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Abstract

One of the most fundamental language constructs of equation-based object-
oriented languages is the possibility to state acausal connections, where
both potential variables and flow variables exist. Several of the state-of-
the art languages in this category are informally specified using natural
language. This can make the languages hard to interpret, reason about,
and disable the possibility to guarantee the absence of certain errors. In
this work, we construct a formal operational small-step semantics based
on the lambda-calculus. The calculus is then extended with more con-
venient modeling capabilities. Examples are given that demonstrate the
expressiveness of the language, and some tests are made to verify the
correctness of the semantics.

Keywords: Flow connection, Flow Lambda Calculus, Operational Semantics

1 Introduction

Modeling and simulation have been an important application area for several
successful programming languages, e.g., Simula [4] and C++ [12]. These lan-
guages and other general-purpose languages can be used efficiently for discrete
time/event-based simulation, but for continuous-time simulation, other special-
ized tools such as Simulink [8] are commonly used in industry. The latter sup-
ports causal block-oriented modeling, where each block has defined input(s)
and output(s). However, during the last decades, a new kind of language
has emerged, where differential algebraic equations (DAEs) can describe the
continuous-time behaviour of a system. These languages enable modeling of
complex physical systems by combining different domains, such as electrical,
mechanical, and hydraulic. Examples of such a languages are Modelica [9],
Omola [1], gPROMS [2, 11], VHDL-AMS [3], and χ (Chi) [5, 13]. Several of
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these languages (e.g., Modelica and Omola) support object-oriented concepts,
where physical models can be composed and reused. One of the fundamental
concepts enabling this composition, is the use of acausal connections between
model instances, with the use of potential and flow variables. These kinds of
variables are common in most physical domains and describe the preservation
of energy in a system. For example, in the electrical domain, potential variables
denote voltage potential and flow variables denote electric current, which obey
Kirchhoff’s current law, i.e., that the current should sum to zero in a node.
As another example, in the rotational mechanical domain, angles are expressed
using potential variables and torque is represented using flow variables.

1.1 Motivation and Contribution

Languages of this sort have been developed from an engineering perspective with
the focus on numerical solution strategies and run-time semantics for handling
mixed discrete / continuous-time (hybrid) systems. Several of these languages
have grown to be large and are informally specified using natural language.
This can make the languages hard to interpret, maintain, and reason about,
which affects both tool development and language evolution. Moreover, the
need for static detection and isolation of certain modeling errors is essential for
productive modeling and simulation. Such errors can concern over- and under-
constrained systems of equations, and consistency checking of physical units
and dimensions. Even if current tools support checking for these kind of errors,
a formal semantics of the language is needed to be able to develop checking
algorithms that guarantee the absence of faults.

Hence, there is a concrete need to be able to express the core concepts of
such equation-based object-oriented (EOO) languages using formal semantics.
We have in this paper developed a novel small-step operational semantics that
captures the essential constructs in such languages, including acausal connec-
tions, potential and flow-variables, and model abstraction. The semantics is
built on the untyped λ-calculus, which is extended with semantics for handling
flow-connections.
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1.2 Outline

The remainder of this paper is structured as follows. Section 2 gives an informal
introduction to acausal physical modeling using the concept of higher-order
models and functional abstraction. An example of a simple circuit is modeled
and the concept for model reuse and specialization is outlined. Section 3 states
the formal abstract syntax and operational semantics of the untyped flow λ-
calculus (written λ̃). This syntax and semantics forms the basis of the modeling
kernel language (MKL), which is presented in Section 4. The additional formal
syntax and formal semantic rules are given and syntactic derived forms are
described. The language presented in this section is the one used in the modeling
examples in Section 2. Section 5 describes the prototype implementation and
gives a short evaluation of the language semantics and Section 6 presents related
work. Finally, Section 7 states concluding remarks.

2 Informal Language Syntax and Semantics

In this section, an informal introduction to an experimental language called
Modeling Kernel Language (MKL) is outlined. The language is not intended
to be a full fledged modeling language, but to demonstrate the fundamental
modeling possibilities when a equation-based modeling language is based on the
lambda calculus.

