
Design Considerations for Dimensional Inference and Unit
Consistency Checking in Modelica

David Broman1 Peter Aronsson2 Peter Fritzson1

1Department of Computer and Information Science,
Linköping University, Sweden, {davbr,petfr}@ida.liu.se

2MathCore Engineering, Sweden, peter.aronsson@mathcore.com

Abstract

The Modelica language supports syntax for declaring
physical units of variables, but it does not yet exist
any defined semantics for how dimensional and
unit consistency checking should be carried out. In
this paper we explore different approaches and new
constructs for improved dimensional inference and
unit consistency checking in Modelica; both from an
end-user, library, and tool perspective. A proposal for
how dimensional inference and unit checking can be
carried out is outlined and a prototype implementation
is developed and verified using several examples from
the Modelica standard library.

Keywords: dimensional analysis, unit checking;
dimensions; types; Modelica; language design

1 Introduction

The Modelica language enables expressive modeling
by making use of object-oriented acausal constructs.
However, certain powerful language constructs eas-
ily lead to modeling errors, which are often hard to
detect at simulation time. One class of modeling er-
rors that can be detected statically before simulation is
model and equation consistency with regards to phys-
ical dimensions, quantitiesand units. The Modelica
language specification [12] states how units and quan-
tities can be declared. However, the semantics and
strategy for how physical units and dimension of quan-
tities can be checked for consistency, are not described
in the specification.
Several of the available tools (e.g., Dymola[4] and
Simulation X[8]) implement various algorithms for
handling units and dimensions. Furthermore, tool spe-
cific language constructs are being added to enable

better unit consistency checking. However, this may
lead to incompatibility, where some tools reject certain
model and others accept them. Unit related research
results within the field of programming language (e.g.,
[1, 5, 9, 13, 18]) have shown that there exist many con-
cepts and constructs that affect the possibility and sim-
plicity to perform correct dimensional and unit check-
ing. Design considerations must be taken from both
theend user perspectiveand from thelibrary and tool
implementor perspective.

This paper introduces and discusses several different
concepts and constructs, which are important when de-
signing a language with support for dimensional infer-
ence and unit consistency checking1. Examples are
given using both existing Modelica syntax, and ad-
ditional suggested constructs. The main contribution
of the work is the suggested design for incorporating
the unit checking as part of the elaboration (instanti-
ation) process, which supports both implicit inference
of unspecified dimensions and rational numbers of di-
mension exponents. To verify the design, a prototype
implementation was constructed in the OpenModelica
[17] environment.

The paper is structured as follows: Section 2 intro-
duces fundamental terminology and describes design
considerations affecting primarily the end user. Sec-
tion 3 describes design issues from a library and tool
perspective. Both these sections explore the design
space in which a specific design can be created. Sec-
tion 4 specifies a number of design choices made for a
prototype implementation created in the OpenModel-
ica environment. Section 5 discusses related work and
section 6 concludes the paper.

1In the remainder of the paper, the termunit checkingwill be
used fordimensional checkingas well. However, note that even
if a system is dimensionally consistent, it might have conflicting
units of measure.

Design Considerations for Dimensional Inference and Unit Consistency Checking in Modelica

The Modelica Association 3 Modelica 2008, March 3rd − 4th, 2008



2 End User Perspective

In this section, several aspects of unit checking will
be discussed primary from an end user perspective.
The section starts by refreshing fundamental terminol-
ogy; followed by description of concepts such as type
checking and polymorphism.

