e -> "cosh(" ++ pprintExpr e ++ ")"
| "tanh e -> "tanh(" ++ pprintExpr e ++ ")"
| "sqgrt e -> "sqrt(" ++ pprintExpr e ++ ")"
| "exp e -> "exp(" ++ pprintExpr e ++ ")"
| "log e -> "l og(" ++ pprintExpr e ++ ")"
|

I

|

I

in
| et pprintEqgs nodel: Equations -> String =
mat ch nodel with
| el ; e2 -> pprintEgs el ++ pprintEqgs e2
| el =e2 ->" " ++ pprintExpr el ++ " =" ++ pprintExpr e2 ++ ";\n"
| _ >
in
et pprintQutput probes:[(String,[Signal])] -> n:Int -> String =
mat ch probes with
| (s,u::us)::ss ->
output Real " ++ s ++ (if n > 1 then "_" ++ int2string n
else "") ++
= " ++ nkvar uks u ++ ";\n" ++ pprintQutput ((s,us)::ss) (n+l)
| (s,[])::ss -> pprintQutput ss 1
VIR
in
"model " ++ name ++ "\n" ++ pprintQutput probelist 1 ++
"protected\n" ++ pprintUnknowns uks (initValues nodel) ++
"equation\n" ++ pprintEgs nodel ++ "end " ++ name ++ "

D.11 Performance Test Source Code 243

| et exportModelica name: String -> nodel : Equations -> String =
| et (nodel 2, probes) = el aborate nodel in
pprint Model i ca nane (Map.toList probes) nodel 2

D.11 Performance Test Source Code

The following program lists the MKL source code for the programs used in performance
testing. Note that MechSys is including MechsysBasics.

i ncl ude Anal ogEl ectri cal
i ncl ude Rot ati onal Mechani cal

| et ShaftEl enent flangeA Rotational -> flangeB: Rotational ->
Equations =
let rl:Rotational in
Spring 8. flangeA ri;
Danper 1.5 flangeA r1i;
Inertia 0.5 rl1 flangeB

| et DCWbtor flange: Rotational -> Equations =
let el:Electrical in
let e2:Electrical in
let e3:Electrical in
let e4:Electrical in
Const ant Vol t age 60. el e4;
Resi stor 100. el e2;
I nductor 0.2 e2 e3;
EMF 1. e3 e4 flange;
Ground e4

| et FlexibleShaft n:Int -> flangeA Rotational -> flangeB: Rotational ->
Equations =

if n==1then
Shaft El ement fl angeA fl angeB

el se
let rl:Rotational in
Shaft El ement fl angeA r1;
Fl exi bl eShaft (n-1) rl1 flangeB

D.11.1 MechSys

i ncl ude MechsysBasi cs
i ncl ude Mechat roni cEl aborati on

| et MechSys =
let rl:Rotational in
let r2: Rotational in
let r3:Rotational in
DCWbt or r1;
Inertia 0.2 rl r2;
Fl exi bl eShaft 40000 r2 r3

let main =
| et (egs, probes) = elaborate MechSys in

244 D MKL Library

print ("Unknowns: " ++ int2string (noUnknowns eqgs) ++ "\n" ++
"Equations: " ++ int2string (noEquations egs) ++ "\n")

D.11.2 CircuitHierarchy

i ncl ude Mechatroni cEl aborati on
i ncl ude Export Mdelica
i ncl ude Anal ogEl ectri cal

| et SubConponent p:Electrical -> n:Electrical =
let el:Electrical in
Resi stor 150. p el;
I nductor 0.1 el n;
Capacitor 0.01 el n

|l et RecConp lev:Int -> p:Electrical -> n:Electrical -> Equations =
let el:Electrical in
if lev == 1 then SubConponent p n el se
RecConp (lev-1) p el;
RecComp (lev-1) el n;
RecConp (lev-1) el n

let CGrcuit =
let eel:Electrical in
let ee2:Electrical in
Si neVol t age 220. 50. eel ee2;
RecConp 11 eel ee2;

Ground ee2
let main =
l et (eqs, probes) = elaborate Circuit in
print ("Unknowns: " ++ int2string (noUnknowns eqgs) ++ "\n" ++

"Equations: " ++ int2string (noEquations eqgs) ++ "\n")

Notation

Symbols and Operators

T State vector

Y Measurement signal

u Known input signal

R The set of real numbers

N The set of natural numbef$,1,2,3,...}.
Vo For allz (universal quantifier)

Jx For somer (existential quantifier)
—p Negation ofp

pAq Conjunction ofp andgq

pVyq Disjunction ofp andq

iff If and only if

reA Elementz is a member of seft

yé¢ A Elementz is not an element of set
A\ B Difference of setd and setB
AUB Union of set4 and setB

ANB Intersection of sel and setB

L1 ® Ly Appends listLs to 1y

r Typing Environment

T Type

e Expression

Abbreviations and Acronyms

ADT Abstract Data Types

245

246 Notation

AST Abstract Syntax Tree

BNF Backus-Naur Form

BTA Binding-Time Analysis

CBN Call-by-name

CcBv Call-by-value

CPS Cyber-Physical System

DAE Differential-Algebraic Equation

DSL Domain-Specific Language

EBNF Extended Backus-Naur Form

FP Functional Programming

DSP Domain-Specific Processor

EOO Equation-Based Object-Oriented

FHM Functional Hybrid Modeling

FRP Functional Reactive Programming

GADT Generalized Algebraic Data Type

GUI Graphical User Interface

HDL Hardware Description Language

HOAM Higher-Order Acausal Models

JIT Just-in-time

MDA Model Driven Architecture

MKL Modeling Kernel Language

MSL Modelica Standard Library

ODE Ordinary Differential Equation

OOP Object-Oriented Programming

PE Partial Evaluation

SUNDIALS SUite of Nonlinear and Dlfferential/ALgebraic equation
Solvers

UML Unified Modeling Language

YACC Yet Another Compiler Compiler

[1]

(2]

Bibliography

Martin Abadi, Luca Cardelli, Benjamin Pierce, and Gordon Plotkin. Dynamic typ-
ing in a statically typed languag&CM Transactions on Programming Languages
and Systemsl3(2):237—-268, 1991.

Martin Abadi and Luca CardelliA Theory of ObjectsSpringer-Verlag, New York,
USA, 1996.

[3] Accellera Organization. Verilog-AMS Language Reference Manual - Analog &

Mixed-Signal Extensions to Verilog HDL Version 2.3.1, 2009. Available from:
http://ww. vhdl . org/ veril og- anms/ [Last accessed: July 30, 2010].

[4] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullma@&ompilers:

Principles, Techniques, and Tool&ddison-Wesley, Boston, MA, USA, 2nd edi-
tion, 2006.

[5] Johan Akesson, Karl-Erik Arzén, Magnus Géfvert, Tove Bergdahl, and

[6]

[7]

(8]

Hubertus Tummescheit. Modeling and Optimization with Optimica and
JModelica.org—Languages and Tools for Solving Large-Scale Dynamic Op-
timization Problem. Computers and Chemical Engineeringanuary 2010.
Do0i:10.1016/j.compchemeng.2009.11.011.

Mats Andersson.Object-Oriented Modeling and Simulation of Hybrid Systems
PhD thesis, Department of Automatic Control, Lund Institute of Technology, Swe-
den, December 1994.

Deborah J. Armstrong. The quarks of object-oriented developn@mnmunica-
tions of the ACM 49(2):123-128, 2006.

Peter Aronsson and David Broman. Extendable Physical Unit Checking with Un-
derstandable Error Reporting. Proceedings of the 7th International Modelica
Conferencepages 890-897, Como, Italy, 2009.

247

248

Bibliography

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Peter Aronsson, Peter Fritzson, Levon Saldamli, PeteuBuand Kaj Nystrém.
Meta Programming and Function Overloading in OpenModelicaPrivceedings
of the 3rd International ModelicaConferenpages 431-440, Linkdping, Sweden,
2003.

Peter J. Ashenden, Gregory D. Peterson, and Darrell A. Teegailen System
Designer’s Guide to VHDL-AMS: Analog, Mixed-Signal, and Mixed-Technology
Modeling Morgan Kaufmann Publishers, USA, 2002.

Donald C. Augustin, Mark S. Fineberg, Bruce B. Johnson, Robert N. Linebarger,
F. John Sansom, and Jon C. Strauss. The SCi Continuous System Simulation Lan-
guage (CSSL)SIMULATION, 9:281-303, 1967.

Henk Barendregt.The Lambda Calculus: Its Syntax and Semanthdsrth Hol-
land, revised edition, 1984.

Paul Inigo Barton.The Modelling and Simulation of Combined Discrete/Continu-
ous ProcessePhD thesis, Department of Chemical Engineering, Imperial Collage
of Science, Technology and Medicine, London, UK, 1992.

Albert Benveniste and Gérard Berry. The Synchronous Approach to Reactive and
Real-Time SystemsProceedings of the IEEE9(9):1270-1282, 1991.

Per Bjesse, Koen Claessen, Mary Sheeran, and Satnam Singh. Lava: hardware
design in Haskell. IrProceedings of the third ACM SIGPLAN international con-
ference on Functional programmirgages 174-184, New York, USA, 1998. ACM
Press.

A.P.J. Breunese and J.F. Broenink. Modeling Mechatronic Systems Using the
SIDOPS+ Language. IRroceedings of ICBGM’97, 3rd International Conference
on Bond Graph Modeling and Simulatiorolume 29 ofSimulation Seriespages
301-306, 1997.

David Broman. Flow Lambda Calculus for Declarative Physical Connection Se-
mantics. Technical Reports in Computer and Information Science No. 1, LIU Elec-
tronic Press, 2007.

