
WCET-Aware Dynamic Code Management on
Scratchpads for Software-Managed Multicores

Yooseong Kim⇤†, David Broman⇤‡, Jian Cai†, and Aviral Shrivastaval⇤†
⇤ University of California, Berkeley, {yooseongkim, davbr, aviral}@berkeley.edu
† Arizona State University, {yooseong.kim, jian.cai, aviral.shrivastava}@asu.edu

‡ Linköping University, david.broman@liu.se

Abstract—Software Managed Multicore (SMM) architectures
have advantageous scalability, power efficiency, and predictability
characteristics, making SMM particularly promising for real-time
systems. In SMM architectures, each core can only access its
scratchpad memory (SPM); any access to main memory is done
explicitly by DMA instructions. As a consequence, dynamic code
management techniques are essential for loading program code
from the main memory to SPM. Current state-of-the-art dynamic
code management techniques for SMM architectures are, how-
ever, optimized for average-case execution time, not worst-case
execution time (WCET), which is vital for hard real-time systems.
In this paper, we present two novel WCET-aware dynamic SPM
code management techniques for SMM architectures. The first
technique is optimal and based on integer linear programming
(ILP), whereas the second technique is a heuristic that is sub-
optimal, but scalable. Experimental results with benchmarks from
Mälardalen WCET suite and MiBench suite show that our ILP
solution can reduce the WCET estimates up to 80% compared
to previous techniques. Furthermore, our heuristic can, for most
benchmarks, find the same optimal mappings within one second
on a 2GHz dual core machine.

I. INTRODUCTION

In real-time [1] and cyber-physical [2] systems, timing is a
correctness criterion, not just a performance factor. Execution
of program tasks must be completed within certain timing
constraints, often referred to as deadlines. When real-time
systems are used in safety-critical applications, such as auto-
mobiles or aircraft, missing a deadline can cause devastating,
life-threatening consequences. Computing safe upper bounds
of a task’s worst-case execution time (WCET) is essential to
guarantee the absence of missed deadlines.

Real-time systems are becoming more and more complex
with increasing performance demands. Performance improve-
ments in recent processor designs have mainly been driven
by the multicore paradigm because of power and temperature
limitations with single-core designs [3]. Some recent real-
time systems architectures are moving towards multicore [4]
or multithreaded [5], [6] designs. However, coherent caches,
which are popular in traditional multicore platforms, are not a
good fit for real-time systems. Coherent caches make WCET
analysis difficult and result in pessimistic WCET estimates [7].

This work was supported in part by the iCyPhy Research Center (Industrial
Cyber-Physical Systems, supported by IBM and United Technologies), the
Swedish Research Council (#623-2011-955), and the Center for Hybrid and
Embedded Software Systems (CHESS) at UC Berkeley (supported by the
National Science Foundation, NSF awards #0720882 (CSR-EHS: PRET),
#1035672 (CPS: Medium: Timing Centric Software), and #0931843 (Action-
Webs), the Naval Research Laboratory (NRL #N0013-12-1-G015), and the
following companies: Bosch, National Instruments, and Toyota).

SPM

Core

SPM

Core

SPM

Core

Main Memory

SPM

Core

D
M

A

D
M

A

D
M

A

D
M

A

SPM

Core

D
M

A

Main
Memory

(a) (b)

Fig. 1. (a) SMM architecture vs. (b) traditional architecture with SPM. Cores
cannot access main memory directly in SMM architecture. All code and data
must be present in SPM at the time of execution.

SMM (Software Managed Multicore) architectures [8], [9]
are a promising alternative for real-time systems. In SMM,
each core has a scratchpad memory (SPM), so-called local
memory, as shown in Fig. 1(a). A core can only access its
SPM in an SMM architecture, as opposed to the traditional
architecture in Fig. 1(b) where a core can access both main
memory and SPM with different latencies. Accesses to the
main memory must be done explicitly through the use of direct
memory access (DMA) instructions. The absence of coherency
makes such architectures scalable and simpler to design and
verify compared to traditional multicore architectures [3]. An
example of an SMM architecture is the Cell processor that is
used in Playstation 3 [10].