2.1 Units, Quantities, and Dimensions

Physicalquantitiesare organized into differentdimen-
sions, such aslength , time , andmass. The SI-
system [7] defines sevenbase quantities, which can be
combined to form newderived quantities.
For a particular quantity, there exist several different
units, e.g., the quantitylength can be used with
both of the unitsmeter and foot . To convert be-
tween different units within the same quantity dimen-
sion,conversion factorsare defined. To convert from
foot to meter ascale factorof 0.3048is multiplied to
the measured value. However, some unit conversions
are more complex. For example, the formulaTCelsius=
(5/9)∗(TFahrenheit−32) for convertingFahrenheit
to Celsius involves both a scale factor of5/9 and
anoffsetof value−32∗ (5/9).
The SI-system defines sevenbase units
(m,kg,s,A,K,mol,cd ) as well as derived
units, which are accepted within the SI-system. These
derived units have specific names and symbols and
always have a corresponding normalized form ex-
pressed in base units. For example newton meter has
the symbol N m, which has the expression m2 kg s−2.
For some derived quantities, the dimensional expo-
nents are zero. Such a quantity is referred to asdi-
mensionlessor having dimension one. For example
the derived quantityplane angle with derived unit
radian is such a dimensionless quantity.
In Modelica, there is a syntax to define derived
unit using base unit expressions. For example, the
above expression of newton meter can be expressed
as"m2.kg.s-2" . From now on, this syntax will be
used for describing unit expressions.

2.2 Static Unit Type Checking

When simulating Modelica models, the state of a dy-
namic model changes during the simulation, but the re-
lation between the units of variables should not change
dynamically2.

2Using algorithms and functions, it is possible to define ex-
pressions that violates this principle. However, it would require
the theory of dependent types to manage this property statically.

Hence, unit and dimensional checking can advanta-
geously be performed statically at compile time. This
process is typically accomplished by using astatic type
checker, which takes a Modelica model as input and
returns one of three possible answers:

• Consistent and complete.The equations, connec-
tors, hierarchy composed components, and the
declared derived physical units match without ex-
ception. All variables have a specific unit as-
signed to it.

• Consistent and incomplete.The model is consis-
tent (no conflicting constraints), but some vari-
ables have no units assigned to them.

• Inconsistent.One or several relations mismatch.
For example, an equationa = der(b) * 33+c
is inconsistent ifa andc do not have the same
units, or if the unit ofb multiplied by"s" (time)
is not equal to the unit ofc .

A language and type checker can be designed toinfer
missing unit types, which can result in both a consis-
tent and an inconsistent result.
Furthermore, from a user’s point of view, it is impor-
tant toknowthat the model is consistent, e.g., that the
type checker canguaranteethat unit errors do not ex-
ist. The property that a tool cannot find any inconsis-
tencies in a model, does not imply that the model is
consistent. In our proposal, this is a strong require-
ment for the design of the unit checker.

2.3 Detecting Errors, Isolating Faults

The previous described approach for unit checking en-
ablesdetectionof modeling errors, i.e., to give a sound
judgement of the model’s correctness regarding phys-
ical units and quantities. However, even if a tool can
respond that a model is incorrect, it is very important
for the user to know where in the model the fault is
located. Hence, the tools’ ability toisolate faultsin a
model is critical for making the unit checking process
useable.

2.4 Polymorphism

A language where an object only can be of one type
is said to have amonomorphictype system. This
leads to a very restrictive language, with limited ex-
pressiveness. Modelica is apolymorphic language,
where polymorphic behavior is primarily expressed
using subtyping polymorphism.

D. Broman, P. Aronsson, P. Fritzson

The Modelica Association 4 Modelica 2008, March 3rd − 4th, 2008



Consider the following example of the blockGain ,
defined in the Modelica standard block library.

block Gain
parameter Real k(unit="1") = 1;

public
Interfaces.RealInput u;
Interfaces.RealOutput y;

equation
y = k * u;

end Gain;

Both input and output to and from the model are de-
fined usingReal types, i.e., no units are defined for
this block. If a unit checker should be able to check
instances of this block, unit types must be specified
for its formal parameters. For example, both input
and output can be defined to have unit typeVoltage .
However, this would result in a new block definition
for every imaginable unit, which clearly is impracti-
cal.
A solution to this problem which is being implemented
in this proposal is the use ofunit type variables, and
so calledparametric polymorphismi.e., the block is
declared to take a unit type variable’p as both input
and output. Hence, the unit information is propagated
from the input to the output3. This approach is similar
to ordinary type variables used in for example Haskell
[16] or Standard ML [11].
For general information about types and polymor-
phism see [3]. An accessible description on how types
are related to Modelica can be found in [2].