David Broman. Safety, Security, and Semantic Aspects of Equation-Based Object-
Oriented Languages and Environments. Licentiate thesis. Thesis No 1337. De-
partment of Computer and Information Science, Linkdping University, December
2007.

David Broman. Growing an Equation-Based Object-Oriented Modeling Language.
In Proceedings of MATHMOD 09 Vienngages 1316-1324, Vienna, Austria,
20009.

David Broman. Should Software Engineering Projects be the Backbone or the Tail
of Computing Curricula? I#roceedings of the 23th IEEE Conference on Software
Engineering Education and Trainingages 153-156, Pittsburgh, USA, 2010.

Bibliography 249

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

David Broman, Peter Aronsson, and Peter Fritzson. Des@rsiderations for Di-
mensional Inference and Unit Consistency Checking in Modelic&rtceedings
of the 6th International Modelica Conferengeges 3-12, Bielefeld, Germany,
2008.

David Broman and Peter Fritzson. Type Safety of Equation-Based Object-Oriented
Modeling Languages. PLDI '06: Poster session at the ACM SIGPLAN 2006 Con-
ference on Programming Language Design and Implementation, Ottawa, Canada,
2006.

David Broman and Peter Fritzson. Ideas for Security Assurance in Security Critical
Software using Modelica. IProceedings of the Conference on Modeling and
Simulation for Public Safetypages 45-54, Linkdping, Sweden, 2005.

David Broman and Peter Fritzson. Abstract Syntax Can Make the Definition of
Modelica Less Abstract. IiProceedings of the 1st International Workshop on
Equation-Based Object-Oriented Languages and Jaudges 111-126, Berlin,
Germany, 2007. LIU Electronic Press.

David Broman and Peter Fritzson. Higher-Order Acausal Model®rbzeedings
of the 2nd International Workshop on Equation-Based Object-Oriented Languages
and Toolspages 5969, Paphos, Cyprus, 2008. LIU Electronic Press.

David Broman and Peter Fritzson. Higher-Order Acausal Mod&snulation
News Europel9(1):5-16, 2009.

David Broman, Peter Fritzson, and Sébastien Furic. Types in the Modelica Lan-
guage. InProceedings of the Fifth International Modelica Conferepeges 303—
315, Vienna, Austria, 2006.

David Broman, Kaj Nystrom, and Peter Fritzson. Determining Over- and Under-
Constrained Systems of Equations using Structural Constraint Delt@robeed-

ings of the Fifth International Conference on Generative Programming and Com-
ponent Engineering (GPCE’Q6pages 151-160, Portland, Oregon, USA, 2006.
ACM Press.

Peter Bunus and Peter Fritzson. Automated Static Analysis of Equation-Based
ComponentsSIMULATION, 80(7-8):321-245, 2004.

Peter Bunus and Karin Lunde. Supporting Model-Based Diagnostics with
Equation-Based Object Oriented Languages.Ptaceedings of the 2nd Interna-
tional Workshop on Equation-Based Object-Oriented Languages and pagks
121-130, Paphos, Cyprus, 2008. LIU Electronic Press.

Cristiano Calcagno, Walid Taha, Liwen Huang, and Xavier Leroy. Implement-
ing Multi-stage Languages Using ASTs, Gensym, and ReflectioRrdceedings

of Second International Conference on Generative Programming and Component
Engineering (GPCE’03)volume 2830 ofLNCS, pages 57—76. Springer-Verlag,
2003.

250 Bibliography

[32] Luca Cardelli. Type Systems. [hhe Computer Science and Engineering Hand-
book chapter 97. CRC Press, second edition, 2004.

[33] Luca Cardelli and Peter Wegner. On Understanding Types, Data Abstraction, and
Polymorphism ACM Comput. Surv.17(4):471-523, 1985.

[34] Francesco Casella, Filippo Donida, and Marco Lovera. Beyond Simulation: Com-
puter Aided Control System Design Using Equation-Based Object Oriented Mod-
elling for the Next Decade. IiProceedings of the 2nd International Workshop
on Equation-Based Object-Oriented Languages and ,Tpafges 35-45, Paphos,
Cyprus, 2008. LIU Electronic Press.

[35] Francois E. Cellier.Continuous System ModelingSpringer-Verlag, New York,
USA, 1991.

[36] Francois E. Cellier. Object-Oriented Modeling of Physical Systems: Promises
and Expectations. I®roc. Symposium on Modelling, Analysis, and Simulation,
CESA96, IMACS MultiConference on Computational Engineering in Systems
Applications pages 1126-1127, Lille, France, 1996.

[37] Francois E. Cellier and Ernesto KofmaBontinuous System SimulatioBpringer-
Verlag, New York, USA, 2006.

[38] Francois E. Cellier and Angela Nebot. The Modelica Bond-Graph Library. In
Proceedings of the 4th International Modelica Conferepages 57—65, Hamburg,
Germany, 2005.

[39] James Cheney and Hinze Ralf. First-Class Phantom Types. CISTR TR2003-1901,
Cornell University, 2003.

[40] Ernst Christen and Kenneth Bakalar. VHDL-AMS - A Hardware Description Lan-
guage for Analog and Mixed-Signal ApplicationkcEE Transactions on Circuits
and Systems II: Analog and Digital Signal Process#f(10):1263—-1272, 1999.

[41] Koen Claessen.Embedded Languages for Describing and Verifying Hardware
PhD thesis, Department of Computer Science, Chalmers University of Technology
and Goteborg University, Sweden, 2001.

[42] D. E. Comer, David Gries, Michael C. Mulder, Allen Tucker, A. Joe Turner, and
Paul R. Young. Computing as a disciplireommunications of the AC)MB2(1):9—
23, 1989.

[43] Krysztof Czarnecki and Ulrich EiseneckeGenerative Programming: Methods,
Tools, and ApplicationsAddison-Wesley, 2000.

[44] Ole-Johan Dahl and Kristen Nygaard. SIMULA: an ALGOL-based simulation
language Communications of the ACM)(9):671-678, 1966.

[45] Dassault Systems. Multi-Engineering Modeling and Simulation - Dymola - CA-
TIA - Dassault Systemeit t p: / / www. dynol a. com[Last accessed: July 14,
2010].

Bibliography 251

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

Nikolas G. de Bruijn. Lambda Calculus Notations with Na@ss Dummies, a
Tool For Automatic Formula Manipulation, with Application to the Church-Rosser
Theorem."Indagationes Mathematicge34(5):381-392, 1972.

Hilding ElImqvist. A Structured Model Language for Large Continuous Systems
PhD thesis, Department of Automatic Control, Lund University, Sweden, May
1978.

Hilding EImqgvist, Sven Erik Mattsson, and Martin Otter. Modelica - A Language
for Physical System Modeling, Visualization and InteractionPkaceedings of the
IEEE International Symposium on Computer Aided Control System De$8#D.

Hilding EImqgvist and Martin Otter. Methods for Tearing Systems of Equations in
Object-Oriented Modelling. I#Proceedings ESM’94 European Simulation Multi-
conferencepages 326—332, 1994.

Thilo Ernst, Stephan Jahnichen, and Matthias Klose. The Architecture of the
Smile/M Simulation Environment. IRroceedings 15th IMACS World Congress on
Scientific Computation, Modelling and Applied Mathematieslume 6 ofMod-
elling and Applied Mathematicpages 653—658, 1997.

Peter FritzsonPrinciples of Object-Oriented Modeling and Simulation with Mod-
elica 2.1 Wiley-IEEE Press, New York, USA, 2004.

Peter Fritzson, Peter Aronsson, Hakan Lundvall, Kaj Nystrém, Adrian Pop, Levon
Saldamli, and David Broman. The OpenModelica Modeling, Simulation, and De-
velopment Environment. IRroceedings of the 46th Conference on Simulation and
Modeling (SIMS’05) pages 83-90, Trondheim, Norway, 2005.

Peter Fritzson, Peter Aronsson, Adrian Pop, Hakan Lundvall, Kaj Nystrom,

Levon Saldamli, David Broman, and Anders Sandholm. OpenModelica - A

Free Open-Source Environment for System Modeling, Simulation, and Teach-
ing. In Proceedings of the 2006 IEEE Conference on Computer Aided Control
Systems DesignMunich, Germany, 2006. See also the OpenModelica Project.

www.openmodelica.org [Last accessed: Dec 30, 2008].

Peter Fritzson, David Broman, Francois Cellier, and Christoph Nytsch-Geusen.
Equation-Based Object-Oriented Languages and Tools. Report on the Workshop
EOOLT 2007 at ECOOP 2007. |@bject-Oriented Technology. ECOOP 2007
Workshop Readexolume 4906 ol NCS, pages 27—-39. Springer-Verlag, 2008.

Peter Fritzson and Vadim Engelson. Modelica - A Unified Object-Oriented Lan-
guage for System Modeling and Simulation. Rroceedings of the European
Conference on Object-Oriented Programminglume 1445 ofLNCS. Springer-
Verlag, 1998.

Peter Fritzson, Adrian Pop, and Peter Aronsson. Towards Comprehensive Meta-
Modeling and Meta-Programming Capabilities in ModelicaPhoceedings of the
4th International Modelica Conferengeages 519-525, Hamburg, Germany, 2005.

252 Bibliography

[57] Peter Fritzson, Adrian Pop, David Broman, and Peter AsonsFormal Semantics
Based Translator Generation and Tool Development in Practiderdeeedings of
ASWEC 2009 Australian Software Engineering Conferepeges 256—266. IEEE
Computer Society, 2009.

[58] Peter Fritzson, Lars Viklund, Johan Herber, and Dag Fritzson. High-level mathe-
matical modeling and programmint£EE Software12(4):77-87, 1995.

[59] Georgina FabianA Language and Simulator for Hybrid Systen®hD thesis, In-
stitute for Programming research and Algorithmics, Technische Universiteit Eind-
hoven, Netherlands, Netherlands, 1999.