2.1 A Simple Electrical Circuit

To illustrate the basic modeling capabilities, the simple circuit shown in Figure 1
is to be modeled and simulated.

Figure 1: Graphical outline of a simple electrical circuit.
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The model is described by the following source code:

def Circuit = model ()
{

def w1 = Wire();
def w2 = Wire();
def w3 = Wire();
def w4 = Wire();
Resistor(w1,w2,10);
Capacitor(w2,w4,0.01);
Resistor(w1,w3,100);
Inductor(w3,w4,0.1);
VSourceAC(w1,w4,220);
Ground(w4);

};

The code shows the definition of a new model called Circuit . The model
takes zero formal parameters, given by the empty tuple to the right of the model
keyword, model() . The content of the model is given within curly braces. The
first four statements define four new wires, e.g., connection points from which
the different components (model instances) can be connected.

The six components defined in this circuit correspond to the layout given in
Figure 1. Consider the first resistor instantiated using the following:

Resistor(w1,w2,10);

The two first arguments state that wires w1 and w2 will be connected to this
resistor. The last argument expresses that the resistance for this instance will
be 10 Ohm. Wire w2 is also given as argument to the capacitor, stating that
the first resistor and the capacitor are connected using wire w2.

2.2 Connections, Variables, and Flow Nodes

The concept of wire is not built into the language. Instead, it is defined as
follows:

def Wire = func (){( var (), flow ())};

Here, a function called Wire is defined by using the anonymous function con-
struct func . The definition states that function takes an empty tuple () as
argument and returns the expression within curly braces. In this case, a tuple
(var(),flow()) with two elements is returned. A tuple is expressed as a
sequence of terms separated by commas and enclosed in parentheses.

The first element of the defined tuple expresses the creation of a new un-
known continuous-time variable using the syntax var() . The variable could
have been given an initial value, which is used as a start value when solving
the differential equation system. For example, creating a variable with initial
value 10 can be written using the expression var(10) . Variables defined using
var() correspond to potential variables, i.e., the voltage in this example.

The second part of the tuple expresses the current in the wire by using
the construct flow() , which creates a new flow-node. This construct is the
essential part in the semantics presented in coming sections. In this informal
introduction, we just accept the fact that Kirchhoff’s current law with sum to
zero at nodes is managed in a correct way.
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In the circuit definition we used the syntax Wire() , which means that
the empty tuple () is supplied as a tuple argument to the function Wire .
The function call will return the tuple (var(),flow()) . Hence, the Wire
definition is used for encapsulating the tuple, allowing the definition to be reused
without the need to to restate its definition over and over again.

2.3 Models and Equation Systems

The main model in this example is already given as the Circuit model. This
model contains instances of other models, such as the Resistor . These models
are also defined using model definitions. Consider the following two models:

def TwoPin = model ((pv,pi),(nv,ni),v)
{

v = pv - nv;
0 = pi + ni;

};

def Resistor = model (p,n,R)
{

def (_,pi) = p;
def v = var ();
TwoPin(p,n,v);
R* pi=v;

};

Models are defined anonymously using the keyword model followed by a for-
mal parameter and the model’s content stated within curly braces. The formal
parameter can be a pattern and pattern matching is used for decomposing ar-
guments. Inside the body of the model, definitions, components, and equations
can be stated in any order within the same scope.

The general model TwoPin is used for defining common behavior of a model
with two connection points. Twopin is defined using an anonymous model,
which here takes one formal parameter. This parameter specifies that the ar-
gument must be a 3-tuple with the specified structure, where pv , pi , nv , ni ,
and v are pattern variables. Here pv means positive voltage, and ni nega-
tive current. Since the illustrated language is untyped, illegal patterns will be
discovered first during run-time.

