
Types in the Modelica Language

David Broman Peter Fritzson Sébastien Furic
Linköping University, Sweden Linköping University, Sweden Imagine, France

davbr@ida.liu.se petfr@ida.liu.se

Abstract

Modelica is an object-oriented language designed
for modeling and simulation of complex physical
systems. To enable the possibility for an engineer
to discover errors in a model, languages and com-
pilers are making use of the concept of types and
type checking. This paper gives an overview of
the concept of types in the context of the Model-
ica language. Furthermore, a new concrete syntax
for describing Modelica types is given as a starting
point to formalize types in Modelica. Finally, it is
concluded that the current state of the Modelica
language specification is too informal and should
in the long term be augmented by a formal defin-
ition.

Keywords: type system; types; Modelica; simula-
tion; modeling; type safety

1 Introduction

One long term goal of modeling and simulation
languages is to give engineers the possibility to
discover modeling errors at an early stage, i.e.,
to discover problems in the model during design
and not after simulation. This kind of verifica-
tion is traditionally accomplished by the use of
types in the language, where the process of check-
ing for such errors by the compiler is called type
checking. However, the concept of types is of-
ten not very well understood outside parts of the
computer science community, which may result in
misunderstandings when designing new languages.
Why is then types important? Types in program-
ming languages serve several important purposes
such as naming of concepts, providing the com-
piler with information to ensure correct data ma-
nipulation, and enabling data abstraction. Almost
all programming or modeling languages provide
some kind of types. However, few language spec-
ifications include precise and formal definitions of

types and type systems. This may result in incom-
patible compilers and unexpected behavior when
using the language.

The purpose of this paper is twofold. The first
part gives an overview of the concept of types,
states concrete definitions, and explains how this
relates to the Modelica language. Hence, the first
goal is to augment the computer science perspec-
tive of language design among the individuals in-
volved in the Modelica language design. The long-
term objective of this work is to provide aids for
further design considerations when developing, en-
hancing and simplifying the Modelica language.
The intended audience is consequently engineers
and computer scientists interested in the founda-
tion of the Modelica language.

The second purpose and likewise the main con-
tribution of this work is the definition of a concrete
syntax for describing Modelica types. This syntax
together with rules of its usage can be seen as a
starting point to more formally describe the type
concept in the Modelica language. To the best of
our knowledge, no work has previously been done
to formalize the type concept of the Modelica lan-
guage.

The paper is structured as follows: Section 2
outlines the concept of types, subtypes, type sys-
tems and inheritance, and how these concepts are
used in Modelica and other mainstream languages.
Section 3 gives an overview of the three main forms
of polymorphism, and how these concepts corre-
late with each other and the Modelica language.
The language concepts and definitions introduced
in Section 2 and 3 are necessary to understand the
rest of the paper. Section 4 introduces the type
concept of Modelica more formally, where we give
a concrete syntax for expressing Modelica types.
Finally, Section 5 state concluding remarks and
propose future work in the area.

2 Types, Subtyping and
Inheritance

There exist several models of representing types,
where the ideal model [3] is one of the most well-
known. In this model, there is a universe V of all
values, containing all values of integers, real num-
bers, strings and data structures such as tuples,
records and functions. Here, types are defined as
sets of elements of the universe V. There is infi-
nite number of types, but all types are not legal
types in a programming language. All legal types
holding some specific property, such as being an
unsigned integer, are called ideals. Figure 1 gives
an example of the universe V and two ideals: real
type and function type, where the latter has the
domain of integer and codomain of boolean.

Figure 1: Schematic illustration of Universe V and
two ideals.

In most mainstream languages, such as Java and
C++, types are explicitly typed by stating infor-
mation in the syntax. In other languages, such as
Standard ML and Haskell, a large portion of types
can be inferred by the compiler, i.e., the compiler
deduces the type from the context. This process is
referred to as type inference and such a language
is said to be implicitly typed. Modelica is an ex-
plicitly typed language.

2.1 Language Safety and Type Systems

When a program is executed, or in the Modelica
case: during simulation, different kinds of execu-
tion errors can take place. It is practical to distin-
guish between the following two types of runtime
errors [2].

• Untrapped errors are errors that can go un-
noticed and later cause arbitrary behavior of
the system. For example, writing data out of
bound of an array might not result in an im-
mediate error, but the program might crash
later during execution.

• Trapped errors are errors that force the com-
putation to stop immediately; for example di-
vision by zero. The error can then be handled

by the run-time system or by a language con-
struct, such as exception handling.

A programming language is said to be safe if no
untrapped errors are allowed to occur. These
checks can be performed as compile-time checks,
also called static checks, where the compiler finds
the potential errors and reports them to the pro-
grammer. Some errors, such as array out of bound
errors are hard to resolve statically. Therefore,
most languages are also using run-time checks,
also called dynamic checking. However, note that
the distinction between compile-time and run-time
becomes vaguer when the language is intended for
interpretation.

Typed languages can enforce language safety
by making sure that well-typed programs cannot
cause type errors. Such a language is often called
type safe or strongly typed. This checking process
is called type checking and can be carried out both
at run-time and compile-time.