3 Design from Library and Tool
Perspective

This section presents requirements and a proposed de-
sign for unit checking from the perspective of imple-
menters of libraries and tools.

3.1 Unit Type Declaration

There are two approaches of handling declaration of
unit types,implicit unit type inference orexplicit type
declaration.

• Implicit type inference means that the user does
not specify units for all variables and that the tool
uses type inference to deduce the units of those
variables.

3Note that parameter k needs to be explicitly defined to be di-
mensionless (unit="1") in order to make a unit type inference algo-
rithm to work. If it was left as unspecified, the gain could generate
any possible unit, regardless of its input.

• Explicit type declaration means that the user
specifies units for variables, and thus removes the
need of deducing units.

For instance, consider the following example:

model A
Real(unit="m") x1,y1,d1,d2;
Real x2,y2;

equation
d1 = sqrt(x1^2+y1^2);
d2 = sqrt(x2^2+y2^2);

end A;

The example calculates the distances of two points to
the origin(0,0) . The first point(x1,y1) uses ex-
plicit unit type declaration, givingx1 ,y1 andd1 the
unit "m" , and the second point(x2,y2) uses im-
plicit type inference, where units are not specified. In
the second case the units can be deduced from the unit
of the distance variabled2 , i.e., the unit type ofx2
andy2 areinferred from the unit type ofd2 .
A problem is how to distinguish between dimension-
less units and implicit type inference. Consider the
following declaration:

Real x;

Is x dimensionless or should the type be inferred (i.e.,
hasanydimension)? The most probable interpretation
is that it should be inferred. There are several alter-
natives of how to declare a dimensionless unit. One
solution is to use

Real x(unit ="1");

It is important to differentiate between any dimension
and dimensionless, because the distinction can give
better information for the unit checker to perform its
task.
To be able to handle parametric polymorphism it must
be possible to declareunit type variables. A unit type
variable can hold any unit type and thus provides flexi-
bility of e.g., writing functions. For instance, consider
the following example:

function myDer
input Real x(unit="’p");
output Real y(unit="’p.s-1");

algorithm
y:= der(x);

end myDer;

The example is a wrapper around theder operator.
The unit of the input argument uses a unit type variable
"’p" which is used to express the unit of the result
from the function. Here the character’ is part of the
type variable identifier and indicates that this is a type

Design Considerations for Dimensional Inference and Unit Consistency Checking in Modelica

The Modelica Association 5 Modelica 2008, March 3rd − 4th, 2008



variable and not a normal variable. Using a type vari-
able makes it possible to use themyDer() function
for any type of unit, and still being able to express the
relation between the unit types of the input and output
argument.

3.2 Unit Conversion

For many situations it is necessary to convert expres-
sions from one unit to another. A unit conversion does
not change the dimension of an expression, only its
value. For instance:

SI.Length d1 = 25.4;
Real d2 =

unitConvert(d1,"mm");

For this case 25.4 is interpreted as meter (defined
in SI.Length ). The proposed built in function
unitConvert(var,unit) converts the value to
25400 and assigns it tod2 . Moreover, d2 is now as-
sumed to have unit"mm". Note that it is not possi-
ble to just scale this using an ordinary multiplication,
since the user must tell the type checker that the unit
has been changed.
In conclusion, unit conversion is a fundamental re-
quirement to be able to work conveniently with units.