[60] Walter Gellert. The VNR Concise Encyclopedia of Mathematiogan Nostrand
Reinhold, 1977.

[61] George Giorgidze and Henrik Nilsson. Embedding a functional hybrid modelling
language in Haskell. 1#roceedings of the 20th International Symposium on the
Implementation and Application of Functional Langua@8s)8.

[62] George Giorgidze and Henrik Nilsson. Higher-Order Non-Causal Modelling and
Simulation of Structurally Dynamic Systems. Rroceedings of the 7th Interna-
tional Modelica Conferen¢gages 208-218, Como, Italy, September 2009. LIU
Electronic Press.

[63] George Giorgidze and Henrik Nilsson. Mixed-level Embedding and JIT Compila-
tion for an Iteratively Staged DSL. IRroceedings of the 19th Workshop on Func-
tional and (Constraint) Logic Programming (WFLP’]l@ages 19-34, Madrid,
Spain, January 2010.

[64] Adele Goldberg and David Robso8malltalk-80: the language and its implemen-
tation Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1983.

[65] James Gosling, Bill Joy, Guy Steele, and Gilad Brachfze Java Language Speci-
fication, 3rd Edition Prentice Hall, 2005.

[66] Fritz Henglein. Efficient type inference for higher-order binding-time analysis. In
Functional Programming Languages and Computer Architeciotame 523 of
LNCS, pages 448—-472. Springer-Verlag, 1991.

[67] J. Roger Hindley and Jonathan P. Seldimmbda-Calculus and Combinators: An
Introduction Cambridge University Press, 2nd edition, 2008.

[68] Alan C. Hindmarsh, Peter N. Brown, Keith E. Grant, Steven L. Lee, Radu Ser-
ban, Dan E. Shumaker, and Carol S. Woodward. SUNDIALS: Suite of nonlinear
and differential/algebraic equation solverdCM Transactions on Mathematical
Software 31(3):363-396, 2005.

[69] Graham HuttonProgramming in HaskellCambridge University Press, 2007.

[70] lain S. Duff. On Algorithms for Obtaining a Maximum TransversACM Trans-
actions on Mathematical Softwarg3):315-330, 1981.

Bibliography 253

[71] lain S. Duff and John K. Reid. An Implementation of Targi&lgorithm for the
Block Triangularization of a Matrix. ACM Transactions on Mathematical Soft-
ware 4(2):137-147,1978.

[72] IEEE 1706.1 Working GroupEEE Std 1076.1-1999, IEEE Standard VHDL Ana-
log and Mixed-Signal Extension(EEE Press, New York, USA, 1999.

[73] INRIA. Scicos Homepageht t p: / / ww»+ rocq. i nria. fr/scicos/ [Last
accessed: July 10, 2010].

[74] INRIA. The Caml language: Homehttp://cam .inria.fr/ [Last ac-
cessed: July 13, 2010].

[75] ISO/IEC. SO/ IEC 14882 : Programming language CANSI, New York, USA,
1998.

[76] ITI. SimulationX.http://ww. i ti.de/ [Lastaccessed: July 10, 2010].

[77] Barry Jay. Pattern Calculus: Computing with Functions and Structuggsinger-
Verlag, 2009.

[78] JModelica.org. http://ww. j nodel i ca. org [Last accessed: July 10,
2010].

[79] Johan AkessonLanguages and Tools for Optimization of Large-Scale Systems
PhD thesis, Department of Automatic Control, Lund Institute of Technology, Swe-
den, November 2007.

[80] Gilles Kah. An experiment in partial evaluation: The generation of a compiler
generator. IrRewriting Techniques and Application®lume 202 oL NCS, pages
124-140. Springer-Verlag, 1985.

[81] Gilles Kahn. Natural semantics. Wth Annupal Symposium on Theoretical As-
pects of Computer Sciences on STACS 8@lume 247 ofLNCS, pages 22-39,
Passau, Germany, 1987. Springer-Verlag.

[82] Mattihias Kloas, Viktor Friesen, and Martin Simons. SMILE - A Simulation En-
vironment for Energy System. |Rroceedings of the 5th International IMACS-
Symposium on Systems Analysis and Simulation (SAS’pages 503-506. Gor-
don and Breach Publishers, 1995.

[83] Peter Kunkel and Volker MehrmanrDifferential-Algebraic Equations Analysis
and Numerical SolutianEuropean Mathematical Society, 2006.

[84] David Kagedal. A Natural Semantics specification for the equation-based modeling
languge Modelica. Master’s thesis, Linképing University, 1998.

[85] David Kagedal and Peter Fritzson. Generating a Modelica Compiler from Natural
Semantics Specifications. Wroceedings of the Summer Computer Simulation
Conferencel998.

254 Bibliography

[86] Chris Lattner and Vikram Adve. LLVM: A Compilation Framewk for Lifelong
Program Analysis & Transformation. IRroceedings of the International Sympo-
sium on Code Generation and Optimization (CGO.0BEE Press, 2004.

[87] Edward A. Lee. Computing needs timE€ommunications of the ACMb2(5):70—
79, 20009.

[88] Lennart Ljung.System Identification: Theory for the Usd?rentice Hall, second
edition, 1999.

[89] LMS. LMS International - 1D and 3D simulation software, testing systems and
engineering servicesht t p: / / www. | nsi nt | . conl [Last accessed: July 10,
2010].

[90] Maplesoft. Math Software for Engineers, Educators & Students - Maplesoft.
htt p: // www. mapl esof t. com [Last accessed: July 10, 2010].

[91] MathCore. MathModelica System Designer: Model based design of
multi-engineering systems. http://ww. mat hcor e. conf product s/
mat hnodel i ca/ [Last accessed: June 10, 2010].

[92] MathWorks. The Mathworks - Simulink - Simulation and Model-Based De-
sign. http://ww. mat hwor ks. coni pr oduct s/ si nul i nk/ [Last ac-
cessed: November 8, 2007].

[93] Sven Erik Mattsson, Hilding EImqvist, Martin Otter, and Hans Olsson. Initializa-
tion of Hybrid Differential-Algebraic Equations in Modelica 2.0. Rroceedings
of the 2nd International Modelica Conferenpages 9-15, Oberpfaffenhofen, Ger-
many, 2003.

[94] Sven Erik Mattsson and Gustaf Séderlind. Index reduction in differential-algebraic
equations using dummy derivatives. 14(3):677-692, 1993.

[95] Jakob Mauss. Modelica Instance CreationPhoceedings of the 4th International
Modelica ConferengéHamburg, Germany, 2005.

[96] Joaquin Miller and Jishnu Mukerji. MDA Guide Version 1.0.1, 2003. Available
from: htt p: / / www. ong. or g.

[97] Robin Milner. A Theory of Type Polymorphism in Programmitigurnal of Com-
puter and System Scien¢dd(3):348-375,1978.

[98] Robin Milner, Mads Tofte, Robert Harper, and David MacQUuEee Definition of
Standard ML - RevisedThe MIT Press, 1997.

[99] John C. Mitchell. Concepts in Programming Languagésambridge University
Press, 2003.

[100] Modelica Associatiorht t p: / / www. nodel i ca. or g.[Last accessed: July 10,
2010].

Bibliography 255

[101] Modelica AssociationModelica - A Unified Object-Oriented Language for Phys-
ical Systems Modeling - Version, September 1997. Available fromht t p:
/I www. nodel i ca. org.

[102] Modelica AssociationModelica - A Unified Object-Oriented Language for Physi-
cal Systems Modeling - Language Specification VersionieBruary 2005. Avail-
able from:ht t p: / / www. nodel i ca. org.

[103] Modelica AssociationModelica - A Unified Object-Oriented Language for Physi-
cal Systems Modeling - Language Specification VersionZD07. Available from:
http://ww. nodel i ca. org.

[104] Modelica AssociationModelica - A Unified Object-Oriented Language for Physi-
cal Systems Modeling - Language Specification VersionZD20. Available from:
http://ww. nodel i ca. org.

[105] Modelica Association. Modelica Libraries - Modelica Portal, 2010. Available
from: http://ww. nodel i ca.org/libraries. [Last accessed: July 9,
2010].

[106] Masoud Najafi and Ramine Nikoukhah. Modeling and simulation of differential
equations in Scicos. IRroceedings of the Fifth International Modelica Conference
pages 177-185, Vienna, Austria, 2006.

[107] IEEE Standards Information NetworkEEE 100 The Authoritative Dictionary of
|IEEE Standards Term$EEE Press, New York, USA, 2000.

[108] Henrik Nilsson. Type-Based Structural Analysis for Modular Systems of Equa-
tions. In Proceedings of the 2nd International Workshop on Equation-Based
Object-Oriented Languages and Togiages 71-81, Paphos, Cyprus, 2008. LIU
Electronic Press.

[109] Henrik Nilsson, John Peterson, and Paul Hudak. Functional Hybrid Modeling. In
Practical Aspects of Declarative Languages : 5th International Symposium, PADL
2003 volume 2562 of. NCS, pages 376—390, New Orleans, Lousiana, USA, Jan-
uary 2003. Springer-Verlag.

[110] Henrik Nilsson, John Peterson, and Paul Hudak. Functional Hybrid Modeling from
an Object-Oriented Perspective. Rrnoceedings of the 1st International Workshop
on Equation-Based Object-Oriented Languages and ,Tpalges 71-87, Berlin,
Germany, 2007. LIU Electronic Press.

[111] Kristoffer Norling, David Broman, Peter Fritzson, Alexander Siemers, and Dag
Fritzson. Secure Distributed Co-Simulation over Wide Area NetworksPrin
ceedings of the 48th Conference on Simulation and Modelling (SIMS 2p8dggs
14-23, Goteborg (Sard), Sweden, 2007. LIU Electronic Press.