If all code and data of a task can fit in the SPM, the
timing model of memory accesses is trivial: each load and
store always take a constant number of clock cycles. However,
if all code or data does not fit in the SPM, it must be
dynamically managed by executing DMA instructions during
runtime. Dynamic code management strongly affects timing
and must consequently be an integral part of WCET analysis.

In traditional architectures that have SPMs, cores can
directly access main memory, though it takes a longer time
to access main memory than the SPM. In such architectures,
the question is what to bring in the SPM to reduce the WCET
of a task. This approach is not, however, feasible in SMM
architectures because all relevant code must be present in the
SPM at the time of execution. For this reason, existing WCET-
aware dynamic code management techniques for SPMs [11],
[12]—which select part of the code to be loaded in the SPM
and keep the rest in the main memory—are not applicable in
SMM architecture.

There exists previous work on developing dynamic code

This is the author prepared accepted version. © 2014 IEEE. The published version is:
Yooseong Kim, David Broman, Jian Cai, and Aviral Shrivastaval. WCET-Aware Dynamic Code Management on Scratchpads for Software-Managed
Multicores. Proceedings of the 20th IEEE Real-Time and Embedded Technology and Application Symposium (RTAS), Berlin, Germany, April 15-17, 2014.

© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

David Broman
http://dx.doi.org/10.1109/RTAS.2014.6926001

management techniques for SMM architecture [9], [11], [13]–
[15]. Such techniques manage code at the granularity of func-
tions; the code of a function is loaded as a whole using a static
function-to-region mapping. The mapping specifies where in
the SPM each function is loaded. If several functions map to
the same region, functions are replaced during execution. At
every function call and return, it is determined if the function
to execute is loaded in a specific region on the SPM. If
the function to be executed is not present in this region, the
processor has to stall while the function is being loaded.

All previous techniques focus on finding mappings for
average-case execution time (ACET). As a result, they cannot
find the best mapping for WCET and often show counterin-
tuitive results; the WCET estimate may increase when larger
SPM sizes are used.

To solve this problem, we present two novel WCET-aware
mapping techniques. The first technique can find the optimal
mapping solution for WCET and is based on integer linear
programming (ILP). Because the number of function-to-region
mapping choices grows exponentially with the number of
functions in the program, this technique does not scale to large
programs. Thus, we also present a polynomial-time heuristic
that is scalable, but suboptimal. We evaluate our approach on
several benchmarks from the Mälardalen WCET benchmark
suite [16] and MiBench suite [17]. More specifically, we make
the following contributions:

• We present an algorithm together with an ILP for-
mulation that can compute a safe upper bound of
the WCET of a program, given a function-to-region
mapping (Section III).

• We present an ILP formulation that finds an optimal
mapping, leading to the lowest possible WCET esti-
mate for a given SPM size (Section IV-A).

• We present a new polynomial-time WCET-aware
heuristic algorithm that finds a sub-optimal mapping
(Section IV-B).

• We evaluate our approach in comparison with three
previous mapping algorithms that are designed for
ACET, one from [14] and two from [13]. We compute
safe upper bounds of the WCET using our solutions
and the solutions of previous approaches (Section V).

II. MOTIVATION

Previous approaches try to find mappings that reduce the
overall amount of DMA transfers in a program [11], [13]–[15].
Such approaches can effectively improve ACET of a program,
but do not always reduce WCET. In the following simple
motivating example, we demonstrate the differences between
optimizing for ACET and WCET.