3.3 Representation of Units

The unit checking mechanism requires the tool to be
able to distinguish between different (base) units. This
is typically solved (e.g., in [14, 15]) by having a vec-
tor of seven base units, as described by the SI standard
[7]. For instance, energy can in the SI units be de-
scribed using"J" (Joule) or"N.m" (Newton meter)
corresponding to the base unit"m2.kg.s-2" . Cur-
rently, a Modelica tool would need to know that"J"
or "N.m" correspond to the base unit"m2.kg.s-2"
and how to construct the appropriate vector for such a
unit.
To be able to handle functions like calculating the
square root of a value (the sqrt function), the coeffi-
cients of the dimension vector must be able to handle
more than integer numbers. By using rational num-
bers instead it is possible to express e.g., the square
root with exponent (1/2). Note that it is not possible to
use floating point precision as coefficients , since that
would lead to roundoff errors.
A problem related to the representation of units is how
to present a unit to the user. Often a user has no idea
what the unit"m2.kg.s-2" means. Instead, the user
expects the derived unit to be output, i.e.,"N.m" . The
problem of unparsing (pretty printing) the internal unit

representation to a string must be considered. Often,
the choice of derived units to use is not obvious, and
heuristics must be used to achieve what a user might
expect as output. Such heuristic is not trivial to do
and it might even be different depending on the context
(application area) of the user model.

3.4 Defining Units in the Modelica Language

To be able to handle other units than those described
by the SI standard, a more elaborate design than using
seven base units must be introduced. For instance, a fi-
nancial institute involved in modeling and simulating
the stock market might be interested in using the quan-
tity "money" . Also, they would like to be able to add
scaling factors between different units of money ($,
C, SEK, etc.). Thus, an important design requirement
for the unit checking framework is that the number of
base units is not known a priori, i.e., end users must be
able to add whatever units they want. Also, the scale
and offset information must be available for the unit
checking module. Finally, it must also be possible to
describe the relation between base units and derived
units.
Currently, Modelica does not have support for adding
scaling (and offset) for units, neither can one add ones
own "base units". Today, Modelica has some knowl-
edge about the SI units, e.g., a Modelica tool with unit
checking capabilities knows thatunit="m" refers to
the base unit meter andunit ="F" refers to the non-
base unit farad (expressed as"m-2.kg-1.s4.A2"
in base units) and not to Fahrenheit. But, if users
should be able to add their own base units, the lan-
guage should instead be extended so that base units
can be described in Modelica. The SI-units package
would then first declare the SI base units, and then de-
rive units based on these base-units.
Moreover, information for converting between units is
not covered by current Modelica. To be able to convert
between different units, scaling and offset information
must be introduced. For instance, consider converting
between Fahrenheit and Kelvin. This can be achieved
using a scaling factor and an offset as illustrated by the
conversion function in the standard library:

function from_degF
input NonSIunits.Temperature_degF

fahrenheit;
output Temperature kelvin;

algorithm
kelvin := ((fahrenheit - 32) * 5)/9 -

Modelica.Constants.T_zero;
end from_degF;

D. Broman, P. Aronsson, P. Fritzson

The Modelica Association 6 Modelica 2008, March 3rd − 4th, 2008



Figure 1: Possible unit checking-times (T1,T2,T3,T4) during the Modelica compilation and simulation process.

If the scale and offset information instead is added to
the unit types (e.g., as attributes to the built-in Real
class), such conversion functions would not be re-
quired. Instead the tool could perform the conversion
using the built-inunitConvert() function, render-
ing convert functions in the standard library redundant.

3.5 Time of Checking

There are several different points in time during the
translation process where the unit checking mecha-
nism could be introduced, see Figure 1.

• T1 - At the model level.

• T2 - During elaboration.

• T3 - At the hybrid DAE (flat Modelica) level.

• T4 - During runtime/simulation.

Some checks can be made at the model level (T1), per-
forming checks for each individual sub-model. Local
equations in the model can be checked this way, but
not equations generated from connecting components
together, or components where types must be deduced
from the surrounding environment (e.g., connections
or modifiers). Another approach is to combine the
unit checking phase with the elaboration (flattening)
process (T2).
Checking on the flat model (T3) is of course feasible,
leading to a large check of the overall system. The ad-
vantage of this approach is its simplicity; a translation
of the model into equations for the unit checking mod-
ule is performed only once. The disadvantage is that it
is much harder to isolate the fault, since only the flat
set of equations is available. Also, this approach will
not make use of already checked parts, e.g., checking
the model equations of an electrical resistor will be
done not only once but for as many times as the re-
sistor model is used as a component. The gPROMS
unit checking tool [14, 15] uses this approach. Finally,
some analysis cannot be performed statically and must
then be performed during runtime, i.e., during the sim-
ulation (T4).