[112] Christoph Nytsch-Geusen et. al. MOSILAB: Development of a Modelica based
generic simulation tool supporting model structural dynamicsProceedings of
the 4th International Modelica Conferenégamburg, Germany, 2005.

256 Bibliography

[113] Object Management GroupUnified Modeling Language: Infrastructure version
2.1.1 February 2007. Available fronfit t p: / / wwsww. ong. or g.

[114] Object Management Groug/nified Modeling Language: Superstructure version
2.1.1 February 2007. Available fronfit t p: / / www. ong. or g.

[115] M. Oh and Costas C. Pantelides. A modelling and Simulation Language for Com-
bined Lumped and Distributed Parameter Syste@wmputers and Chemical En-
gineering 20(6-7).

[116] Hans Olsson, Martin Otter, Sven Erik Mattsson, and Hilding EImqvist. Balanced
Models in Modelica 3.0 for Increased Model Quality. Rroceedings of the 6th
International Modelica Conferenggages 21-33, Bielefeld, Germany, 2008.

[117] OpenModelica Projectht t p: / / ww. opennodel i ca. or g [Last accessed:
July 10, 2010].

[118] Constantinos C. Pantelides. The Consistent Initialization of Differential-Algebraic
Systems. SIAM Journal on Scientific and Statistical Computir@§2):213-231,
1988.

[119] Terence Parr. ANTLR Parser Generatdrt t p: // www. ant | r. org/ [Last
accessed: November 8, 2007].

[120] Mikael PetterssonCompiling Natural SemanticPhD thesis, Department of Com-
puter and Information Science, Linkdping University, Sweden, 1995.

[121] Linda R. Petzold. A Description of DASSL: A Differential/Algebraic System
Solver. InIMACS Trans. on Scientific Comp., 10th IMACS World Congress on
Systems Simulation and Scientific Conidontreal, Canada, 1982.

[122] Simon Peyton Jone§he Implementation of Functional Programming Languages
Prentice Hall, 1987.

[123] Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Geoffrey Wash-
burn. Simple unification-based type inference for gadts.Ptaceedings of the
eleventh ACM SIGPLAN international conference on Functional programming
pages 50-61, New York, USA, 2006. ACM Press.

[124] Benjamin C. PierceTypes and Programming Languag@&ke MIT Press, 2002.

[125] Rinus Plasmeijer and Marko van Eekelen. Concurrent CLEAN Language Report
- Version 2.1, 2002. Available fromhtt p://cl ean.cs.ru.nl/.[Last ac-
cessed: July 13, 2010].

[126] Gordon D. Plotkin. A Structural Approach to Operational Semantics. Technical
report, Department of Computer Science, University of Aarhus, 1981.

[127] Adrian Pop. Integrated Model-Driven Development Environments for Equation-
Based Object-Oriented Languagd¥D thesis, Department of Computer and In-
formation Science, Linkdping University, Sweden, 2008.

Bibliography 257

[128] Per Sahlin and E.F. Sowell. A Neutral Format for Buildi®gnulation Models.
In In Proceedings of the Conference on Building Simulation, IBP&#hcouver,
Canada, 1989.

[129] Tim Sheard. Accomplishments and research challenges in meta-programming. In
Proceedings of the Workshop on Semantics, Applications, and Implementation of
Program Generatignolume 2196 oL NCS, pages 2—44. Springer-Verlag, 2001.

[130] Tim Sheard and Simon Peyton Jones. Template Meta-programming for Haskell.
In Haskell '02: Proceedings of the 2002 ACM SIGPLAN workshop on Haskell
pages 1-16, New York, USA, 2002. ACM Press.

[131] Tim Sheard and Emir Pasalic. Meta-programming With Built-in Type Equality.
Electronic Notes in Theoretical Computer Scierk®9:49—-65, 2008.

[132] Jeremy Siek and Walid Taha. Gradual typing for functional languagedn:In
Scheme and Functional Programming WorksI2g96.

[133] Jeremy Siek and Walid Taha. Gradual Typing for Objects.Ptaceedings of
the 21st European conference on ECOOP 2007: Object-Oriented Progragmming
volume 4609 ofLNCS, pages 2—-27. Springer-Verlag, 2007.

[134] Simon Peyton JonesHaskell 98 Language and Libraries — The Revised Report
Cambridge University Press, 2003.

[135] Alan Snyder. Encapsulation and Inheritance in Object-Oriented Programming Lan-
guages. INOOPLSA '86: Conference proceedings on Object-oriented program-
ming systems, languages and applicatigages 38-45, Portland, Oregon, United
States, 1986. ACM Press.

[136] Guy L. Steele. Growing a Language. Videotape (54 minutes) of a talk ZGhe
Conference on Object-Oriented Programming, Systems, Languages, and Applica-
tions University Video Communications, 1998.

[137] Guy L. SteeleCommon LISP. The LanguagPigital Press, 2nd edition, 1990.

[138] Guy L. Steele. Growing a Languagéligher-Order and Symbolic Computation
12:221-236, 1999.

[139] Bjarne Stroustrup. A history of C++ 1979-1991. HOPL-II: The second ACM
SIGPLAN conference on History of programming languageges 271-297, New
York, USA, 1993. ACM Press.

[140] Walid Taha.Multi-Stage Programming: Its Theory and Applicatio®hD thesis,
Oregon Graduate Institute of Science and Technology, Oregon, USA, November
1999.

[141] Walid Taha. A Gentle Introduction to Multi-stage Programming. Damain-
Specific Program Generatiprolume 3016 ofLNCS, pages 30-50. Springer-
Verlag, 2004.

258 Bibliography

[142] Walid Taha et al. MetaOCaml|l Homepadett p: / / www. nmet aocanm . or g/
[Last accessed: April 8, 2010].

[143] Walid Taha and Tim Sheard. Multi-stage programming with explicit annotations.
In PEPM '97: Proceedings of the 1997 ACM SIGPLAN symposium on Partial
evaluation and semantics-based program manipulgtaiges 203-217, New York,
USA, 1997. ACM Press.

[144] Walid Taha and Tim Sheard. MetaML and multi-stage programming with explicit
annotations.Theoretical Computer Scienc48(1-2):211-242, 2000.

[145] D.A. van Beek, A.T. Hofkamp, M.A. Reniers, J.E.Rooda, and R.R.H.Schiffelers.
Syntax and Formal Semantics of Chi 2.0. SE Report: Nr. 2008-01, Department of
Mechanical Engineering, Eindhoven University of Technology, 2008.

[146] D.A. van Beek, K.L. Man, MA. Reniers, J.e. Rooda, and R.R.H Schiffelers. Syn-
tax and consistent equation semantics of hybrid Chie Journal of Logic and
Algebraic Programming8:129-210, 2006.

[147] Arie van Deursen and Paul Klint. Little Languages: Little Maintenande@rnal
of Software Maintenance: Research and Practio€2):75-92, 1998.

[148] Arie van Deursen, Paul Klint, and Joost Visser. Domain-specific languages: an
annotated bibliographyACM SIGPLAN Notices 35(6):26—36, 2000.

[149] Philip Wadler. Comprehending monad®athematical Structures in Computer
Science2(4):461-493, 1992.

[150] Zhanyong Wan and Paul Hudak. Functional reactive programming from first prin-
ciples. InPLDI '00: Proceedings of the ACM SIGPLAN 2000 conference on Pro-
gramming language design and implementatiages 242—-252, New York, USA,
2000. ACM Press.

[151] Andrew K. Wright and Matthias Felleisen. A Syntactic Approach to Type Sound-
ness.Information and Computatiori15(1):38-94, 1994.

[152] Hongwei Xi, Chiyan Chen, and Gang Chen. Guarded recursive datatype construc-
tors. In Proceedings of the 30th ACM SIGPLAN-SIGACT symposium on Prin-
ciples of programming languaggsages 224—235, New York, USA, 2003. ACM
Press.

[153] Yun Zhu, Edwin Westbrook, Jun Inoue, Alexandre Chapoutot, Cherif Salama,
Marisa Peralta, Travis Martin, Walid Taha, Marcia O’Malley, Robert Cartwright,
Aaron Ames, and Raktim Bhattacharya. Mathematical equations as executable
models of mechanical systems. Pnoceedings of the 1st ACM/IEEE International
Conference on Cyber-Physical Systepsges 1-11, New York, USA, 2010. ACM
Press.

[154] Dirk Zimmer. Introducing Sol: A General Methodology for Equation-Based Mod-
eling of Variable-Structure Systems. Rroceedings of the 6th International Mod-
elica Conferencgpages 47-56, Bielefeld, Germany, 2008.

Index 259

[155] Dirk Zimmer. Equation-Based Modeling of Variable-Structure SysteRtsD the-
sis, Swiss Federal Institute of Technology, Zirich, Switzerland, 2010.