Both models contain new definitions and equations. The equation
v = pv - nv; in TwoPin states the voltage drop over a component that is
an instance of TwoPin . The definition of the voltage v is given as a formal
parameter to TwoPin . Note that the direction of the causality of this formal
parameter is not defined at modeling time.

The resistor is defined in a similar manner, where the third element R of
the input parameter is the resistance. The first line def (_,pi) = p; is an
alternative way of pattern matching where the current pi is extracted from p.
The pattern _ states that the matched value is ignored. The second row defines
a new variable v for the voltage. This variable is used both as an argument
to the instantiation of TwoPin and as part of the equation R* pi=v; stating
Ohm’s law. Note that the wires p and n are connected directly to the TwoPin
instance.
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The capacitor and inductor models are defined as follows:

def Capacitor = model (p,n,C)
{

def (_,pi) = p;
def v = var (0);
TwoPin(p,n,v);
C* der (v) = pi;

};

def Inductor = model (p,n,L)
{

def (_,pi) = p;
def v = var (0);
TwoPin(p,n,v);
L* der (pi) = v;

};

It should be noted here that each of these models contains a differential equation.
For example in equation L* der(pi) = v; , the pi variable is differentiated
with respect to time using the built-in der operation.

Finally, to make the example complete, the voltage source and the ground
are defined as follows:

def VSourceAC = model (p,n,VA)
{

def v = var (0);
TwoPin(p,n,v);
def f = 50;
def PI = 3.14;
v = VA* sin (2 * PI * f * time);

};

def Ground = model ((pv,_))
{

pv = 0;
};

An instance of the Circuit model can be created in the top-level scope using
the following code:

Circuit();

The resulting simulation result is shown in Figure 2.

2.4 Reuse and Expressiveness using Higher-Order Models

Models are very closely related to anonymous functions. We will see later that
the models are in fact encoded as lambda abstractions, with special care taken
to flow connections. Since models are first class citizens, reuse and expressive
modeling can make use of higher-order models, i.e., models and functions can
take models as arguments and return new models.
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Figure 2: Plot of simulation result of the simple circuit. The largest curve shows
the voltage source, the second largest the voltage drop over the inductor, and
the smallest one the voltage drop over the capacitor.

For example, let us assume that we want to create a new model, which connects
two Resistors in parallel. This model can be defined as follows, with resistance
values 10 and 100:

def ParallelResistor = model (p,n)
{

Resistor(p,n,10);
Resistor(p,n,100);

};

This simple definition defines a new model named ParallelResistor ,
which composes two resistor instances. Hence, a new model can be defined by
reusing other models in an hierarchical structure.

However, can we not generalize this and create a generic way for composing
models? Assume that we want to create a model based on composing a few
existing models in series. However, we do not want to do it from scratch, e.g.,
create a model where two resistors are composed in series and then yet another
model for an inductor and a capacitor in series. Consider the following function,
which takes two models M1 and M2 as input, plus an attribute value for the
model, such as the resistance or the inductance.

def makeSerial = func (M1,val1,M2,val2){
model (pin,pout){

def w = Wire();
M1(pin,w,val1);
M2(w,pout,val2);

}
};

The function makeSerial creates instances of the models M1 and M2, and
connects them together using the wire w. The left side of M1 is connected to
the new anonymous model’s port pin , and the second port of M2 is connected
to pout . The generic function then returns this new model.
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An example where this function is used is given in the following circuit:

def Circuit2 = model ()
{

def w1 = Wire();
def w2 = Wire();
def ResInd = makeSerial(Resistor, 100, Inductor, 0.1);
def CapRes = makeSerial(Capacitor, 0.01, Resistor, 200);
ResInd(w1,w2);
CapRes(w1,w2);
Ground(w2);
VSourceAC(w1,w2,5);

};

Here, makeSerial defines a new model called ResInd , by composing a
Resistor and an Inductor . In the same way model CapRes is defined, by
composing a Capacitor and another Resistor .

Note that models can also be parameterized and specialized using traditional
concepts in functional programming, e.g., by using currying.