The behavior of the types in a language is ex-
pressed in a type system. A type system can
be described informally using plain English text,
or formally using type rules. The Modelica lan-
guage specification is using the former informal
approach. Formal type rules have much in com-
mon with logical inference rules, and might at
first glance seem complex, but are fairly straight-
forward once the basic concepts are understood.
Consider the following:

Γ ` e1 : bool Γ ` e2 : T Γ ` e3 : T
(t-if)

Γ ` if e1 then e2 else e3 : T

which illustrates a type rule for the following Mod-
elica if -expression:

if e1 then e2 else e3

A type rule is written using a number of premises
located above the horizontal line and a conclusion
below the line. The typing judgement Γ ` e : T
means that expression e has type T with respect
to a static typing environment Γ. Hence, the rule
(t-if) states that guard e1 must have the type of
a boolean and that e2 and e3 must have the same
type, which is also the resulting type of the if -
expression after evaluation. This resulting type is
stated in the last part of the conclusion, i.e., : T.

If the language is described formally, we can at-
tempt to prove the type soundness theorem [15].
If the theorem holds, the type system is said to be
sound and the language type safe or or just safe.

The concept of type safety can be illustrated by
Robin Milner’s famous statement ”Well-typed pro-
grams cannot go wrong”[9]. Modern type sound-
ness proofs are based on Wright and Felleisen’s
approach where type systems are proven correct
together with the language’s operational seman-
tics [15]. Using this technique, informally stated,
type safety hold if and only if the following two
statements holds:

• Preservation - If an expression e has a type T
and e evaluates to a value v, then v also has
type T.

• Progress - If an expression e has a type T
then either e evaluates to a new expression e′

or e is a value. This means that a well typed
program never gets ”stuck”, i.e., it cannot go
into a undefined state where no further eval-
uations are possible.

Note that the above properties of type safety cor-
responds to our previous description of absence
of untrapped errors. For example, if a division by
zero error occurs, and the semantics for such event
is undefined, the progress property will not hold,
i.e., the evaluation gets ”stuck”, or enters an un-
defined state. However, if dynamic semantics are
defined for throwing an exception when the divi-
sion by zero operation occurs, the progress prop-
erty holds.

For the imperative and functional parts of the
Modelica language, the safety concept corresponds
to the same methodology as other languages,
such as Standard ML. However, for the instan-
tiation process of models, the correspondence to
the progress and preservation properties are not
obvious.

Table 1 lists a number of programming lan-
guages and their properties of being type safe
[10][2]. The table indicates if the languages are
primarily designed to be checked statically at
compile-time or dynamically at run-time. How-
ever, the languages stated to be statically type
checked typically still perform some checking at
runtime.

Although many of the languages are commonly
believed to be safe, few have been formally proven
to be so. Currently, ML [9] and subsets of the Java
language [14] [7] has been proven to be safe.

Language Type Safe Checking
Standard ML yes static
Java yes static
Common LISP yes dynamic
Modelica yes static1

Pascal almost static
C/C++ no static
Assembler no -

Table 1: Believed type safety of selected lan-
guages.

2.2 Subtyping

Subtyping is a fundamental language concept used
in most modern programming languages. It means
that if a type S has all the properties of another
type T, then S can be safely used in all contexts
where type T is expected. This view of subtyp-
ing is often called the principle of safe substitution
[12]. In this case, S is said to be a subtype of T,
which is written as

S<: T (1)

This relation can be described using the following
important type rule called the rule of subsumption.

Γ ` t : S S<: T
(t-sub)

Γ ` t : T

The rule states that if S<: T, then every term2

t of type S is also a term of type T. This shows a
special form of polymorphism, which we will fur-
ther explore in Section 3.

2.3 Inheritance

Inheritance is a fundamental language concept
found in basically all class based Object-Oriented
(OO) languages. From an existing base class, a
new subclass can be created by extending from
the base class, resulting in the subclass inheriting
all properties from the base class. One of the main
purposes with inheritance is to save programming

1One can argue whether Modelica is statically or dynam-
ically checked, depending on how the terms compile-time
and run-time are defined. Furthermore, since no exception
handling is currently part of the language, semantics for
handling dynamic errors such as array out of bound is not
defined in the language and is therefore considered a com-
piler implementation issue.

2The word term is commonly used in the literature as
an interchangeable name for expression.

and maintenance efforts of duplicating and reading
duplicates of code. Inheritance can in principle be
seen as an implicit code duplication which in some
circumstances implies that the subclass becomes a
subtype of the type of the base class.

Figure 2 shows an example3 where inheritance
is used in Modelica. A model called Resistor
extends from a base class TwoPin , which includes
two elements v for voltage and i for current. Fur-
thermore, two instances p and n of connector Pin
are public elements of TwoPin . Since Resistor
extends from TwoPin , all elements v , i , p and
n are ”copied” to class Resistor . In this case,
the type of Resistor will also be a subtype of
TwoPin ’s type.

connector Pin
SI.Voltage v;
flow SI.Current i;

end Pin;

partial model TwoPin
SI.Voltage v;
SI.Current i;
Pin p, n;

equation
v = p.v - n.v;
0 = p.i + n.i;
i = p.i;

end TwoPin;

model Resistor
extends TwoPin;
parameter SI.Resistance R=100;

equation
R* i = v;

end Resistor;

Figure 2: Example of inheritance in Modelica,
where a new subclass Resistor is created by ex-
tending the base class TwoPin .

However, a common misunderstanding is that sub-
typing and inheritance is the same concept [10].
A simple informal distinction is to say that ”sub-
typing is a relation on interfaces”, but ”inheri-
tance is a relation on implementations”. In the
resistor example, not only the public elements
v , i , p and n will be part of class Resistor ,
but also the meaning of this class, i.e, the equa-
tions v = p.v - n.v , 0 = p.i + n.i and
i = p.i .