Index

A Component, 9
Abstract data type, 104, 225 Conclusions, 211
Abstract syntax, 221 Connection semantics, 11, 161
Abstract syntax tree, 29 Connector, 27, 162
Acausality, 9 inside, 86
Acumen, 205 outside, 86
Acusal Conservation of energy, 11
model, 111 Constrained
ADT over, 76
Array, 225 under, 76
Map, 226 Constraint delta effect, 81
Set, 226 Contributions, 16
Any model type, 133, 139 origin, 20
Array, 225 overview, 16
AST, 29 CSsL, 7
B D
Balanced models, 206 DAE, 5
Binding-time analysis, 128 DAESolver, 228
Bot type, 151 hybrid, 29
DAESolver, 228
C Debugging, 90
Call-by-name, 97 Depth-first search, 86
Call-by-need, 97 Diagnosis, 9
Cast insertion, 144 Differential-algebraic equation, 5
Class, 26 Discrete event-based, 7
Class type, 69 Domain expert, 8
Coercion, 64 Domain-specific langauge, 8

260

Index

261

DSL, 8
domain, 8
domain expert, 8
Dynamic dispatch, 66

E

Eager evaluation, 97
Elaboration, 11, 159
ElectricalBranch, 113
EOO, 6

origin, 7
EOO Model, 9
Equality, 152
Equation

modification, 28
Equation-based object-oriented, 6
Error, 12

detect, 14
Error detection, 90
Errors

untrapped, 56
Evaluation, 191

Eager, 97
Executable specification, 173
Experiment, 2
Export DAE, 186
Expressiveness, 14, 193
Extended backus-naur form, 69
Extensibility, 14, 193

Extensional metaprogramming, 214

F
Failure, 12
Fault, 12
Featherweight Modelica, 77
FHM, 204
File includer, 184
Functional programming, 96
Future work, 214

G
GADT, 208
General-purpose language, 8
gPROMS, 1, 7, 203
Gradual typing, 207
Graphical user interface, 30
GUI, 30

H

Hardware description language, 1, 7

HDL, 1,7

Hierarchy naming, 177
Higher-order acausal model, 115
Higher-order acausal models, 109
Higher-order function, 97, 99
HOAM, 115

Hybrid Chi, 203

Hybrid DAE, 29

Hydra, 204

I
Implementation, 183
Information hiding, 64
Inheritane

private, 60
Initial conditions, 3
Initial value problem, 3
Inside connector, 86
Isolate error, 14

L
Lemma
Canonical forms, 149
inversion, 149
progress, 149
substitution, 150
Little languages, 8

M
Map, 226
Match, 102
Mathematical model, 2
MetaOcaml, 209
MKL, 16
core, 137
dynamic semantics, 146
lexical structure, 217
reserved keywords, 218
Simulation, 187
type safety, 148
type system, 139
Modeification equation, 28
Model, 2
destructing, 147
recursive, 117

262 Index

Model application, 147 Pattern variable, 102
Model driven architecture, 2 Performance aspects, 195
Model lifting, 143 Polymorphism
Model lifting relation, 141 parametric, 65
Model type, 126 Port, 9
any, 139 Preservation, 150
specific, 139 Probing, 177
Model value, 147 Problem area, 12
Modelica, 25, 26, 201, 206 Pseudo type, 132, 222
compilation process, 29 Published papers, 18
connect, 27 Pure language, 96
featherweight, 77
modeling, 26 R
MSL, 25 Recursion, 99
process, 29 Recursive model, 117
subtyping, 79 Redeclare, 28
type equiva|ence, 78 Related work, 201
types, 55, 206 Research method, 21
Modelica standard library, 25 Research questions, 14
Modeling, 6 Restriction operator, 140
Modeling kernel language, 16
Module, 105 S

Safe substitution, 80

MSL, 25
Multi-domain modeling, 8 Safety aspects, 12
Scope, 16

N Separate compilation, 76
Natural Semantics, 205 Set, 226
Natural semantics, 34 Side effect, 96
Node, 112 Simulation, 5

reasons, 6

0] Simulink, 7
Object, 8 Sol, 204
Object type, 69 Specific model type, 139
Object-oriented programming, 8 State-space form, 2
ODE, 2 Statically typed, 97
Omola, 9 Strict evaluation, 97
Optimization, 14 Strongly typed, 57
Outside connector, 86 Structural constraint delta, 75, 80
Over-constrained, 76 Structural dynamic systems, 214
Overloading, 64 Structural type system, 78

Subtyping, 58, 79

P Symbol table, 184
Pantelides, 12, 30 System, 2
Parametric polymorphism, 103 System modeling error, 13
Partial application, 98
Partial differential equations, 9 T

Pattern matching, 102 TempResistor, 28

Index

263

Thesis
future work, 214
problem area, 12
related work, 201
research method, 21
research questions, 14
scope, 16

Top-level, 98

Tuples, 101

TwoPin, 28

Type
any model, 133
model, 126

Type consistency, 140

Type equivalence, 78

Type inference, 65

Type safety, 57, 148

Type system, 57
nominal, 61
structural, 61

Types
prefixes, 71

Typing environment, 141

U
Under-constrained, 76
Unified modeling language, 2
Unit type, 101
Unknown, 126, 127
Unknowns, 147
Uses of models, 186

Vv
Verification, 189
VHDL-AMS, 1, 7, 202

No 14

No 17

No 18

No 22

No 33

No 51

No 54

No 55

No 58

No 69

No 71

No 77

No 94

No 97

No 109

No 111

No 155

No 165

No 170

No 174

No 192

No 213

Department of Computer and Information Science

Linkopings universitet

Dissertations

Linkoping Studies in Science and Technology

Anders Haraldsson: A Program Manipulation
System Based on Partial Evaluation, 1977, ISBN 91-
7372-144-1.

Bengt Magnhagen: Probability Based Verification
of Time Margins in Digital Designs, 1977, ISBN 91-
7372-157-3.

Mats Cedwall: Semantisk analys av process-
beskrivningar i naturligt sprék, 1977, ISBN 91- 7372-
168-9.

Jaak Urmi: A Machine Independent LISP Compiler
and its Implications for Ideal Hardware, 1978, ISBN
91-7372-188-3.

Tore Risch: Compilation of Multiple File Queries in
a Meta-Database System 1978, ISBN 91- 7372-232-4.
Erland Jungert: Synthesizing Database Structures
from a User Oriented Data Model, 1980, ISBN 91-
7372-387-8.

Sture Hagglund: Contributions to the Development
of Methods and Tools for Interactive Design of
Applications Software, 1980, ISBN 91-7372-404-1.

Pir Emanuelson: Performance Enhancement in a
Well-Structured Pattern Matcher through Partial
Evaluation, 1980, ISBN 91-7372-403-3.

Bengt Johnsson, Bertil Andersson: The Human-
Computer Interface in Commercial Systems, 1981,
ISBN 91-7372-414-9.

H. Jan Komorowski: A Specification of an Abstract
Prolog Machine and its Application to Partial
Evaluation, 1981, ISBN 91-7372-479-3.

René Reboh: Knowledge Engineering Techniques
and Tools for Expert Systems, 1981, ISBN 91-7372-
489-0.

Osten Oskarsson: Mechanisms of Modifiability in
large Software Systems, 1982, ISBN 91- 7372-527-7.
Hans Lunell: Code Generator Writing Systems, 1983,
ISBN 91-7372-652-4.

Andrzej Lingas: Advances in Minimum Weight
Triangulation, 1983, ISBN 91-7372-660-5.

Peter Fritzson: Towards a Distributed Programming
Environment based on Incremental Compilation,
1984, ISBN 91-7372-801-2.

Erik Tengvald: The Design of Expert Planning
Systems. An Experimental Operations Planning
System for Turning, 1984, ISBN 91-7372- 805-5.
Christos Levcopoulos: Heuristics for Minimum
Decompositions of Polygons, 1987, ISBN 91-7870-
133-3.

James W. Goodwin: A Theory and System for Non-
Monotonic Reasoning, 1987, ISBN 91-7870-183-X.
Zebo Peng: A Formal Methodology for Automated
Synthesis of VLSI Systems, 1987, ISBN 91-7870-225-9.
Johan Fagerstrom: A Paradigm and System for
Design of Distributed Systems, 1988, ISBN 91-7870-
301-8.

Dimiter Driankov: Towards a Many Valued Logic of
Quantified Belief, 1988, ISBN 91-7870-374-3.

Lin Padgham: Non-Monotonic Inheritance for an
Object Oriented Knowledge Base, 1989, ISBN 91-
7870-485-5.

No 214

No 221

No 239

No 244

No 252

No 258

No 260

No 264

No 265

No 270

No 273

No 276

No 277

No 281

No 292

No 297

No 302

No 312

No 338

No 371

No 375

No 383

Tony Larsson: A Formal Hardware Description and
Verification Method, 1989, ISBN 91-7870-517-7.
Michael Reinfrank: Fundamentals and Logical
Foundations of Truth Maintenance, 1989, ISBN 91-
7870-546-0.

Jonas Lowgren: Knowledge-Based Design Support
and Discourse Management in User Interface
Management Systems, 1991, ISBN 91-7870-720-X.
Henrik Eriksson: Meta-Tool Support for Knowledge
Acquisition, 1991, ISBN 91-7870-746-3.

Peter Eklund: An Epistemic Approach to Interactive
Design in Multiple Inheritance Hierarchies, 1991,
ISBN 91-7870-784-6.

Patrick Doherty: NML3 - A Non-Monotonic
Formalism with Explicit Defaults, 1991, ISBN 91-
7870-816-8.

Nahid Shahmehri: Generalized
Debugging, 1991, ISBN 91-7870-828-1.
Nils Dahlbidck: Representation of Discourse-
Cognitive and Computational Aspects, 1992, ISBN
91-7870-850-8.

Ulf Nilsson: Abstract Interpretations and Abstract
Machines: Contributions to a Methodology for the
Implementation of Logic Programs, 1992, ISBN 91-
7870-858-3.

Ralph Rénnquist: Theory and Practice of Tense-
bound Object References, 1992, ISBN 91-7870-873-7.
Bjorn Fjellborg: Pipeline Extraction for VLSI Data
Path Synthesis, 1992, ISBN 91-7870-880-X.

Staffan Bonnier: A Formal Basis for Horn Clause
Logic with External Polymorphic Functions, 1992,
ISBN 91-7870-896-6.

Kristian Sandahl: Developing Knowledge Manage-
ment Systems with an Active Expert Methodology,
1992, ISBN 91-7870-897-4.