3 Flow Lambda Calculus

In this section, the new connection semantics of flow variables is presented, by
extending the untyped lambda calculus with a number of terms, values, and
rules. We call this extended version of the lambda-calculus for flow lambda-
calculus, denoted λ̃-calculus.

3.1 Abstract Syntax

Consider the abstract syntax of the λ̃-calculus listed in Figure 3. Besides the
standard terms lambda abstraction, application, and identifier, a number of
terms have been added.

The equation term t1=t2 expresses a differential or algebraic equation. The
conjunction term t1 ∧ t2 is used for composing equations into a tree, forming an
equation system.

The term var( t) constructs a new variable location (potential variable) in
the variable store, σ. The creation of flow variables in this store is described
in Section 3.2. The store consists of a mapping from a variable store location
l to a value, σ : VLoc →fin Value. When creating models with systems of
equations, variables are often unknown before simulation. An unknown variable
is a mapping from a variable store location l to the unknown term ε.

The most essential part in this calculus is the definition and treatment of
flow nodes together with the flow store. During evaluation, the flow nodes are
combined into a tree, which is stored in the flow store φ. This tree controls the
sum to zero equations that are going to be part of the equation system. The
flow store is a finite map from a flow store location, f , to a specific node in
the tree. Nodes in the tree can be colored to be either black or white, which is
represented in the abstract syntax by terminals NB(t, n) and NW(t, n). After
evaluation, the black nodes represent the sum to zero equations. The white
nodes are used during the construct of the tree, but are not representing any
equations. Variables, sometimes referred to as flow variables, which are used in
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r ∈ R Real number
x ∈ Ident Identifier
l ∈ VLoc Variable Store location
f ∈ FLoc Flow Store location
σ ∈ VStore = VLoc→fin Value Variable Store
φ ∈ FStore = FLoc→fin FNode Flow Store

n ∈ FNode Flow nodes
n ::=

NB(t, n) Black node
| NW(t, n) White node
| NE Empty node

t ∈ Term Terms
t ::=

λx.t Lambda abstraction
| t1t2 Application
| r Real number
| x Identifier
| t1=t2 Equation
| t1 ∧ t2 Conjunction
| var( t) Variable constructor
| flow() Flow node constructor
| fork( t) Fork connection
| l Variable Store location
| f Flow Store location
| ε Unknown

v ∈ Value Values
v ::=

λx.t | r | v1=v2

| v1 ∧ v2 | l | f | ε

Figure 3: Abstract Syntax for λ̃–calculus.

the sum to zero equations, are created in the variable store σ, and referred to
in the flow nodes located in the flow store φ.

New nodes are added to the flow store by evaluation of the term flow() .
Recall the definition of Wire in Section 2, which consisted of a tuple with terms
var( t) and flow() as elements. A new flow node is created when this tuple
is evaluated.

The last new term is fork( t) . This is the essential term used for flow
connections. It is an internal term, which does not need to be created explicitly
by the user of the language. Instead, this term can be hidden and created
implicitly by other more convenient constructs. Section 4 describes in more
detail how this simplification transformation is performed.

The described λ̃-calculus is defined using call-by-value evaluation order.
Hence, the set Value ⊆ Term, is used for determining when a term has been
evaluated to a value.
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3.2 Operational Semantics

The computation rules for the operational semantics are stated in Figure 4,
and the congruence rules in Figure 6. The syntax and semantics of the rules
are according to standard small-step operational-semantics with premises above
the line and the conclusion below. Each rule contains triples, where each triple
consist of three elements, separated by bars ’|’, where the first element is the
term, the second the variable store σ, and the last one the flow store, φ.