3These classes are available in the Modelica Standard
Library 2.2, but are slightly modified for reasons of read-
ability.

A famous example, originally stated by Alan
Snyder [13], illustrates the difference between sub-
typing and inheritance. Three common abstract
data types for storing data objects are queue, stack
and dequeue. A queue normally has two opera-
tions, insert and delete, which stores and returns
object in a first-in-first-out (FIFO) manner. A
stack has the same operations, but are using a
last-in-first out (LIFO) principle. A dequeue can
operate as both a stack and a queue, and is nor-
mally implemented as a list, which allows inserts
and removals at both the front and the end of the
list.

Figure 3 shows two C++ classes modeling the
properties of a dequeue and a stack. Since class
Dequeue implements the properties also needed
for a stack, it seems natural to create a sub-
class Stack that inherits the implementation
from Dequeue . In C++, it is possible to use
so called private inheritance to model inheritance
with an exclude operation, i.e., to inherit some, but
not all properties of a base class. In the exam-
ple, the public methods insFront , delFront ,
and delRear in class Dequeue are inherited to
be private in the subclass Stack . However, by
adding new methods insFront and delFront
in class Stack , we have created a subclass, which
has the property of a stack by excluding the
method delRear . Stack is obviously a subclass

class Dequeue{
public :

void insFront(int e);
int delFront();
int delRear();

};

class Stack : private Dequeue{
public :

void insFront(int e)
{Dequeue::insFront(e);}

int delFront()
{ return Dequeue::delFront();}

};

Figure 3: C++ example, where inheritance does
not imply a subtype relationship.

of Dequeue , but is it a subtype? The answer is
no, since an instance of Stack cannot be safely
used when Dequeue is expected. In fact, the op-
posite is true, i.e., Dequeue is a subtype of Stack
and not the other way around. However, in the
following section we will see that C++ does not

treat such a subtype relationship as valid, but the
type system of Modelica would do so.

2.4 Structural and Nominal Type Sys-
tems

During type checking, regardless if it takes place at
compile-time or run-time, the type checking algo-
rithm must control the relations between types to
see if they are correct or not. Two of the most fun-
damental relations are subtyping and type equiva-
lence.

Checking of type equivalence is the single most
common operation during type checking. For ex-
ample, in Modelica it is required that the left and
right side of the equality in an equation have the
same type, which is shown in the following type
rule.

Γ ` e1 : T Γ ` e2 : T
(t-equ)

Γ ` e1= e2 : Unit

Note that type equivalence has nothing to do with
equivalence of values, e.g., equation 4 = 10 is
type correct, since integers 4 and 10 are type
equivalent. However, this is of course not a valid
equation, since the values on the right and left side
are not the same.

The Unit type (not to confuse with physical
units), shown as the resulting type of the equa-
tion, is often used as a type for uninteresting result
values.

A closely related concept to type equivalence is
type declaration, i.e., when a type is declared as
a specific name or identifier. For example, the
following Modelica record declaration

record Person
String name;
Integer age;

end Person;

declares a type with name Person . Some lan-
guages would treat this as a new unique type that
is not equal to any other type. This is called
opaque type declaration. In other languages, this
declaration would simply mean that an alternative
name is given to this type. However, the type can
also be expressed by other names or without any
name. This latter concept is commonly referred
as transparent type declaration.

In a pure nominal type system, types are com-
pared (subtyping and type equivalence) by using
the names of the declared types, i.e., opaque type

declarations are used. Type equivalence is con-
trolled by checking that the same declared name
is used. Furthermore, the subtype relation in
OO languages is checked by validating the inheri-
tance order between classes. The C++ language is
mainly using a nominal type system, even if parts
of the language does not obey the strict nominal
structure.

Consider the listing in Figure 4, which illus-
trates a C++ model similar to the resistor ex-
ample earlier given as Modelica code in Figure 2.
In this case, Resistor is a subclass of TwoPin
and the type of Resistor is therefore also a
subtype of TwoPin ’s type. However, the type
of Inductor is not a subtype to the type of
TwoPin , since Inductor does not inherit from
TwoPin . Moreover, Resistor2 is not type
equivalent to Resistor even if they have the
same structure and inherits from the same base
class, since they are opaquely declared.

class Pin{
public :

float v, i;
};

class TwoPin{
public :

TwoPin() : v(0),i(0){};
float v, i;
Pin p, n;

};

class Resistor : public TwoPin{
public :

Resistor() : r(100) {};
float r;

};

class Resistor2 : public TwoPin{
public :

Resistor() : r(200) {};
float r;

};

class Inductor{
public :

TwoPin() : v(0),i(0){};
float v, i;
Pin p, n;
const float L;

};

Figure 4: Resistor inheritance example in
C++.

In a structural type system [12], declarations are
introducing new names for type expressions, but
no new types are created. Type equivalence and
subtype relationship is only decided depending on
the structure of the type, not the naming.