Christer Bickstrom: Computational Complexity of
Reasoning about Plans, 1992, ISBN 91-7870-979-2.
Mats Wirén: Studies in Incremental Natural
Language Analysis, 1992, ISBN 91-7871-027-8.
Mariam Kamkar: Interprocedural Dynamic Slicing
with Applications to Debugging and Testing, 1993,
ISBN 91-7871-065-0.

Tingting Zhang: A Study in Diagnosis Using
Classification and Defaults, 1993, ISBN 91-7871-078-2
Arne Jonsson: Dialogue Management for Natural
Language Interfaces - An Empirical Approach, 1993,
ISBN 91-7871-110-X.

Simin Nadjm-Tehrani: Reactive Systems in Physical
Environments: Compositional Modelling and Frame-
work for Verification, 1994, ISBN 91-7871-237-8.
Bengt Savén: Business Models for Decision Support
and Learning. A Study of Discrete-Event
Manufacturing Simulation at Asea/ABB 1968-1993,
1995, ISBN 91-7871-494-X.

Ulf Soéderman: Conceptual Modelling of Mode
Switching Physical Systems, 1995, ISBN 91-7871-516-
4.

Algorithmic

Andreas Kégedal: Exploiting Groundness in Logic
Programs, 1995, ISBN 91-7871-538-5.

No 396

No 413

No 414

No 416

No 429

No 431

No 437

No 439

No 448

No 452

No 459

No 461

No 462

No 475

No 480

No 485

No 494

No 495

No 498

No 502

No 503

No 512

No 520

No 522

George Fodor: Ontological Control, Description,
Identification and Recovery from Problematic
Control Situations, 1995, ISBN 91-7871-603-9.

Mikael Pettersson: Compiling Natural Semantics,
1995, ISBN 91-7871-641-1.

Xinli Gu: RT Level Testability Improvement by
Testability Analysis and Transformations, 1996, ISBN
91-7871-654-3.

Hua Shu: Distributed Default Reasoning, 1996, ISBN
91-7871-665-9.

Jaime Villegas: Simulation Supported Industrial
Training from an Organisational Learning
Perspective - Development and Evaluation of the
SSIT Method, 1996, ISBN 91-7871-700-0.

Peter Jonsson: Studies in Action Planning:
Algorithms and Complexity, 1996, ISBN 91-7871-704-
3.

Johan Boye: Directional Types in
Programming, 1996, ISBN 91-7871-725-6.
Cecilia Sjoberg: Activities, Voices and Arenas:
Participatory Design in Practice, 1996, ISBN 91-7871-
728-0.

Patrick Lambrix: Part-Whole Reasoning in
Description Logics, 1996, ISBN 91-7871-820-1.

Kjell Orsborn: On Extensible and Object-Relational
Database Technology for Finite Element Analysis
Applications, 1996, ISBN 91-7871-827-9.

Olof Johansson: Development Environments for
Complex Product Models, 1996, ISBN 91-7871-855-4.
Lena Strombick: User-Defined Constructions in
Unification-Based Formalisms, 1997, ISBN 91-7871-
857-0.

Lars Degerstedt: Tabulation-based Logic Program-
ming: A Multi-Level View of Query Answering,
1996, ISBN 91-7871-858-9.

Fredrik Nilsson: Strategi och ekonomisk styrning -
En studie av hur ekonomiska styrsystem utformas
och anviénds efter foretagsforvarv, 1997, ISBN 91-
7871-914-3.

Mikael Lindvall: An Empirical Study of Require-
ments-Driven Impact Analysis in Object-Oriented
Software Evolution, 1997, ISBN 91-7871-927-5.

Goran Forslund: Opinion-Based Systems: The Coop-
erative Perspective on Knowledge-Based Decision
Support, 1997, ISBN 91-7871-938-0.

Martin Skold: Active Database Management
Systems for Monitoring and Control, 1997, ISBN 91-
7219-002-7.

Hans Olsén: Automatic Verification of Petri Nets in
a CLP framework, 1997, ISBN 91-7219-011-6.

Thomas Drakengren: Algorithms and Complexity
for Temporal and Spatial Formalisms, 1997, ISBN 91-
7219-019-1.

Jakob Axelsson: Analysis and Synthesis of Heteroge-
neous Real-Time Systems, 1997, ISBN 91-7219-035-3.
Johan Ringstrom: Compiler Generation for Data-
Parallel Programming Languages from Two-Level
Semantics Specifications, 1997, ISBN 91-7219-045-0.
Anna Moberg: Narhet och distans - Studier av kom-
munikationsmonster i satellitkontor och flexibla
kontor, 1997, ISBN 91-7219-119-8.

Mikael Ronstrom: Design and Modelling of a
Parallel Data Server for Telecom Applications, 1998,
ISBN 91-7219-169-4.

Niclas Ohlsson: Towards Effective Fault Prevention
- An Empirical Study in Software Engineering, 1998,
ISBN 91-7219-176-7.

Logic

No 526

No 530

No 555

No 561

No 563

No 567

No 582

No 589

No 592

No 593

No 594

No 595

No 596

No 597

No 598

No 607

No 611

No 613

No 618

No 627

No 637

No 639

Joachim Karlsson: A Systematic Approach for
Prioritizing Software Requirements, 1998, ISBN 91-
7219-184-8.

Henrik Nilsson: Declarative Debugging for Lazy
Functional Languages, 1998, ISBN 91-7219-197-x.
Jonas Hallberg: Timing Issues in High-Level Synthe-
sis, 1998, ISBN 91-7219-369-7.

Ling Lin: Management of 1-D Sequence Data - From
Discrete to Continuous, 1999, ISBN 91-7219-402-2.

Eva L Ragnemalm: Student Modelling based on Col-
laborative Dialogue with a Learning Companion,
1999, ISBN 91-7219-412-X.

Jorgen Lindstrom: Does Distance matter? On geo-
graphical dispersion in organisations, 1999, ISBN 91-
7219-439-1.

Vanja Josifovski: Design, Implementation and
Evaluation of a Distributed Mediator System for
Data Integration, 1999, ISBN 91-7219-482-0.

Rita Kovordinyi: Modeling and Simulating
Inhibitory ~ Mechanisms in Mental Image
Reinterpretation - Towards Cooperative Human-
Computer Creativity, 1999, ISBN 91-7219-506-1.

Mikael Ericsson: Supporting the Use of Design
Knowledge - An Assessment of Commenting
Agents, 1999, ISBN 91-7219-532-0.

Lars Karlsson: Actions, Interactions and Narratives,
1999, ISBN 91-7219-534-7.

C. G. Mikael Johansson: Social and Organizational
Aspects of Requirements Engineering Methods - A
practice-oriented approach, 1999, ISBN 91-7219-541-
X.

Jorgen Hansson: Value-Driven Multi-Class Overload
Management in Real-Time Database Systems, 1999,
ISBN 91-7219-542-8.

Niklas Hallberg: Incorporating User Values in the
Design of Information Systems and Services in the
Public Sector: A Methods Approach, 1999, ISBN 91-
7219-543-6.

Vivian Vimarlund: An Economic Perspective on the
Analysis of Impacts of Information Technology:
From Case Studies in Health-Care towards General
Models and Theories, 1999, ISBN 91-7219-544-4.

Johan Jenvald: Methods and Tools in Computer-
Supported Taskforce Training, 1999, ISBN 91-7219-
547-9.

Magnus Merkel: Understanding and enhancing
translation by parallel text processing, 1999, ISBN 91-
7219-614-9.

Silvia Coradeschi: Anchoring symbols to sensory
data, 1999, ISBN 91-7219-623-8.

Man Lin: Analysis and Synthesis of Reactive
Systems: A Generic Layered Architecture
Perspective, 1999, ISBN 91-7219-630-0.

Jimmy Tjader: Systemimplementering i praktiken -
En studie av logiker i fyra projekt, 1999, ISBN 91-
7219-657-2.

Vadim Engelson: Tools for Design, Interactive
Simulation, and Visualization of Object-Oriented
Models in Scientific Computing, 2000, ISBN 91-7219-
709-9.

Esa Falkenroth: Database Technology for Control
and Simulation, 2000, ISBN 91-7219-766-8.

Per-Arne Persson: Bringing Power and Knowledge
Together: Information Systems Design for Autonomy
and Control in Command Work, 2000, ISBN 91-7219-
796-X.

No 660

No 688

No 689

No 720

No 724

No 725

No 726

No 732

No 745

No 746

No 757

No 747

No 749

No 765

No 771

No 772

No 758

No 774

No 779

No 793

No 785

No 800

No 808

No 821

Erik Larsson: An Integrated System-Level Design for
Testability Methodology, 2000, ISBN 91-7219-890-7.
Marcus Bjdreland: ~ Model-based
Monitoring, 2001, ISBN 91-7373-016-5.
Joakim Gustafsson: Extending Temporal Action
Logic, 2001, ISBN 91-7373-017-3.

Carl-Johan Petri: Organizational Information Provi-
sion - Managing Mandatory and Discretionary Use
of Information Technology, 2001, ISBN-91-7373-126-
9.

Paul Scerri: Designing Agents for Systems with Ad-
justable Autonomy, 2001, ISBN 91 7373 207 9.

Tim Heyer: Semantic Inspection of Software
Artifacts: From Theory to Practice, 2001, ISBN 91
7373208 7.

Pir Carlshamre: A Usability Perspective on Require-
ments Engineering - From Methodology to Product
Development, 2001, ISBN 91 7373 212 5.

Juha Takkinen: From Information Management to
Task Management in Electronic Mail, 2002, ISBN 91
7373 258 3.

Johan Aberg: Live Help Systems: An Approach to
Intelligent Help for Web Information Systems, 2002,
ISBN 91-7373-311-3.

Rego Granlund: Monitoring Distributed Teamwork
Training, 2002, ISBN 91-7373-312-1.

Henrik André-Jénsson: Indexing Strategies for Time
Series Data, 2002, ISBN 917373-346-6.