4 Prototype Implementation

A prototype implementation based on the design re-
quirements presented above is under development in
the OpenModelica[17] and MathModelica[10] com-
pilers. The compiler does a static (during compilation)
check of dimensions and units of measure.

4.1 Design

The design includes the following aspects:

• Rational numbers as exponents on dimensions.

• Unit type variables in declarations.

• Literal constants are treated differently depend-
ing on context (dimensionless in multiplication/-
division and unknown in addition/subtraction).

• Type inference of dimensions.

• User defined base and derived units.

• Checking is performed during elaboration / flat-
tening to enable better fault isolation.

The design is split into separate parts, see Figure 2.
One part is integrated with the elaboration (flattening)
process in the OpenModelica compiler. It will create
an equation systems to be solved by the Unit Checker
(the second part) for model components according to
the same principles as components are instantiated in
Modelica (i.e., a recursive process). This is done by
first adding units to a unit store by calling the addStore
function in the UnitASTBuilder module. Next, lo-
cal equations are traversed to build unit terms, with
the buildTerms function. Both the unit store and unit
terms are defined in the UnitAbsyn module. Finally,
the check function in the UnitChecker module is called
to perform the dimension analysis. The result from
the checking of each component contains two pieces
of information. First, for each component it will re-
ceive an answer whether a component is Ok (consis-
tent and complete), inconsistent (incompatible types)
or consistent and incomplete (not enough information
available). Secondly, it will calculate the resulting unit
type variables of a component which can then be used

Design Considerations for Dimensional Inference and Unit Consistency Checking in Modelica

The Modelica Association 7 Modelica 2008, March 3rd − 4th, 2008



Elaboration (instantiation) module

Unit

Store

UnitASTBuilder

addStore(name,unit,st) -> st´

buildTerms (eqns,st) 

-> (terms,st�) UnitAbsyn

check(terms,st) -> 

({ConsistentComplete,

ConsistentIncomplete,

InConsistent},st�)

UnitChecker

Recursion over all

sub components

Figure 2: Outline of the main modules of the unit type checking engine of the prototype implementation.
Arrows describe dependencies between modules.

when checking the complete model. This will give the
following steps of the unit checking function.

1. Check components in the class.

2. Build a new equation system from the type vari-
ables from each component together with local
equations and connections.

3. Call the unit checker for the model itself.

Note that checking the components of a class means a
recursion over the three steps for the class of the com-
ponent.
The equation systems for the unit checker are created
from two data structures, a unit store that holds units of
variables, and unit terms that describe constraints be-
tween different variables. The following sections show
how these are built.

4.1.1 Storing Units

Each variable in a model has a corresponding unit. A
unit can be

• A specified unit, e.g.,"m/s" .

• A unit type parameter e.g.,"’p" , with an op-
tional exponent, e.g.,"’p^2" .

• A combination of specified unit and type parame-
ter, e.g.,"’p/s" .

• unspecified unit e.g., the unit of a declaration
"Real x;" .

The unit store is a data structure that holds the units
of variables. It gives a mapping from a variable name

to its corresponding unit. During the instantiation and
unit checking process the unit store is updated with
new units. The following model shows how the unit
store is used:

model SimpleOde
Real x;
Velocity v;

equation
der(x)=2 * v + 1.0;

end SimpleOde;

First the unit store is built by adding the units of the
variablesx andv . Sincex is declared as aReal it
gets an unspecified unit, andv gets the unit"m/s" .
After the unit checking module has been executed on
this class, it will update the unit store with the unit
for x with "m" , because this was inferred by the
UnitCheck module. This information can then be used
higher up in the instance tree to check units of other
components.