The Modelica language is inspired by the type
system described by Abadi and Cardelli in [1]
and is using transparent type declarations, i.e.,
Modelica has a structural type system. Con-
sider the Resistor example given in Figure 2
and the two complementary models Inductor
and Resistor2 in Figure 5. Here, the same
relations holds between TwoPin and Resistor ,
i.e., that the type of Resistor is a subtype of
TwoPin ’s type. The same holds between TwoPin
and Resistor2 . However, now Resistor and
Resistor2 are type equivalent, since they have
the same structure and naming of their public
elements. Furthermore, the type of Inductor
is now a valid subtype of TwoPin ’s type, since
Inductor contains all public elements (type and
name) of the one available in TwoPin .

model Resistor2
extends TwoPin;
parameter SI.Resistance R=200;

equation
R* i = v;

end Resistor;

model Inductor
Pin p, n;
SI.Voltage v;
SI.Current i;
parameter SI.Inductance L=1;

equation
L* der(i) = v;

end Inductor;

Figure 5: Complementary Inductor and
Resistor2 models to the example in Figure 2.

It is important to stress that classes and types in
a structural type system are not the same thing,
which also holds for Modelica. The type of a class
represents the interface of the class relevant to the
language’s type rules. The type does not include
implementation details, such as equations and al-
gorithms.

Note that a nominal type system is more re-
strictive than a structural type system, i.e., two
types that have a structured subtype relation can
always have a subtype relation by names (if the
language’s semantics allows it). However, the op-

posite is not always true. Recall the Dequeue
example listed in Figure 3. The class Stack has
a subclass relation to Dequeue , but a subtype re-
lation cannot be enforced, due to the structure of
the class. The converse could be true, but the
type system of C++ would not allow it, since it
is nominal and subtype relationships are based on
names. Hence, a structural type system can be
seen as more expressive and flexible compared to
a nominal one, even if both gives the same level of
language type safety.

3 Polymorphism

A type system can be monomorphic in which each
value can belong to at most one type. A type sys-
tem, as illustrated in Figure 1, consisting of the
distinct types function, integer, real, and boolean
is a monomorphic type system. Conversely, in a
polymorphic type system, each value can belong
to many different types. Languages supporting
polymorphism are in general more expressive com-
pared to languages only supporting monomorphic
types. The concept of polymorphism can be han-
dled in various forms and have different naming
depending on the paradigm where it is used. Fol-
lowing John C. Mitchell’s categorization, polymor-
phism can be divided into the following three main
categories [10]:

• Subtype Polymorphism

• Parametric Polymorphism

• Ad-hoc Polymorphism

There are other similar categorizations, such as
Cardelli and Wegner’s [3], where the ad-hoc cat-
egory is divided into overloading and coercion at
the top level of categories.

3.1 Subtype Polymorphism

Subtyping is an obvious way that gives polymor-
phic behavior in a language. For example, an in-
stance of Resistor can be represented both as an
TwoPin type and a Resistor type. This state-
ment can also be shown according to the rule of
subsumption (t-sub) described in Section 2.2.

When a value is changed from one type to some
supertype, it is said to be an up-cast. Up-casts
can be viewed as a form of abstraction or infor-
mation hiding, where parts of the value becomes

invisible to the context. For example, an up-cast
from Resistor ’s type to TwoPin ’s type hides
the parameter R. Up-casts are always type safe,
i.e., the run-time behavior cannot change due to
the upcast.

However, for subtype polymorphism to be use-
ful, typically types should be possible to down-
cast, i.e., to change to a subtype of a type’s value.
Consider function Foo

function Foo
input TwoPin x;
output TwoPin y;

end Foo;

where we assume that down-casting is allowed4. It
is in this case valid to pass either a value of type
TwoPin (type equivalence) or a subtype to the
type of TwoPin . Regardless if a value of TwoPin ’s
or Inductor ’s type is sent as input to the func-
tion, a value of TwoPin ’s type will be returned. It
is not possible for the static type system to know
if this is a TwoPin , Resistor or a Inductor
type. However, for the user of the function, it
might be crucial to handle it as an Inductor ,
which is why a down-cast is necessary.

Down-casting is however not a safe operation,
since it might cast down to the wrong subtype.
In Java, before version 1.5 when generics were in-
troduced, this safety issue was handled using dy-
namic checks and raising dynamic exceptions if
an illegal down-cast was made. Subtype polymor-
phism is sometimes called ”poor-man’s polymor-
phism”, since it enables polymorphic behavior, but
the safety of down-casts must be handled dynam-
ically [12].

The Modelica language supports subtyping as
explained previously, but does not have any oper-
ation for down-cast. Since the language does not
include this unsafe operation, only a limited form
of subtype polymorphism can be used with func-
tions. For example, a function can operate on a
polymorphic type as input, such as TwoPin , but
it only makes sense to return values of a type that
can be instantly used by the caller.

However, subtype polymorphism is more exten-
sively used when reusing and replacing compo-
nents in models, i.e., by using the redeclare
keyword.

4This function type or example is not valid in the cur-
rent Modelica standard. It is used only for the purpose of
demonstrating subtype polymorphism.

3.2 Parametric Polymorphism

The term parametric polymorphism means that
functions or classes can have type parameters, to
which types or type expressions can be supplied.
The term parametric polymorphism is often used
in functional language communities, while people
related to object-oriented languages tend to use
the term generics.

The C++ template mechanism is an exam-
ple of explicit parametric polymorphism, where
the type parameter must be explicitly declared.
Consider for example Figure 6, where a tem-
plate function swap is implemented. The type
parameter T must be explicitly stated when
declaring the function. However, the type ar-
gument is not needed when calling the func-
tion, e.g., both int x,y; swap(x,y); and
float i,j; swap(i,j) are valid usage of the
function.

template <typename T>
void swap(T& x, T& y){

T tmp = x;
x = y;
y = tmp;

}

Figure 6: Explicit parametric polymorphism in
C++.