Anneli Hagdahl: Development of IT-supported
Interorganisational Collaboration - A Case Study in
the Swedish Public Sector, 2002, ISBN 91-7373-314-8.
Sofie Pilemalm: Information Technology for Non-
Profit Organisations - Extended Participatory Design
of an Information System for Trade Union Shop
Stewards, 2002, ISBN 91-7373-318-0.

Stefan Holmlid: Adapting users: Towards a theory
of use quality, 2002, ISBN 91-7373-397-0.

Magnus Morin: Multimedia Representations of Dis-
tributed Tactical Operations, 2002, ISBN 91-7373-421-
7.

Pawel Pietrzak: A Type-Based Framework for Locat-
ing Errors in Constraint Logic Programs, 2002, ISBN
91-7373-422-5.

Erik Berglund: Library Communication Among Pro-
grammers Worldwide, 2002, ISBN 91-7373-349-0.
Choong-ho Yi: Modelling Object-Oriented Dynamic
Systems Using a Logic-Based Framework, 2002, ISBN
91-7373-424-1.

Mathias Broxvall: A Study in the Computational
Complexity of Temporal Reasoning, 2002, ISBN 91-
7373-440-3.

Asmus Pandikow: A Generic Principle for Enabling
Interoperability of Structured and Object-Oriented
Analysis and Design Tools, 2002, ISBN 91-7373-479-9.
Lars Hult: Publika Informationstjanster. En studie av
den Internetbaserade encyklopedins bruksegenska-
per, 2003, ISBN 91-7373-461-6.

Lars Taxén: A Framework for the Coordination of
Complex Systems” Development, 2003, ISBN 91-
7373-604-X

Klas Gire: Tre perspektiv pa forvantningar och
forandringar i samband med inforande av
informationssystem, 2003, ISBN 91-7373-618-X.
Mikael Kindborg: Concurrent Comics -
programming of social agents by children, 2003,
ISBN 91-7373-651-1.

Execution

No 823

No 828

No 833

No 852

No 867

No 872

No 869

No 870

No 874

No 873

No 876

No 883

No 882

No 887

No 889

No 893

No 910

No 918

No 900

No 920

No 929

No 933

Christina Olvingson: On Development of
Information Systems with GIS Functionality in
Public Health Informatics: A Requirements
Engineering Approach, 2003, ISBN 91-7373-656-2.
Tobias Ritzau: Memory Efficient Hard Real-Time
Garbage Collection, 2003, ISBN 91-7373-666-X.

Paul Pop: Analysis and Synthesis of
Communication-Intensive Heterogeneous Real-Time
Systems, 2003, ISBN 91-7373-683-X.

Johan Moe: Observing the Dynamic Behaviour of
Large Distributed Systems to Improve Development
and Testing — An Empirical Study in Software
Engineering, 2003, ISBN 91-7373-779-8.

Erik Herzog: An Approach to Systems Engineering
Tool Data Representation and Exchange, 2004, ISBN
91-7373-929-4.

Aseel Berglund: Augmenting the Remote Control:
Studies in Complex Information Navigation for
Digital TV, 2004, ISBN 91-7373-940-5.

Jo Skamedal: Telecommuting’s Implications on
Travel and Travel Patterns, 2004, ISBN 91-7373-935-9.
Linda Askends: The Roles of IT - Studies of
Organising when Implementing and Using
Enterprise Systems, 2004, ISBN 91-7373-936-7.
Annika Flycht-Eriksson: Design and Use of Ontolo-
gies in Information-Providing Dialogue Systems,
2004, ISBN 91-7373-947-2.

Peter Bunus: Debugging Techniques for Equation-
Based Languages, 2004, ISBN 91-7373-941-3.

Jonas Mellin: Resource-Predictable and Efficient
Monitoring of Events, 2004, ISBN 91-7373-956-1.
Magnus Bang: Computing at the Speed of Paper:
Ubiquitous Computing Environments for Healthcare
Professionals, 2004, ISBN 91-7373-971-5

Robert Eklund: Disfluency in Swedish human-
human and human-machine travel booking di-
alogues, 2004, ISBN 91-7373-966-9.

Anders Lindstrom: English and other Foreign
Linguistic Elements in Spoken Swedish. Studies of
Productive Processes and their Modelling using
Finite-State Tools, 2004, ISBN 91-7373-981-2.

Zhiping Wang: Capacity-Constrained Production-in-
ventory systems - Modelling and Analysis in both a
traditional and an e-business context, 2004, ISBN 91-
85295-08-6.

Pernilla Qvarfordt: Eyes on Multimodal Interaction,
2004, ISBN 91-85295-30-2.

Magnus Kald: In the Borderland between Strategy
and Management Control - Theoretical Framework
and Empirical Evidence, 2004, ISBN 91-85295-82-5.
Jonas Lundberg: Shaping Electronic News: Genre
Perspectives on Interaction Design, 2004, ISBN 91-
85297-14-3.

Mattias Arvola: Shades of use: The dynamics of
interaction design for sociable use, 2004, ISBN 91-
85295-42-6.

Luis Alejandro Cortés: Verification and Scheduling
Techniques for Real-Time Embedded Systems, 2004,
ISBN 91-85297-21-6.

Diana Szentivanyi: Performance Studies of Fault-
Tolerant Middleware, 2005, ISBN 91-85297-58-5.
Mikael Ciker: Management Accounting as
Constructing and Opposing Customer Focus: Three
Case Studies on Management Accounting and
Customer Relations, 2005, ISBN 91-85297-64-X.

No 937

No 938

No 945

No 946

No 947

No 963

No 972

No 974

No 979

No 983

No 986

No 1004

No 1005

No 1008

No 1009

No 1013

No 1016

No 1017

No 1018

No 1019

No 1021

No 1022

No 1030

No 1034

Jonas Kvarnstrom: TALplanner and Other
Extensions to Temporal Action Logic, 2005, ISBN 91-
85297-75-5.

Bourhane Kadmiry: Fuzzy Gain-Scheduled Visual
Servoing for Unmanned Helicopter, 2005, ISBN 91-
85297-76-3.

Gert Jervan: Hybrid Built-In Self-Test and Test
Generation Techniques for Digital Systems, 2005,
ISBN: 91-85297-97-6.

Anders Arpteg: Intelligent Semi-Structured Informa-
tion Extraction, 2005, ISBN 91-85297-98-4.

Ola Angelsmark: Constructing Algorithms for Con-
straint Satisfaction and Related Problems - Methods
and Applications, 2005, ISBN 91-85297-99-2.

Calin Curescu: Utility-based Optimisation of
Resource Allocation for Wireless Networks, 2005,
ISBN 91-85457-07-8.

Bjorn Johansson: Joint Control
Situations, 2005, ISBN 91-85457-31-0.
Dan Lawesson: An Approach to Diagnosability
Analysis for Interacting Finite State Systems, 2005,
ISBN 91-85457-39-6.

Claudiu Duma: Security and Trust Mechanisms for
Groups in Distributed Services, 2005, ISBN 91-85457-
54-X.

Sorin Manolache: Analysis and Optimisation of
Real-Time Systems with Stochastic Behaviour, 2005,
ISBN 91-85457-60-4.

Yuxiao Zhao: Standards-Based = Application
Integration for Business-to-Business
Communications, 2005, ISBN 91-85457-66-3.

Patrik Haslum: Admissible Heuristics for
Automated Planning, 2006, ISBN 91-85497-28-2.
Aleksandra TeSanovic: Developing Reusable and
Reconfigurable Real-Time Software using Aspects
and Components, 2006, ISBN 91-85497-29-0.

David Dinka: Role, Identity and Work: Extending
the design and development agenda, 2006, ISBN 91-
85497-42-8.

Iakov Nakhimovski: Contributions to the Modeling
and Simulation of Mechanical Systems with Detailed
Contact Analysis, 2006, ISBN 91-85497-43-X.
Wilhelm Dahllof: Exact Algorithms for Exact
Satisfiability Problems, 2006, ISBN 91-85523-97-6.
Levon Saldamli: PDEModelica - A High-Level Lan-
guage for Modeling with Partial Differential Equa-
tions, 2006, ISBN 91-85523-84-4.

Daniel Karlsson: Verification of Component-based
Embedded System Designs, 2006, ISBN 91-85523-79-8
Ioan Chisalita: Communication and Networking
Techniques for Traffic Safety Systems, 2006, ISBN 91-
85523-77-1.

Tarja Susi: The Puzzle of Social Activity - The
Significance of Tools in Cognition and Cooperation,
2006, ISBN 91-85523-71-2.

Andrzej Bednarski: Integrated Optimal Code Gener-
ation for Digital Signal Processors, 2006, ISBN 91-
85523-69-0.

Peter Aronsson: Automatic Parallelization of Equa-
tion-Based Simulation Programs, 2006, ISBN 91-
85523-68-2.

Robert Nilsson: A Mutation-based Framework for
Automated Testing of Timeliness, 2006, ISBN 91-
85523-35-6.

Jon Edvardsson: Techniques for Automatic
Generation of Tests from Programs and
Specifications, 2006, ISBN 91-85523-31-3.

in Dynamic

No 1035

No 1045

No 1051

No 1054

No 1061

No 1073

No 1075

No 1079

No 1083

No 1086

No 1089

No 1091

No 1106

No 1110

No 1112

No 1113

No 1120

No 1127

No 1139

No 1143

No 1150

No 1155

No 1156

No 1183

Vaida Jakoniene: Integration of Biological Data,
2006, ISBN 91-85523-28-3.

Genevieve Gorrell: Generalized Hebbian
Algorithms for Dimensionality Reduction in Natural
Language Processing, 2006, ISBN 91-85643-88-2.
Yu-Hsing Huang: Having a New Pair of Glasses -
Applying Systemic Accident Models on Road Safety,
2006, ISBN 91-85643-64-5.