The example program in Fig. 2(a) has three functions:
f1, f2, and f3. The main function f1 has two paths, calling
functions f2 and f3 in paths 1 and 2, respectively. The
probability of the program to take each path is determined
by the branch probability of the if-statement in f1, here
assumed to be 0.3 for path 1 and 0.7 for path 2. The execution
time of each path, ignoring the cost for DMA transfer to load
functions, is shown in Fig. 2(b). The cost for loading each

f1#

IF#

f2# f3#

Path 1 Path 2
(0.3) (0.7)

(a) An example program

Path 1 10
Path 2 6

f1 3
f2 1
f3 2

(b) Path execution time
(without DMA cost) (c) Function size

10+1+3=14

f1,f2%

f3%

load f3

Path 2
load f2

Path 1

load f1

R1

R2
6+2=8

f1,f3%

f2%

load f2

Path 1
load f3

Path 2

load f1

R1

R2
10+1=11 6+2+3=11

(d) Mapping A (e) Mapping B

Mem.
usage ACET WCET estimate

A 5 14 ⇤ 0.3 + 8 ⇤ 0.7 = 9.8 max(14, 8) = 14
B 4 11 ⇤ 0.3 + 11 ⇤ 0.7 = 11 max(11, 11) = 11

(f) ACET and WCET comparison

Fig. 2. Mapping solutions for ACET and WCET can be different. The solution
for ACET is A, whereas the solution for WCET is B.

function is assumed to be the same as the size of the function,
shown in Fig. 2(c).

Assuming the size of the SPM is 5, multiple functions must
share the same region. Two feasible mapping solutions are:
mapping f1 and f2 to the same region and mapping f1 and f3
to the same region. Fig. 2(d) and 2(e) show the sequence of
DMA transfers on each path for these mapping choices. For
instance, when f1 and f2 are mapped to the same region, f1
has to be loaded again when f2 returns because f2 replaced
the code of f1.

Fig. 2(f) shows ACET and WCET for each of the map-
pings. Considering path probabilities, the best ACET can be
achieved by A. The overall amount of DMA transfers is
reduced by mapping f1 and f3 into different regions because
it can avoid evicting the largest function, f1, on the more
frequently executed path1 (path 2 in this case). For this reason,
previous approaches will always try to map f1 and f3 to
different regions. However, the WCET of the program is better
with mapping B because the WCET of the two paths is lower
in mapping B than in A.

This example shows that optimizing for ACET may not

1For simplicity, all previous approaches abstractly model the cost of DMA
transfers on a path as the product of the path probability and the sum of the
sizes of the functions that replace each others on the path. Thus, with mapping
A, the replacement only occurs on path 1, and its cost is 0.3⇥ (3+1) = 1.2.
Similarly, with mapping B, the replacement only occurs on path 2, and its
cost is 0.7⇥ (3 + 2) = 3.5.

2

call$f1#
call$f2#
call$f1#
...$

…$

f0 (main)

f1

…$

f2 f1#

call$f1#

…$
call$f2#

call$f1#

f2#

f1#

v0

v1

v2

v3

v4

v5

v6

IS[v, func(v)]
v0 ;
v1 {f0}
v2 {f1}
v3 {f0, f1}
v4 {f2}
v5 {f0, f2}
v6 {f1}

(a) CFGs of
functions (b) Inlined CFG (c) Interference

sets

Fig. 3. An inlined CFG the global call sequence and the control flow by
inlining CFGs of functions when they called.

always result in a good WCET. Previous mapping techniques
try to optimize the ACET and should therefore not be used in
hard real-time applications. In this paper, we present mapping
techniques that explicitly optimize the WCET of a program.

III. COMPUTING A SAFE WCET BOUND FOR A GIVEN
FUNCTION-TO-REGION MAPPING

In this section, we present how to compute a safe upper
bound of the WCET for a given function-to-region mapping.
We take a graph representation of the program as input,
analyze the graph, and generate an ILP that is finally used
for computing a safe upper bound of the WCET.

A. Inlined CFG

As input to our analysis method, we use a variant of
a control flow graph (CFG), called an inlined CFG. In an
inlined CFG, CFGs of functions are combined to represent
the global call sequence and the control flow. An example is
depicted in Fig. 3(a) and Fig. 3(b). We call it inlined because
a separate copy of the CFG of a function is inlined each time
the function is called. For instance, f1 appears twice at v1
and v5 in Fig. 3(b). The benefit with such a representation
is that it keeps context information in case a function is
called from different locations in the program. The limitation
is that recursive functions cannot be represented, something
acceptable in an embedded real-time context.