Standard ML on the other hand is making use
of implicit parametric polymorphism, where the
type parameters do not need to be explicitly stated
when declaring the function. Instead, the type in-
ference algorithm computes when type parameters
are needed.

A notable difference of parametric and subtype
polymorphism is that all type checking of para-
metric polymorphism can take place at compile-
time and no unsafe down-cast operation is needed.

Standard ML and and C++ are internally han-
dling parametric polymorphism quite differently.
In C++ templates, instantiation to compiled code
of a function is done at link time. If for exam-
ple function swap is called both using int and
float , different code of the function is generated
for the two function calls. Standard ML on the
other hand is using uniform data representation,
where all data objects are represented internally as
pointers/references to objects. Therefore, there is
no need to create different copies of code for dif-
ferent types of arguments.

Modelica can be seen to support a limited ver-
sion of parametric polymorphism, by using the re-
declare construct on local class declarations.

3.3 Ad-hoc Polymorphism

In parametric polymorphism the purpose is to de-
clare one implementation that can be used with
different types of arguments. Ad-hoc polymor-
phism, by contrast, allows a polymorphic value to
be used differently depending on which type the
value is viewed to have.

There are several language concepts that fall
under the concept of ad-hoc polymorphism [3],
where Overloading and Coercion are most notable.
Other related concepts that also fall under this
category are Java’s instanceOf concept and dif-
ferent form of pattern matching [12].

3.3.1 Overloading

A symbol is overloaded if it has two or more mean-
ings, which are distinguished by using types. That
is, a single function symbol or identifier is associ-
ated with several implementations.

An example of overloading that exists in many
programming languages is operator overloading
for built in types. For example, the symbol +
is using infix notation and have two operands as-
sociated with it. The type of these operands de-
cide how the operation should be carried out, i.e.,
which implementation that should be used.

Overloading can take place at either compile-
time or at run-time. Overloading used at run-
time is often referred to as dynamic lookup[10], dy-
namic dispatch or multi-method dispatch. In most
cases, the single term overloading refers to static
overloading taking place at compile-time. The dis-
tinction becomes of course vague, if the language
is interpreted and not compiled.

Another form of overloading available in some
languages is user-defined function overloading,
where a function identifier can represent sev-
eral implementations for different type arguments.
Modelica is currently not supporting any form of
user defined overloading.

3.3.2 Coercion

Another form of ad-hoc polymorphism is coer-
cion or implicit type conversion, which is run-time
conversion between types, typically performed by
code automatically inserted by the compiler. The

distinction between overloading and type coer-
cion is not always clear, and the two concepts are
strongly related. Consider the following four ex-
pressions of multiplication [3]:

7 * 9 //Integer * Integer
6.0 * 9.1 //Real * Real
6 * 5.2 //Integer * Real
6.0 * 8 //Real * Integer

All four of these expressions are valid Modelica ex-
pressions, but they can in the context of coercion
and overloading be interpreted in three different
ways:

• The multiplication operator is overloaded
four times, one for each of the four expres-
sions.

• The operator is overloaded twice; one for each
of the the first two expressions. If the argu-
ments have different types, i.e., one is Real
and the other one Integer , type coercion is
first performed to convert the arguments to
Real .

• Arguments are always implicitly converted to
Real , and the operator is only defined for
Real s.

Type conversions can also be made explicit, i.e.,
code is inserted manually by the programmer that
converts the expression to the correct type.

In Modelica, implicit type conversion is used
when converting from Integer to Real . Of the
three different cases listed above, the second one
applies to the current Modelica 2.2 standard.

4 Modelica Types

In the previous sections we described different as-
pects of types for various languages. In this sec-
tion we will present a concrete syntax for describ-
ing Modelica types, followed by rules stating legal
type expressions for the language.

The current Modelica language specification
[11] specifies a formal syntax of the language, but
the semantics including the type system are given
informally using plain English. There is no ex-
plicit definition of the type system, but an implicit
description can be derived by reading the text de-
scribing relations between types and classes in the
Modelica specification. This kind of implicit spec-
ification makes the actual specification open for
interpretation, which may result in incompatible

compilers; both between each other, but also to
the specification itself. Our work in this section
should be seen as a first step to formalize what a
type in Modelica actually is. Previous work has
been performed to formally specify the semantics
of the language [8], but without the aim to more
precisely define the exact meaning of a type in the
language.

Why is it then so important to have a precise
definition of the types in a language? As we have
described earlier, a type can be seen as an interface
to a class or an object. The concept of interfaces
forms the basis for the widely accepted approach
of separating specification from implementation,
which is particularly important in large scale de-
velopment projects. To put it in a Modelica mod-
eling context, let us consider a modeling project
of a car, where different modeling teams are work-
ing on the wheels, gearbox and the engine. Each
team has committed to provide a set of specific at-
tributes for their component, which specifies the
interface. The contract between the teams is not
violated, as long as the individual teams are fol-
lowing this commitment of interface (the specifica-
tion) by adding / removing equations (the imple-
mentation). Since the types state the interfaces in
a language with a structural type system, such as
Modelica, it is obviously decisive that they have a
precise definition.

Our aim here is to define a precise notation of
types for a subset of the Modelica language, which
can then further be extended to the whole lan-
guage. Since the Modelica language specification
is open for interpretation, the presented type def-
inition is our interpretation of the specification.