To avoid misinterpretation of the semantics, some notations need clarifi-
cation. Capture-avoiding substitution is expressed using syntax [x 7→ t1]t2,
meaning the term obtained by replacing all free occurrences of identifier x in
t2 by t1. Similar syntax is also used for store updates, where the notation
[f 7→ n]φ means the resulting flow store that maps f to n together with all
other mappings from location to flow node in φ. Flow stores are extended using
the notation (φ, l 7→ n), meaning the flow store φ extended with the mapping
from l to n, where l /∈ dom(φ). Updates in variable stores are expressed with
the corresponding notation, i.e., (σ, l 7→ v). Moreover, in the usual way, rules
with more specific terms in patterns are selected first, e.g., for a term t1t2, where
t1 ∈ Value ⊆ Term, rule (E-APP2) in Figure 6 is selected in favor of (E-APP1).

The most interesting rules which differ from standard untyped lambda-
calculus are the last four rules in Figure 4. An example of the application
of these rules is given in Figure 5. At the first step, a flow() term is evaluated
using rule (E-FLOW-CON). This rule creates an unused flow location in the
flow store (f /∈ dom(φ)), maps the location to a new black node, extends the
flow store φ with this mapping, and returns the new flow store location. The
left element in the new black node is a zero value of type real. Figure 5 shows

(λx.t)v | σ | φ −→ [x 7→ v]t | σ | φ (E-APPABS)

l /∈ dom(σ)

var( v) | σ | φ −→ l | (σ, l 7→ v) | φ
(E-VAR-CON)

f /∈ dom(φ)

flow() | σ | φ −→ f | σ | (φ, f 7→ NB(0,NE))
(E-FLOW-CON)

NB(t1, n2) = φ(f)
l′ /∈ dom(σ) f ′ /∈ dom(φ)

φ′ = ([f 7→ NB(t1,NW(l′, n2))]φ, (f ′ 7→ NW(l′,NE)))
fork( f ) | σ | φ −→ f ′ | (σ, l′ 7→ ε) | φ′ (E-FORK-BLACK)

NW(t1, ) = φ(f)
l′ /∈ dom(σ) f ′ /∈ dom(φ)

φ′ = ([f 7→ NB(t1,NW(l′,NE))]φ, (f ′ 7→ NW(l′,NE)))
fork( f ) | σ | φ −→ f | (σ, l′ 7→ ε) | φ′ (E-FORK-WHITE)

v /∈ FLoc

fork( v) | σ | φ −→ v | σ | φ (E-FORK-RM)

Figure 4: Computation rules of the operational semantics for the λ̃–calculus.
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the graph representation of the flow tree. The dashed arrow states that the
input flow is zero to the black node. This node corresponds to a sum to zero
equation, which has not yet any outgoing flow variables (represented by edges).
In the third column in Figure 5, the current state of the flow-store is shown
after evaluation of the term in column one. The fact that the black node does
not have any outgoing edges is shown with the empty node NE in the second
element.

At the second step in the example, node f0 is forked using rule (E-FORK-
BLACK). This rule is chosen in favor of (E-FORK-WHITE), since φ(f0) repre-
sents in this case a black node. The second and third premise in this rule create
both a new variable location (a flow variable) and a new flow store location.
As illustrated in the graph representation, a new white node is created. In the
forth premise, a new φ′ is bound, representing the store where location f0 is
updated and a new mapping from f1 to the new white node is added.

In the third step, f0 is forked again. In this case another white node is
created and an edge is assigned between the black node and the new white
node.

Term
Graph
Representation

Flow Store Var Store

flow()
−→ f0

0 f0

(f0 7→ NB(0,NE))

fork( f0)
−→ f1

f1

0 f0
l1

(f0 7→ NB(0,NW(l1,NE)))
(f1 7→ NW(l1,NE)) (l1 7→ ε)

fork( f0)
−→ f2

f1

0 f0
l1

l2
f2 (f0 7→ NB(0,NW(l2,NW(l1,NE))))

(f1 7→ NW(l1,NE))
(f2 7→ NW(l2,NE))

(l1 7→ ε)
(l2 7→ ε)

fork( f1)
−→ f3

f1

0 f0
l1

l2
f2

f3
l3 (f0 7→ NB(0,NW(l2,NW(l1,NE))))

(f1 7→ NB(l1,NW(l3,NE)))
(f2 7→ NW(l2,NE))
(f3 7→ NW(l3,NE))

(l1 7→ ε)
(l2 7→ ε)
(l3 7→ ε)

Figure 5: Example of the fork command and respresentations in the flow store
and the variable store.
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Finally, step four forks the node located by f1. Since this node is a white-
node (before evaluation of fork( f1) ), rule (E-FORK-WHITE) applies. The
main difference in this rule compared to (E-FORK-BLACK) is that the color of
the node pointed to by f1 is changed from white to black. This means that this
fork operation both generated a new sum to zero equation (the black node) and
added a flow variable l3.