4.1.2 Building Unit Terms

The second data structure required for building unit
constraint equations is the Unit Term which describes
relations between variables. This structure is similar
to the data structure for equations, containing nodes
for e.g., addition, multiplication, etc. It is sufficient to
only have four types of relations between units: multi-
plication of terms, division of terms, addition of terms,
and equality between terms. Since an addition of two
variables and a subtraction of two variables both im-
ply the same rules for the units, both of these can be
expressed using the same unit term. The leaf nodes of
terms are references to units in the unit store.
Let us again consider the example SimpleOde above.
We use ADD and MUL for addition and multiplica-

D. Broman, P. Aronsson, P. Fritzson

The Modelica Association 8 Modelica 2008, March 3rd − 4th, 2008



Figure 3: An inconsistent circuit that should fail dur-
ing dimensional checking.

tion in our data structure and EQN for equality be-
tween terms. For the leaf nodes, with references to
the unit store, are described with LOC. The example
above corresponds to the following terms (somewhat
simplified):

EQU(
LOC("der(x)"),
ADD(

MUL(LOC("V"),LOC("2")),
LOC("1.0")))

From the unit store and the unit terms, constraint equa-
tions are built. A multiplication of unit terms means
that the unit vector is added, and an addition of unit
terms means that the units must be equal.

4.1.3 Built-in Functions and Operators

The built-in functions and operators are extended with
units containing unit type parameters. That gives us
a uniform way of dealing with functions, regardless if
the function is a built-in function, a built-in operator,
or a user-defined function. For instance, the der oper-
ator is internally described as

function der
input Real x(unit = "’p");
output Real y(unit = "’p/s");
external "builtin";

end der;

That is, applying the derivative operator to an expres-
sion will change its unit by multiplication with "s-1".

Figure 4: A dimensionally correct circuit.

4.2 Example

Let us consider an example using components from
the Modelica Standard Library to illustrate the differ-
ent aspects of unit checking. Figure 3 shows an exam-
ple where unit checking will return an error because of
inconsistent units4. A VariableResistor and a Variable-
Conductor is fed from the same signal source, taken
from the Blocks library. All sources in the Blocks
library have unspecified units, such that they can be
used in any context. The unit checker will find that the
unit of the output of the clock generator should be both
"Ohm" (Resistance) and "S" (Conductance), i.e., an in-
consistency is reported. This inconsistency is detected
first when the local equations of the Circuit model is
unit type checked. The unit store then contains an un-
specified unit for the clock generator (clock1.y) and
specified units for the inputs on the resistor R1 (R1.R)
and the conductor G1 (G1.G).
To resolve the inconsistency of the circuit the user has
to use two separate clock generators, see Figure 4. The
unit of clock1.y will become"Ohm" and clock2.y will
become"S" , resulting in a consistent system.
When using math blocks (Gain, Add, TransferFunc-
tion, etc) in models it becomes evident that polymor-
phism is required. For instance, lets add a gain to

4The circuit is inconsistent since the VariableResistor and Vari-
ableConductor have declared their inputs to Resistance and Con-
ductance respectively. If they were declared as dimensionless
the circuit would have been consistent, thus also making it a li-
brary design issue. Also, it could be possible to have different
unit checking semantics depending on the causality of equations,
which would allow this kind of connections.

Design Considerations for Dimensional Inference and Unit Consistency Checking in Modelica

The Modelica Association 9 Modelica 2008, March 3rd − 4th, 2008



Figure 5: An inconsistent model with a polymorphic
block.

our inconsistent model, see Figure 5. The gain block
should be possible to use for any unit, i.e., it should
be a polymorphic block. If that would not be possi-
ble, the user would have to write a new block model
for each particular use, in this case for amplifying a
Conductance signal. In our implementation, the unit
checker will treat the Gain block as having a poly-
morphic unit and assign a unit type parameter to it.
The result of checking the gain block is a unit type
parameter that propagates the unit of the input to the
unit of the output. Hence, when the circuit model is
checked, the unit from the VariableConductor is prop-
agated to the unit ofclock1.y , leading to an incon-
sistent system of equations. Typically, for larger block
models, this propagation can be performed over many
subsystems of components. This implementation will
however lead to a detection of the inconsistency at the
lowest level possible, making it easier for the user to
correct the inconsistency.

