# **Evaluation of Secure Distributed TLM-based Co-Simulation** over Wide Area Networks

David Broman, Kristoffer Norling, and Peter Fritzson Department of Computer and Information Science Linköping University

**Alexander Siemers and Dag Fritzson** SKF Engineering Research Centre Gothenburg

# **Motivation and Approach**

#### Mathematical models need to be distributed and simulated in a secure manner, because of:

- *Model protection.* Manufacturers and sub-contractors normally don't share simulation models.
- *Local expertise*. Large companies often have departments spread over the world.
- *Resource sharing.* Expensive simulation environments may not be available in the same location where the simulation takes place.

#### Approach

Sub-models are distributed and simulated at different locations using a transmission line modeling (TLM) framework developed by SKF. SKF has earlier successfully tested meta-model based co-simulation for different application areas, such as spindles with rotordynamics problems, simulations of large medical scanners, and hub-unit simulations for cars.

# **Research Questions**

- Is it *practically feasible* to co-simulate models over a WAN (e.g. the Internet) and stil obtain the simulation result within reasonable time?
- Will the *total simulation* time increase significantly if the model to be cosimulated is scaled up with many distributed sub-models?
- Which *parameters* are affecting the total simulation time when a model is distributed and co-simulated?



Approximately 430 hours of simulation time using cluster environment and WAN simulator.

[B/s]

Realtime experiment between Sweden and Australia via an encrypted tunnel.

### **Results and Analysis**

#### **Datacom Latency**

(L) 4.5 9

#### **Datacom Bandwidth**

2 compute nodes. TTLM=10·10<sup>-6</sup> sec. 8 bearings.

Bandwidth is currently

not a bottleneck, but it

of TLM-interfaces.

grows linear to the number

#### **TLM Delay**

#### **Number of TLM Interfaces**







Adding TLM interfaces have marginal impact when there are several interfaces.

Jitter of round-trip-time (RTT) during simulation between Sweden and Australia.

ı <sub>WAN</sub> (ms)

3 compute nodes. TTLM=5·10<sup>-6</sup> sec.

- Latency has significant impact on simulation time.
- There is a smooth breakpoint. After it, growth is linear.
- Jitter has to be considered

# Conclusions

It is *usable in practice* to co-simulate over long distances over WANs on the globe. This is demonstrated by co-simulating between Sweden and Australia, with an increased total simulation time of  $\approx 170\%$ 

- It is *more resource efficient* to increase the number of compute nodes in an external simulation environment if the network latency is lower than a specific bottleneck breakpoint.
  - The method is *scalable* in regards to the