4.1 Concrete Syntax of Types

Now, let us study the types of some concrete Mod-
elica models. Consider the following model B,
which is rather uninteresting from a physical point
of view, but demonstrates some key concepts re-
garding types.
model B

parameter Real s=-0.5;
connector C

flow Real p;
Real q;

end C;
protected

Real x(start=1);
equation

der(x) = s * x;
end B;

What is the type of model B? Furthermore, if B
was used and instantiated as a component in an-
other model, e.g., B b; , what would the resulting
type for element b be? Would the type for B and
b be the same? The answer to the last question is
definitely no. Consider the following listing, which
illustrates the type of model B.

model classtype //Class type of model B
public parameter Real objtype s;
public connector classtype

flow Real objtype p;
nonflow Real objtype q;

end C;
protected Real objtype x;

end

This type listing follows the grammar syntax
listed in Figure 7. The first thing to notice is that
the name of model B is not visible in the type. Re-
call that Modelica is using a structural type sys-
tem, where the types are determined by the struc-
ture and not the names, i.e., the type of model B
has nothing to do with the name B. However, the
names of the elements in a type are part of the
type, as we can see for parameter s and variable
x .

The second thing to observe is that the equa-
tion part of the model is missing in the type def-
inition. The reason for this is that equations and
algorithms are part of the implementation and not
the model interface. Moreover, all elements s , C
and x are preserved in the type, but the keywords
model , connector and basic type Real are fol-
lowed by new keywords classtype or objtype .
This is one of the most important observations to
make regarding types in a class based system us-
ing structural subtyping and type equivalence. As
we can see in the example, the type of model B
is a class type, but parameter s is an object type.
Simply stated: A class type is the type of one
of Modelica’s restricted classes, such as model ,
connector , record etc., but an object type is
the type of an instance of a class, i.e., an object.
Now, the following shows the object type of b,
where b represents an instance of model B:

model objtype //Object type of b
parameter Real objtype s;

end

Obviously, both the type of connector C and
variable x have been removed from the type of b.
The reason is that an object is a run-time entity,
where neither local classes (connector C) nor pro-
tected elements (variable x) are accessible from

outside the instance. However, note that this is
not the same as that variable x does not exist in
a instance of B; it only means that it is not visible
to the outside world.

Now, the following basic distinctions can be
made between class types and object types:

• Classes can inherit (using extends) from class
types, i.e., the type that is bound to the name
used in an extends clause must be a class
type and not an object type.

• Class types can contain both object types and
class types, but object types can only hold
other object types.

• Class types can contain types of protected el-
ements; object types cannot.

• Class types are used for compile time evalua-
tion, such as inheritance and redeclarations.

type ::= (model | record | connector |
block | function | package)
kindo f type

{{pre f ix} type identi f ier; } end

| (Real | Integer | Boolean |
String) kindo f type

| enumeration kindo f type

enumlist

kindo f type ::= classtype | objtype

pre f ix ::= access| causality|
f lowpre f ix | modi f iability |
variability | outerinner

enumlist ::= (identi f ier {, identi f ier})

access ::= public | protected

causality ::= input | output |
inputoutput

f lowpre f ix ::= flow | nonflow

modi f iability ::= replaceable | modifiable |
final

variability ::= constant | parameter |
discrete | continuous

outerinner ::= outer | inner |
notouterinner

Figure 7: Concrete syntax of partial Modelica
types.

Let us now take a closer look at the grammar
listed in Figure 7. The root non-terminal of the
grammar is type, which can form a class or ob-
ject type of the restricted classes or the built in
types Real , Integer , Boolean , String , or
enumeration . The grammar is given using a
variant of Extended Backus-Naur Form (EBNF),
where terms enclosed in brackets {} denote zero,
one or more repetitions. Keywords appearing in
the concrete syntax are given in bold font. All
prefixes, such as public , flow , outer etc. can
be given infinitely many times. The correct usage
of these prefixes is not enforced by the grammar,
and must therefore be handled later in the seman-
tic analysis. We will give guidelines for default
prefixes and restrictions of the usage of prefixes in
the next subsection.

Now, let us introduce another model A, which
extends from model B:

model A
extends B(s=4);
C c1;

equation
c1.q = -10 * der(x);

end A;

The question is now what the type of model A
is and if it is instantiated to an object, i.e., A a; ,
what is then the type of a? The following shows
the type of model A.

model classtype //Class type of A
public parameter Real objtype s;
public connector classtype

flow Real objtype p;
nonflow Real objtype q;

end C;
public connector objtype

flow Real objtype p;
nonflow Real objtype q;

end c1;
protected Real objtype x;

end

First of all, we see that the type of model A does
not include any extends keyword referring to the
inherited model B. Since Modelica has a structural
type system, it is the structure that is interesting,
and thus a type only contains the collapsed struc-
ture of inherited elements. Furthermore, we can
see that the protected elements from B are still
available, i.e., inheritance preserves the protected
element after inheritance. Moreover, since model
A contains an instance of connector C, this is now
available as an object type for element c1 in the
class type of A. Finally, consider the type of an

instance a of class A:

model objtype //Object type of a
parameter Real objtype s;
connector objtype

flow Real objtype p;
nonflow Real objtype q;

end c1;
end

The protected element is now gone, along with
the elements representing class types. A careful
reader might have noticed that each type defini-
tion ends without a semi-colon, but elements de-
fined inside a type such as model classtype
ends with a semi-colon. A closer look at the gram-
mar should make it clear that types themselves
do not have names, but when part of an element
definition, the type is followed by a name and a
semi-colon. If type expressions were to be ended
with a semi-colon, this recursive form of defining
concrete types would not be possible.