After evaluation of the given example, the flow store contain four mappings,
where two of them maps to black nodes, and two maps to white ones. All
locations pointing to a black node will generate a sum to zero equation. The
equation is generated by letting the left side of the equation be the first element
of the black node, e.g., in node NB(0,NW(l1,NE)), zero will be on the left hand
side of the equation. The right hand side consist of the sum of white nodes term
values given in element two of the black node. In the example given in Figure 5,
the sum to zero equations for the final value of the flow store would be:

0 = l2 + l1 (1)
l1 = l3 (2)

Implicit dereferencing of locations is assumed in the above equations. These
equations together with resulting equations after evaluation forms the final equa-
tion system. The variables in the equation system correspond to all locations

t1 | σ | φ −→ t′1 | σ′ | φ′
t1t2 | σ | φ −→ t′1t2 | σ′ | φ′

(E-APP1)

t2 | σ | φ −→ t′2 | σ′ | φ′
v1t2 | σ | φ −→ v1t

′
2 | σ′ | φ′

(E-APP2)

t | σ | φ −→ t′ | σ′ | φ′
var( t) | σ | φ −→ var( t′) | σ′ | φ′

(E-VAR)

t1 | σ | φ −→ t′1 | σ′ | φ′
t1=t2 | σ | φ −→ t′1=t2 | σ′ | φ′

(E-EQ1)

t2 | σ | φ −→ t′2 | σ′ | φ′
v1=t2 | σ | φ −→ v1=t′2 | σ′ | φ′

(E-EQ2)

t1 | σ | φ −→ t′1 | σ′ | φ′
t1 ∧ t2 | σ | φ −→ t′1 ∧ t2 | σ′ | φ′

(E-CONJ1)

t2 | σ | φ −→ t′2 | σ′ | φ′
v1 ∧ t2 | σ | φ −→ v1 ∧ t′2 | σ′ | φ′

(E-CONJ2)

t | σ | φ −→ t′ | σ′ | φ′
fork( t) | σ | φ −→ fork( t′) | σ′ | φ′

(E-FORK)

Figure 6: Congruence rules of the operational semantics for the λ̃–calculus.
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bop ∈ Bop = {+,−, ∗, /} Binary operations

p ∈ Pattern Pattern
p ::=

x Identifier pattern
| ( pi

i∈1..n) Tuple pattern

t ∈ Term Terms
t ::=

( ti
i∈1..n) Tuple

| func p { t} Function abstraction with pattern
| model p { t} Model abstraction with pattern
| t1 bop t2 Binary operations
| - t Uniary negation
| der( t) Derivative
| sin( t) Sine
| cos( t) Cosine
| time Global simulation time

v ∈ Value Values
v ::=

( vi
i∈1..n) | func p { t}

| - v | der( v) | sin( v)
| cos( v) | v1 bop v2 | time

Figure 7: Abstract syntax of the kernel language MKL, which represents exten-
sions to the syntax given in Figure 3.

created in the variable store. Note that this store now contains both potential
variables created using the term var( t) and flow variables generated due to
forking both black and white nodes.

The congruence rules in Figure 6 are less interesting, but equally important
to the semantics. We have chosen to write out all the rules explicitly for com-
pleteness, even if there exist simpler and more compact ways of describing these
kinds of rules. It should be noted that the congruence rules for equations (E-
EQ1) and (E-EQ2), and the rules for conjunction (E-CONJ1) and (E-CONJ2)
are stated with two terms to show the evaluation order.