Asa Hedenskog: Perceive those things which cannot
be seen - A Cognitive Systems Engineering
perspective on requirements management, 2006,
ISBN 91-85643-57-2.

Cécile Aberg: An Evaluation Platform for Semantic
Web Technology, 2007, ISBN 91-85643-31-9.

Mats Grindal: Handling Combinatorial Explosion in
Software Testing, 2007, ISBN 978-91-85715-74-9.
Almut Herzog: Usable Security Policies for Runtime
Environments, 2007, ISBN 978-91-85715-65-7.

Magnus Wahlstrom: Algorithms, measures, and
upper bounds for Satisfiability and related problems,
2007, ISBN 978-91-85715-55-8.
Jesper Andersson: Dynamic Software Architectures,
2007, ISBN 978-91-85715-46-6.

Ulf Johansson: Obtaining Accurate and
Comprehensible Data Mining Models - An
Evolutionary Approach, 2007, ISBN 978-91-85715-34-
3.

Traian Pop: Analysis and Optimisation of
Distributed Embedded Systems with Heterogeneous
Scheduling Policies, 2007, ISBN 978-91-85715-27-5.
Gustav Nordh: Complexity Dichotomies for CSP-
related Problems, 2007, ISBN 978-91-85715-20-6.

Per Ola Kristensson: Discrete and Continuous Shape
Writing for Text Entry and Control, 2007, ISBN 978-
91-85831-77-7.

He Tan: Aligning Biomedical Ontologies, 2007, ISBN
978-91-85831-56-2.

Jessica Lindblom: Minding the body - Interacting so-
cially through embodied action, 2007, ISBN 978-91-
85831-48-7.

Pontus Wirnestal: Dialogue Behavior Management
in Conversational Recommender Systems, 2007,
ISBN 978-91-85831-47-0.

Thomas Gustafsson: Management of Real-Time
Data Consistency and Transient Overloads in
Embedded Systems, 2007, ISBN 978-91-85831-33-3.
Alexandru Andrei: Energy Efficient and Predictable
Design of Real-time Embedded Systems, 2007, ISBN
978-91-85831-06-7.

Per Wikberg: Eliciting Knowledge from Experts in
Modeling of Complex Systems: Managing Variation
and Interactions, 2007, ISBN 978-91-85895-66-3.
Mehdi Amirijoo: QoS Control of Real-Time Data
Services under Uncertain Workload, 2007, ISBN 978-
91-85895-49-6.

Sanny Syberfeldt: Optimistic Replication with For-
ward Conflict Resolution in Distributed Real-Time
Databases, 2007, ISBN 978-91-85895-27-4.

Beatrice Alenljung: Envisioning a Future Decision
Support System for Requirements Engineering - A
Holistic and Human-centred Perspective, 2008, ISBN
978-91-85895-11-3.

Artur Wilk: Types for XML with Application to
Xcerpt, 2008, ISBN 978-91-85895-08-3.

Adrian Pop: Integrated Model-Driven Development
Environments for Equation-Based Object-Oriented
Languages, 2008, ISBN 978-91-7393-895-2.

No 1185

No 1187

No 1204

No 1222

No 1238

No 1240

No 1241

No 1244

No 1249

No 1260

No 1262

No 1266

No 1268

No 1274

No 1281

No 1290

No 1294

No 1306

No 1313

No 1321

No 1333

Jorgen Skageby: Gifting Technologies -
Ethnographic Studies of End-users and Social Media
Sharing, 2008, ISBN 978-91-7393-892-1.

Imad-Eldin Ali Abugessaisa: Analytical tools and
information-sharing methods supporting road safety
organizations, 2008, ISBN 978-91-7393-887-7.

H. Joe Steinhauer: A Representation Scheme for De-
scription and Reconstruction ~ of Object
Configurations Based on Qualitative Relations, 2008,
ISBN 978-91-7393-823-5.

Anders Larsson: Test Optimization for Core-based
System-on-Chip, 2008, ISBN 978-91-7393-768-9.
Andreas Borg: Processes and Models for Capacity
Requirements in Telecommunication Systems, 2009,
ISBN 978-91-7393-700-9.

Fredrik Heintz: DyKnow: A Stream-Based Know-
ledge Processing Middleware Framework, 2009,
ISBN 978-91-7393-696-5.

Birgitta Lindstrom: Testability of Dynamic Real-
Time Systems, 2009, ISBN 978-91-7393-695-8.

Eva Blomgqvist: Semi-automatic Ontology Construc-
tion based on Patterns, 2009, ISBN 978-91-7393-683-5.

Rogier Woltjer: Functional Modeling of Constraint
Management in Aviation Safety and Command and
Control, 2009, ISBN 978-91-7393-659-0.

Gianpaolo Conte: Vision-Based Localization and
Guidance for Unmanned Aerial Vehicles, 2009, ISBN
978-91-7393-603-3.

AnnMarie Ericsson: Enabling Tool Support for For-
mal Analysis of ECA Rules, 2009, ISBN 978-91-7393-
598-2.

Jiri Trnka: Exploring Tactical Command and
Control: A Role-Playing Simulation Approach, 2009,
ISBN 978-91-7393-571-5.

Bahlol Rahimi: Supporting Collaborative Work
through ICT - How End-users Think of and Adopt
Integrated Health Information Systems, 2009, ISBN
978-91-7393-550-0.

Fredrik Kuivinen: Algorithms and Hardness Results
for Some Valued CSPs, 2009, ISBN 978-91-7393-525-8.

Gunnar Mathiason: Virtual Full Replication for
Scalable Distributed Real-Time Databases, 2009,
ISBN 978-91-7393-503-6.

Viacheslav Izosimov: Scheduling and Optimization
of Fault-Tolerant Distributed Embedded Systems,
2009, ISBN 978-91-7393-482-4.

Johan Thapper: Aspects of a Constraint
Optimisation Problem, 2010, ISBN 978-91-7393-464-0.
Susanna Nilsson: Augmentation in the Wild: User
Centered Development and Evaluation of
Augmented Reality Applications, 2010, ISBN 978-91-
7393-416-9.

Christer Thorn: On the Quality of Feature Models,
2010, ISBN 978-91-7393-394-0.

Zhiyuan He: Temperature Aware and Defect-
Probability Driven Test Scheduling for System-on-
Chip, 2010, ISBN 978-91-7393-378-0.

David Broman: Meta-Languages and Semantics for
Equation-Based Modeling and Simulation, 2010,
ISBN 978-91-7393-335-3.

Linkoping Studies in Arts and Sciences

No 504

Ing-Marie Jonsson: Social and Emotional
Characteristics ~ of Speech-based In-Vehicle
Information Systems: Impact on Attitude and
Driving Behaviour, 2009, ISBN 978-91-7393-478-7.

Linkdping Studies in Statistics

No 9

No 10

No 11

Davood Shahsavani: Computer Experiments De-
signed to Explore and Approximate Complex Deter-
ministic Models, 2008, ISBN 978-91-7393-976-8.

Karl Wahlin: Roadmap for Trend Detection and As-
sessment of Data Quality, 2008, ISBN 978-91-7393-
792-4.

Oleg Sysoev: Monotonic regression for large
multivariate datasets, 2010, ISBN 978-91-7393-412-1.

Linkoping Studies in Information Science

No1l

No 2

No 3

No 4

No 5

No 6

No7

No 8

No 9

No 10

No 11

No 12

No 13

No 14

Karin Axelsson: Metodisk systemstrukturering- att
skapa samstimmighet mellan informationssystem-
arkitektur och verksamhet, 1998. ISBN-9172-19-296-8.
Stefan Cronholm: Metodverktyg och anvandbarhet -
en studie av datorstodd metodbaserad
systemutveckling, 1998, ISBN-9172-19-299-2.

Anders Avdic: Anvéndare och utvecklare - om
anveckling med kalkylprogram, 1999. ISBN-91-7219-
606-8.

Owen Eriksson: Kommunikationskvalitet hos infor-
mationssystem och affdrsprocesser, 2000, ISBN 91-
7219-811-7.

Mikael Lind: Fran system till process - kriterier for
processbestimning vid verksamhetsanalys, 2001,
ISBN 91-7373-067-X.

Ulf Melin: Koordination och informationssystem i
foretag och natverk, 2002, ISBN 91-7373-278-8.

Pir J. Agerfalk: Information Systems Actability - Un-
derstanding Information Technology as a Tool for
Business Action and Communication, 2003, ISBN 91-
7373-628-7.

Ulf Seigerroth: Att forstd och fordandra
systemutvecklingsverksamheter - en taxonomi for
metautveckling, 2003, ISBN91-7373-736-4.

Karin Hedstrom: Spar av datoriseringens vérden —
Effekter av IT i dldreomsorg, 2004, ISBN 91-7373-963-
4.

Ewa Braf: Knowledge Demanded for Action -
Studies on Knowledge Mediation in Organisations,
2004, ISBN 91-85295-47-7.

Fredrik Karlsson: Method Configuration method
and computerized tool support, 2005, ISBN 91-85297-
48-8.

Malin Nordstrom: Styrbar systemforvaltning - Att
organisera systemférvaltningsverksamhet med hjalp
av effektiva forvaltningsobjekt, 2005, ISBN 91-85297-
60-7.

Stefan Holgersson: Yrke: POLIS - Yrkeskunskap,
motivation, IT-system och andra forutsittningar for
polisarbete, 2005, ISBN 91-85299-43-X.

Benneth Christiansson, Marie-Therese
Christiansson: Motet mellan process och komponent
- mot ett ramverk for en verksamhetsnira
kravspecifikation vid anskaffning av
komponentbaserade informationssystem, 2006, ISBN
91-85643-22-X.