5 Related Work

Unit checking has been introduced in several Model-
ica tools over the last couple of years, for instance,
Dymola[4] from Dynasim and Simulation X[8] from
ITI GmbH. Dymola version 6.1 has a unit checking
mechanism, as well as support for deduction of units.
However, unit parametric polymorphism is yet not
supported.
Simulation X has a conversion extension to Modelica
for giving units to literals. For instance, the expression

a + 2.5 ’mm’ will translate the literal2.5 into SI
base unit meter by multiplying it with10e-3 .
Both of these tools will (or soon will) support enter-
ing other units than default units for e.g., parameter
values, i.e., making it possible to enter2.5 mm as a
parameter value. The displayUnit attribute of Model-
ica standard is available for this purpose.
Unit checking and checking of dimensional inconsis-
tency has been extensively explored in the program-
ming language research community and is far from
a new research area. Many library-based approaches
exist for imperative programming languages, such as a
package approach for Ada [6] and a template approach
in C++ [18]. An approach for dimensional inference is
presented in [19], where gaussian elimination is used
for solving the resulting equation system. The work
shows how dimensions with rational exponents can be
added to the simply typed lambda calculus.
In Kennedy’s thesis [9], an extension of a core calculus
of ML with support for type inference over dimension
types is given. Lately, dimension and unit checking
have also been addressed in a nominally typed object-
oriented language [1].
Besides the work on gPROMS [14, 15], few attempts
have been made to incorporate dimensional and / or
unit checking in equation-based object-oriented lan-
guages, such as Modelica. In addition, even though
Modelica today supports syntax for stating units of
variables, no sound solution exists that guarantees the
absence of unit errors.

6 Conclusions

This paper has presented a design for dimensional
analysis and unit checking of Modelica models. Re-
quirements from an end user and tool perspective have
lead to a design which has been implemented as a pro-
totype on top of the OpenModelica and MathModel-
ica compilers. MathModelica has also been used for
building the models presented in this paper, and a fu-
ture release of MathModelica will contain unit check-
ing based on the design in this paper. The design in-
troduces unit type variables enabling polymorphism
of unit types in Modelica, which increase the safety
and flexibility of the dimensional analysis. We have
also chosen to represent exponents as rational num-
bers which enables dimensional checking of e.g., the
sqrt function. The design of the dimensional analysis
also allows the possibility of adding additional base
units, on top of the seven base units of the SI system.
This enables modeling of e.g., financial systems using

D. Broman, P. Aronsson, P. Fritzson

The Modelica Association 10 Modelica 2008, March 3rd − 4th, 2008



base unit money, and other application areas.
The prototype implementation has been described and
illustrated with several examples from the standard li-
brary. The analysis results in either a consistent and
complete system, a consistent but incomplete system
(which means that not sufficient unit information is
available to fully determine units) or an inconsistent
system (indicating where the inconsistency is located).
By using the prototype we have detected some minor
problems with the standard library. For instance, the
Gain component in the Blocks Math library currently
has unspecified units on its gain parameter. In order to
fully check the dimensions of models using this com-
ponent, the gain parameter should be dimensionless.
This paper has also discussed unit conversion, even
though this has not yet been implemented. Nonethe-
less, some ideas presented here could be a useful start-
ing point for the Modelica Design Group’s activities
regarding this topic.

Acknowledgments

This research was funded by CUGS (National Grad-
uate School in Computer Science), MathCore Engi-
neering, by Vinnova under the NETPROG Safe and
Secure Modeling and Simulation on the GRID project,
the Swedish Research Council (VR), and Forska&Väx
program under the project Lättanvänt Generellt Simu-
leringsverktyg för Industriell Produktutveckling.