More formally, let G = (V,E, vs, vt, F, func) be an inlined
CFG. V is the set of vertices, representing basic blocks. The set
of edges is defined as E = {(v, w) : there is a path from v to w
due to control flow or function call or function return, where
v, w 2 V }. Vertices vs and vt represent the starting basic
block and the terminal basic block, respectively. F is the set of
functions in the program, and func : V!F is a mapping stating
that given a vertex v returns the function func(v) that v belongs
to. For instance, in Fig. 3(b), func(v0) = f0, func(v1) = f1,
func(v2) = f0, func(v3) = f2, func(v4) = f0, func(v5) = f1,
and func(v6) = f0.

B. Interference Analysis

To compute a safe upper bound of the WCET, we predict
whether or not a DMA transfer is needed in the worst-case
at function call program points and function return program
points. This is done by computing interference sets at every
function call and return. We define interference set as follows.

Algorithm 1 Interference analysis
1: function INTERFERENCEANALYSIS(G)
2: initialize IS[v, f] as ; for all v 2 G.V and f 2 G.F

3: repeat
4: prevIS IS
5: IS GETIS(G.vs, IS, G)
6: until IS = prevIS
7: return IS

Algorithm 2 GetIS
1: function GETIS(v, IS, G)
2: if v is not marked visited then
3: mark v as visited
4: for each u where (u, v) 2 G.E do
5: for each f 2 G.F do
6: if f 6= G.func(u) then
7: IS[v, f] IS[v, f] [IS[u, f] [{G.func(u)}
8: for each w where (v, w) 2 G.E do
9: IS GETIS(w, IS, G)

10: return IS

Definition 1 (Interference Set). Let G = (V,E, vs, vt, F, func)
be an inlined CFG. Then, for a basic block v 2 V and a
function f 2 F , the interference set IS[v, f] ✓ (F �{f}) is the
set of functions that may have been loaded since the last time
f was loaded in all possible call sequences. If f was never
loaded before, IS[v, f] is the set of functions that may have
been loaded since the start of the program.

The interference set information implies the following; if
any function g 2 IS[v, f] is mapped to the same region as
f , f may have been evicted from the region at point v in
the program. Thus, if v makes a function call to f , in the
worst-case, f has to be reloaded by a DMA transfer. The table
in Fig. 3(c) shows the interference sets IS[v, func(v)] for the
example in Fig. 3(b). For instance, at v5, f1 is loaded for the
second time. Function f1 has already been loaded at v1, but
then f0, f2 and again f0 are loaded since then at v2, v3, and v4,
respectively. If either f0 or f2 are mapped to the same region
as f1, f1 must have been evicted and has to be reloaded at v5.
Thus, IS[v5, func(v5)] = {f0, f2}.

Algorithm 1 shows our algorithm for computing interfer-
ence sets. It iteratively calls GETIS (Algorithm 2) from the
root node of the graph, until it reaches a fixed point where
IS stops changing. Function GETIS computes IS[v, f] for all
v 2 V and for all f 2 F , by recursively propagating the history
of function executions. We show the resulting interference sets
calculated by the algorithm in Table I.

Note that at each v 2 V , IS[v, func(v)] provides sufficient
information to determine whether or not func(v) needs to be
reloaded at v. However, the algorithm calculates IS[v, f] for all

TABLE I. INTERFERENCE SETS FOR THE EXAMPLE IN FIG. 3

func(v) IS[v, f0] IS[v, f1] IS[v, f2]
v0 f0 ; ; ;
v1 f1 ; {f0} {f0}
v2 f0 {f1} ; {f0, f1}
v3 f2 ; {f0} {f0, f1}
v4 f0 {f2} {f0, f2} ;
v5 f1 ; {f0, f2} {f0}
v6 f0 {f1} ; {f0, f1}

3

f 2 F because it keeps the history of function executions with
regard to each function. For example, IS[v5, f0] is an empty set
because f0 is executed at the only immediate predecessor v4,
but IS[v5, f1] is {f0, f2} because f0 and f2 are executed after
v1 which is the last time f1 is executed. Similarly, IS[v5, f2]
is {f0} because only f0 is executed since f2 is executed at v3.
We mark IS[v, func(v)] in each row in Table I, which matches
the abridged table in Fig. 3(c).