4.2 Prefixes in Types

Elements of a Modelica class can be prefixed with
different notations, such as public , outer or
replaceable . We do not intend to describe the
semantics of these prefixes here, instead we refer
to the specification [11] and to the more accessible
description in [5]. Most of the languages prefixes
have been introduced in the grammar in Figure 7.
However, not all prefixes are allowed or have any
semantic meaning in all contexts.

In this subsection, we present a partial defini-
tion of when different prefixes are allowed to ap-
pear in a type. In currently available tools for
Modelica, such as Dymola [4] and OpenModelica
[6], the enforcement of these restrictions is sparse.
The reason for this can both be the difficulties
to extract this information from the specification
and the fact that the rules for the type prefixes
are very complex.

In Figure 8 several abbreviations are listed. The
lower case abbreviations a, c, c′ etc. define sets of
prefixes. The uppercase abbreviations M, R etc.
together with a subscription of c for class type
and o for object type, represents the type of an
element part of another type. For example Mc is
a model class type, and Ro is a record object type.

Now, consider the rules for allowed prefixes of
elements shown in the tables given in Figure 9,
Figure 10, and Figure 11.

In Figure 9 the intersection between the col-
umn (the type of an element) and the row (the

M = model
R = record
C = connector
B = block
F = function
P = package
X = Integer , Boolean ,

enumeration , String
Y = Real
a = {public , protected } Access
a′ = {public }
c = {input , output , Causality

inputoutput }
c′ = {input , output }
f = {flow , nonflow } Flowprefix
m = {replaceable , Modifiability

modifiable , final }
m′= {modifiable , final }
v = {constant , parameter Variability

discrete , continuous }
v′ = {constant , parameter

discrete }
v′′= {constant }
o = {outer , inner , Outerinner

notouterinner }

Figure 8: Abbreviation for describing allowed pre-
fixes. Default prefixes are underlined.

Mc Rc Cc Bc Fc Pc Xc Yc

Mc amo amo amo amo amo . amo amo
Rc
Cc
Bc amo amo amo amo amo . amo amo
Fc . am . . am . am am
Pc am amv′′ am am am a′m am am

Figure 9: Prefixes allowed for elements of class
type (columns) inside a class type (rows).

Mo Ro Co Bo Fo Po Xo Yo

Mc amoacmo acmo amoamo . acmv′o acmvo
Rc . mo mv′o mvo
Cc . mo mo . . . m mc f vo
Bc amoac′moac′moamoamo . ac′mv′o ac′mvo
Fc . ac′m . . am . ac′mv′ ac′mv
Pc . amv′′ amv′′ amv′′

Figure 10: Prefixes allowed for elements of object
type (columns) inside a class type (rows).

type that contains this element) states the al-
lowed prefixes for this particular element. This
table shows which prefixes that are allowed for
a class type that is part of another class type.
For example, recall the connector C in model A.
When looking at the type of A, we have a class
type (the model class type) that contains an-

Mo Ro Co Bo Fo Po Xo Yo

Mo o cm′o co o o . cm′v′o cm′vo
Ro . m′o m′v′o m′vo
Co . m′o o c f m′vo
Bo o c′o c′o o o . c′m′v′o c′m′vo
Fo . c′ m′v′ m′v
Po

Figure 11: Prefixes allowed for elements of object
type (columns) inside an object type (rows).

other class type (the connector class type), i.e.,
the allowed prefixes are given in the intersec-
tion of row 1 and column 3. In this case, ac-
cess prefixes public and protected , modifia-
bility prefixes replaceable , modifiable , and
final , and outer/inner prefixes outer , inner
and notouterinner are allowed.

We have introduced a number of new prefixes:
inputoutput , notouterinner , nonflow ,
modifiable , and continuous . These new pre-
fixes are introduced to enable a complete type de-
finition, e.g., it should be possible to explicitly
specify that a variable in a connector is not a flow
variable by giving a nonflow prefix. However,
for simplicity, sometimes it is more convenient to
leave out some of the prefixes, and instead use
default prefixes. The defined default prefixes are
show underlined in Figure 8. If no underlined pre-
fix exists in a specific set, this implies that the
prefix must be explicitly stated.

Analogous to the description of Figure 9, Fig-
ure 10 shows the allowed prefixes for elements of
object types contained in a class type and Fig-
ure 11 shows object types contained in object
types. There are no tables given for class types
contained in object types for the simple reason
that object types are not allowed to contain class
types.

In some of the cells in the tables described
above, a dot symbol is shown. This means that
the specific type of element inside a certain type
is not allowed. Hence, such a combination should
not be allowed by the compiler at compile-time.

Now, let us observe some general trends be-
tween the allowed attributes. First of all, object
types cannot contain class types, which is why
there are only 3 tables. Secondly, access prefixes
(public , protected) are only allowed in class
types, which is why Figure 11 does not contain
any abbreviation a. Thirdly, the replaceable
prefix does not make sense in object types, since
redeclarations may only occur during object cre-

ation or inheritance, i.e., compile-time evaluation.
Then when an object exists, the type information
for replaceable is of no interest any more. Finally,
we can see that package class types can hold any
other class types, but no other class type can hold
package types.

Note that several aspects described here are our
design suggestions for simplifying and making the
language more stringent from a type perspective.
Currently, there are no limitations for any class
to contain packages in the Modelica specification.
Furthermore, there are no strict distinctions be-
tween object- and class types, since elaboration
and type checking are not clearly distinguished.
Hence, redeclaration of elements in an object are
in fact possible according to the current specifica-
tion, even if it does not make sense in a class based
type perspective.