References

[1] Eric Allen, David Chase, Victor Luchangco, Jan-
Willem Maessen, and Jr. Guy L. Steele. Object-
Oriented Units of Measurement. InOOPSLA
’04: Proceedings of the 19th annual ACM SIG-
PLAN conference on Object-oriented program-
ming, systems, languages, and applications,
pages 384–403, Vancouver, BC, Canada, 2004.
ACM Press.

[2] David Broman, Peter Fritzson, and Sébastien
Furic. Types in the Modelica Language. In
Proceedings of the Fifth International Model-
ica Conference, pages 303–315, Vienna, Austria,
2006.

[3] Luca Cardelli and Peter Wegner. On Understand-
ing Types, Data Abstraction, and Polymorphism.
ACM Comput. Surv., 17(4):471–523, 1985.

[4] Dynasim. Dymola - Dynamic Modeling
Laboratory (Dynasim AB). http://www.
dynasim.se/ [Last accessed: Jan 22, 2008].

[5] Narain Gehani. Ada’s derived types and units
of measure.Software Practice and Experience,
15(6):555–569, 1985.

[6] Paul N. Hilfinger. An ADA Package for Di-
mensional Analysis.ACM Transactions on Pro-
gramming Languages and Systems, 10(2):189–
203, 1988.

[7] Bureau international des poids et mesures
(BIPM). Le Système international d’unités, The
International System of Units. Organisation in-
tergouvernementale de la Convention du Mètre,
8th edition.

[8] ITI. SimulationX. http://www.iti.de/
[Last accessed: November 8, 2007].

[9] Andrew Kennedy.Programming Languages and
Dimensions. PhD thesis, St. Catharine’s College,
University of Cambridge, UK, UK, 1996.

[10] MathCore. MathModelica System Designer:
Model based design of multi-engineering
systems. http://www.mathcore.com/
products/mathmodelica/ [Last accessed:
Jan 23, 2008].

[11] Robin Milner, Mads Tofte, Robert Harper, and
David MacQuee.The Definition of Standard ML
- Revised. The MIT Press, 1997.

[12] Modelica Association. Modelica - A Uni-
fied Object-Oriented Language for Physical Sys-
tems Modeling - Language Specification Version
3.0, 2007. Available from: http://www.
modelica.org .

[13] Gordon S. Novak. Conversion of Units of Mea-
surement.IEEE Transactions on Software Engi-
neering, 21(8):651–661, 1995.

[14] Daniel Persson. Dimensional Analysis and In-
ference for gPROMS. Master’s thesis, De-
partment of Computer Science and Engineering,
Mälardalen University, Sweden, 2003.

[15] Mikael Sandberg, Daniel Persson, and Björn
Lisper. Automatic Dimensional Consistency
Checking for Simulation Specifications. InSIMS
2003, September 2003.

Design Considerations for Dimensional Inference and Unit Consistency Checking in Modelica

The Modelica Association 11 Modelica 2008, March 3rd − 4th, 2008



[16] Simon Peyton Jones.Haskell 98 Language and
Libraries – The Revised Report. Cambridge Uni-
versity Press, 2003.

[17] The OpenModelica Project. http://www.
ida.liu.se/~pelab/modelica/
OpenModelica.html [Last accessed:
January 22, 2008].

[18] Zerksis D. Umrigar. Fully static dimensional
analysis with C++. ACM SIGPLAN Notices,
29(9):135–139, 1994.

[19] Mitchell Wand and Patrick O’Keefe. Automatic
Dimensional Inference. In J.-L. Lassez and
G. Plotkin, editors,Computational Logic - Es-
says in Honor of Alan Robinson. The MIT Press,
1991.

D. Broman, P. Aronsson, P. Fritzson

The Modelica Association 12 Modelica 2008, March 3rd − 4th, 2008