We choose to describe the semantics with small-step-semantics, since it has
been shown to exist efficient ways of proving type safety of a language using
the progress and preservation theorems [14], if the language is extended with a
static type system.

4 Modeling Kernel Language

To enable realistic modeling capabilities, the λ̃-calculus needs to be extended
with more convenient constructs for modeling. The language presented in this
section, called modeling kernel language (MKL) is then used for demonstrating
modeling capabilities in Section 2.
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New evaluation rules:

(func p { t} )v | σ | φ −→ match(p, v)t | σ | φ (E-APPABS-MATCH)

(model p { t} )v | σ | φ −→
(func p { t} )(fork( v) ) | σ | φ (E-APPMODEL)

fork(( ti∈1..n)) | σ | φ −→ (fork( ti)
i∈1..n) | σ | φ

tj | σ | φ −→ t′j | σ′ | φ′
ttmp = ( vi

i∈1..j−1, t′j , tk
k∈j+1..n)

( vi
i∈1..j−1, tj , tk

k∈j+1..n) | σ | φ −→ ttmp | σ′ | φ′
(E-TUPLE)

Matching rules:

match(x, v) = [x 7→ v] (M-IDENT)

for each i match(pi, vi) = ρi

match(( pi
i∈1..n) , ( vi

i∈1..n) ) = ρ1 ◦ · · · ◦ ρn
(M-TUPLE)

Figure 8: Additional semantic rules for the kernel language.

4.1 Abstract Syntax

The extra terms and syntactic categories for constructs of the extended lan-
guage, are listed in Figure 7.

Several of the introduced terms are used for making the language more ex-
pressive. For example, a new syntactic category of patterns is introduced. The
current minimal language supports identifier and tuple patterns, but the lan-
guage could easily be enriched with other constructs such as records and vari-
ants.

Another term for functional abstraction, func p { t} has been added to
distinguish it from the lambda abstraction given in the λ̃-calculus. The main
difference is that func p { t} includes a pattern as its formal parameter, while
the lambda absraction λx.t used an identifier as formal parameter.

The most important term in the MKL is the model -term. The purpose with
this term is to create an abstraction mechanism for equation-systems using a
functional modeling style, and at the same time hide the existence of the fork
semantics, which is needed for correct flow semantics.

The other terms, e.g., binary operations, time derivative operation, Sine
function etc., are needed to be able to create relevant models. Some of these
terms could also have been implemented as library functions (e.g., Sine and
Cosine), but are here part of the language for presentation purpose.

4.2 Operational Semantics

The new evaluation rules for MKL are given in Figure 8. Besides these semantic
rules, some syntactic sugar is also added. For example, the def construct is
transformed into a combination of lambda abstraction and application terms.
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We will not discuss this syntactic transformation any further, since it is not
important in regards to the flow connection semantics.

The functional application rule (E-APPABS-MATCH) states ordinary func-
tion application, but with pattern matching. The matching rules are expressed
with a separate set of inference rules, where (M-IDENT) is used for identifier
patterns and (M-TUPLE) for tuple patterns.

The most important rule of the new rules is (E-APPMODEL), which matches
an application, where the first term is a model. From the definition of model p { t} ,
we can see that it is almost the same as a functional abstraction, but if we take
a closer look at rule (E-APPMODEL), we note that the model is transformed
into a function abstraction (a lambda abstraction with pattern), together with
a fork( v) term on the second part of the application term. This construct
is the key element of hiding the fork construct from the user. The intuition
is that each time a connection should be stated between model instances, the
wires (connections) need to be forked to form correct flow trees.

Finally, there is one rule (E-FORKTUPLE), which propagates the fork term
into a tuple’s elements, and a new congruence rule for evaluating a tuple’s
elements.

5 Prototype Implementation and Evaluation

To evaluate the described language semantics, a prototype implementation was
constructed, where the semantic rules were directly translation into OCaml
source code. The implementation is not intended for performance evaluation,
but to verify the correctness of the given rules.