4.3 Completeness of the Type Syntax

One might ask if this type definition is complete
and includes all aspects of the Modelica language
and the answer to that question is no. There are
several aspects, such as arrays, partial and en-
capsulated classes, units, constrained types, con-
ditional components and external functions that
are left out on purpose.

The main reason for this work is to pinpoint the
main structure of types in Modelica, not to formu-
late a complete type definition. As we can see from
the previous sections, the type concept in the lan-
guage is very complex and hard to define, due to
the large number of exceptions and the informal
description of the semantics and type system in
the language specification.

The completeness and correctness of the allowed
type prefixes described in the previous section de-
pend on how the specification is interpreted. How-
ever, the notation and structure of the concrete
type syntax should be consistent and is intended
to form the basis for incorporating this improved
type concept tighter into the language.

Finally, we would like to stress that defining
types of a language should be done in parallel with
the definition of precise semantic and type rules.
Since the latter information is currently not avail-
able, the precise type definition is obviously not
possible to validate.

5 Conclusion

We have in this paper given a brief overview of
the concept of types and how they relate to the
Modelica language. The first part of the paper
described types in general, and the latter sections
detailed a syntax definition of how types can be
expressed for the Modelica language.

The current Modelica specification uses Ex-
tended Backus-Naur Form (EBNF) for specify-
ing the syntax, but the semantics and the type
system are informally described. Moreover, the
Modelica language has become difficult to reason
about, since it has grown to be fairly large and
complex. By giving the types for part of the lan-
guage we have illustrated that the type concept
is complex in the Modelica language, and that it
is non-trivial to extract this information from the
language specification.

Consequently, we think that it is important to
augment the language specification by using more
formal techniques to describe the semantics and
the type system. We therefore propose that a sub-
set of Modelica should be defined, which models
the core concepts of the language. This subset
should be describe using operational semantics in-
cluding formal type rules. For some time, deno-
tational semantics has been used as the semantic
language of choice, however it has been shown to
be less cumbersome to prove type soundness using
operational semantics [15].

In the short term, this proposed core language
is supposed to be used as basic data for better
design decision-making, not as an alternative or
replacement of the official Modelica specification.
However, the long term goal should, in our op-
tion, be to describe the entire Modelica language
formally.

Acknowledgments

Thanks to Thomas Schön and Kaj Nyström for
many useful comments of this paper.

This research work was funded by CUGS (the
Swedish National Graduate School in Computer
Science), by SSF under the VISIMOD project, and
by Vinnova under the NETPROG Safe and Secure
Modeling and Simulation on the GRID project.

References

[1] Mart́ın Abadi and Luca Cardelli. A Theory of
Objects. Springer-Verlag, New York, USA, 1996.

[2] Luca Cardelli. Type Systems. In The Computer
Science and Engineering Handbook, chapter 97.
CRC Press, second edition, 2004.

[3] Luca Cardelli and Peter Wegner. On Understand-
ing Types, Data Abstraction, and Polymorphism.
ACM Comput. Surv., 17(4):471–523, 1985.

[4] Dynasim. Dymola - Dynamic Modeling Labo-
ratory with Modelica (Dynasim AB). http://
www.dynasim.se/ [Last accessed: 8 May 2006].

[5] Peter Fritzson. Principles of Object-Oriented
Modeling and Simulation with Modelica 2.1.
Wiley-IEEE Press, New York, USA, 2004.

[6] Peter Fritzson, Peter Aronsson, H̊akan Lundvall,
Kaj Nyström, Adrian Pop, Levon Saldamli, and
David Broman. The OpenModelica Modeling,
Simulation, and Development Environment. In
Proceedings of the 46th Conference on Simulation
and Modeling (SIMS’05), pages 83–90, 2005.

[7] Atsushi Igarashi, Benjamin C. Pierce, and Philip
Wadler. Featherweight Java: a minimal core cal-
culus for Java and GJ. ACM Trans. Program.
Lang. Syst., 23(3):396–450, 2001.

[8] David K̊agedal and Peter Fritzson. Generating a
Modelica Compiler from Natural Semantics Speci-
fications. In Proceedings of the Summer Computer
Simulation Conference, 1998.

[9] Robin Milner. A Theory of Type Polymorphism in
Programming. Journal of Computer and System
Sciences, 17(3):348–375, 1978.

[10] John C. Mitchell and Krzysztof Apt. Concepts in
Programming Languages. Cambridge University
Press, 2003.

[11] Modelica Association. Modelica - A Unified
Object-Oriented Language for Physical Systems
Modeling - Language Specification Version 2.2,
February 2005. Available from: http://www.
modelica.org [Last accessed: 29 March 2006].

[12] Benjamin C. Pierce. Types and Programming Lan-
guages. The MIT Press, 2002.

[13] Alan Snyder. Encapsulation and Inheritance in
Object-Oriented Programming Languages. In
OOPLSA ’86: Conference proceedings on Object-
oriented programming systems, languages and ap-
plications, pages 38–45, New York, USA, 1986.
ACM Press.

[14] Don Syme. Proving Java Type Soundness. Lecture
Notes in Computer Science, 1523:83, 1999.

[15] Andrew K. Wright and Matthias Felleisen. A Syn-
tactic Approach to Type Soundness. Information
and Computation, 115(1):38–94, 1994.