There are certain properties of the given semantics that we want to prove
correct, but this is left to future research. However, it is not obvious how
we can prove that it actually models certain properties physically correct in a
domain. One alternative would be to prove properties relating to e.g., Modelica
and the λ̃-calculus. However, since there does not exist any formal semantics
of Modelica, which is small enough to reason about, we see this as a difficult
strategy to follow.

Instead, the prototype implementation is used for verifying that relevant
physical models can indeed be simulated and that they generate approximately
the same simulation result. In this prototype implementation, the elaboration
procedure transforms a model definition (e.g., the circuit in Section 2) to a flat
set of equations. This latter representation can be converted to a flat Modelica
file, which we are using for simulating the system. A number of test models were
created in both Modelica and in MKL and the simulation result was compared.
The purposes of these verification tests are:

• To verify that the prototype can generate equation systems that are solv-
able.

• To verify that the simulation result correspond to the simulation of equiv-
alent Modelica model.

Tests have been performed on a number of models with positive result. However,
it should be noted that the correctness of the current semantics is not verified
comprehensively enough. Furthermore, certain proves of correctness must also
be conducted in future work.
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6 Related Work

The most closely related work to our flow connection semantics is the connec-
tion semantics described in the specification of the Modelica language [9]. In
Modelica, connections between components (model instances) are declared by
using connect -equations. For example, consider the following Modelica source
code, which expresses the same model Circuit , as described in Section 2.

model Circuit
Resistor R1(R=10);
Capacitor C(C=0.01);
Resistor R2(R=100);
Inductor L(L=0.1);
VsourceAC AC;
Ground G;

equation
connect (AC.p, R1.p);
connect (R1.n, C.p);
connect (C.n, AC.n);
connect (R1.p, R2.p);
connect (R2.n, L.p);
connect (L.n, C.n);
connect (AC.n, G.p);

end Circuit;

From a modeling perspective, connections between components are in Modelica
expressed by stating one connect -equation between each connector (port). On
the contrary, in MKL, a wire is declared, which is then connected by using the
name of the wire to express the connection. From a modeling point of view,
different users may have different preferences and options on what is simpler
and more clear than the other. There are differences regarding modeling ca-
pabilities, but it need further analysis to conclude anything about clarity and
expressiveness. However, we believe that the λ̃-calculus semantics is cleaner
due to its declarative nature, which enables better ability to reason about the
semantics.

Currently, it does not exist any clean small formal semantics of the Model-
ica language. There exist specification attempts to specify the whole language
using natural semantics [6, 7]. However, this resulted in a very large formal
specification, which was very hard to reason about.

Other hybrid languages, such as χ has formal operational semantics defined
[13]. However, until this date, the χ language do not yet support the concept
of flow connections.

A similar idea of using functional abstraction for modeling of acausal physical
models were outlined by Nilsson et. al. [10]. This paradigm, which they call
functional hybrid modeling (FHM) introduces the concept of first-class relations
on signals and switch constructs. The signal relations sigrel used in the
examples in the article have similarities with our model notation, but since the
work by Nilsson et.al [10] does not contain any formal semantics, it is hard to
analyze the exact similarities. One major difference is that Nilssons et. al.’s work
does not incorporate the flow connection semantics into the semantic framework.

To the best of our knowledge, there are no previous published work of a for-
mal semantics of encoding the flow connection semantics in the lambda calculus.
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7 Conclusions

We have in this paper described a novel approach of encoding the physical flow
connection semantics into the untyped lambda-calculus, using small-step op-
erational semantics. A minimal calculus, called flow lambda calculus, denoted
λ̃-calculus was defined. Based on this calculus, the syntax and semantics was
extended to give better modeling capabilities. This language, called modeling
kernel language (MKL), was demonstrated with a couple of examples. A pro-
totype implementation of the language was implemented as an interpreter, and
some models were simulated and compared with models created in the Modelica
language.
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