Finally, we state and prove the important property of
convergence for the inference algorithm.

Theorem 1 (Convergence). Algorithm 1 converges to a unique
solution in finite number of iterations.

Proof: To prove that the algorithm converges to a unique
solution in a finite number of iterations (termination) we make
use of the standard Knaster-Tarski fixpoint theorem, saying that
if we have complete lattice A and an order-preserving map g :
A ! A, then there exists a least fix point x such that x  g(x).
We need to show that (i) function GETIS can be mapped to a
function g : A ! A, such that A is a complete lattice and (ii)
that the resulting function g is order-preserving. We observe
that GETIS is always called with the same start node G.vs and
graph G (line 5 in Algorithm 1). Consequently, for (i), we only
need to show that the domain of parameter IS is isomorphic
to a complete lattice. We can directly conclude that the power
set of {fv,h|f 2 IS[v, h], v 2 V, h 2 F} is a complete lattice
ordered by inclusion. For (ii), we first observe that GETIS
terminates because each vertex in G is only visited once and
the set of edges G.E and the set of functions F are finite.
Moreover, the interference set IS can either become larger or
remain the same each time the interference set is updated, but
not become smaller (line 7 of Algorithm 2). Hence, GETIS
and consequently g are order preserving. Finally, according to
Knaster-Tarski fixpoint theorem, there is a least fix point which
is by definition unique and because A is finite, Algorithm 1
will research this fixed point in finite number of iterations.

C. ILP Formulation for WCET Analysis

We model the worst-case execution path similarly to
Suhendra et al. [18]. Variables in the ILP are written in capital
letters, and constants are in small letters.

1) Modeling the Worst-case Execution Path: For each
vertex v 2 V , a variable Wv denotes the WCET starting from v
to the end of the program, vt. Wv is modeled by the following
constraints.

8(v, w) 2 E, Wv � Ww + Cv (1)

For vt, Wvt = Cvt because vt does not have any successor.
Cv represents the execution time of v, which we explain later
in this section.

The WCET of the whole program is computed by mini-
mizing the WCET of the start node:

minimize Wvs (2)

Loops are specially treated as follows. Without loss of
generality, we require that every loop in a loop nest has a
unique loop header. Starting from the innermost loop in each
loop nest, we first remove its back edge and substitute the

v1

v2

v3

v4

v1

v2

v3 v4

l1

Cl1 = Wv2

\

Fig. 4. For each loop, the back edge is removed, and the vertices in the loop
body are substituted by a supernode that represents the WCET of the loop.

loop body with a supernode that represents the WCET of
each loop as Fig. 4 shows. Loop entry edges and loop exit
edges are removed from the graph, which makes the loop
body disconnected from the rest of the graph. A new edge is
inserted for each loop entry edge and loop exit edge to connect
the supernode with the rest of the graph. The cost of the
supernode is set as the WCET of the loop. The WCET of the
loop is calculated isolatedly from the rest of the program using
constraint (1) because the loop body becomes disconnected as
we remove loop entry edges and loop exit edges.

In the example shown in Fig. 4, a supernode l1 is inserted
for the loop {v2, v3}. Loop entry edge (v1, v2) and loop
exit edge (v3, v4) are substituted with (v1, l1) and (l1, v4),
respectively. The following constraints are generated for the
example.

Wv1 � Wl1 + Cv1

Wl1 � Wv4 + Cl1

Wv4 = Cv4

The cost of a supernode Cl1 = Wv2 can be calculated as
follows.

Wv2 � Wv3 + Cv2

Wv3 = Cv3

2) Modeling the Cost of Each Vertex (Cv): The cost of v,
Cv , is modeled using two constants nv and compv as follows.

Cv = nv · compv + Lv (3)

where nv is the number of times v is executed, and compv is
the computation cost of v which is the execution time assuming
func(v) is loaded.

Lv is a variable that represents the execution time involved
with loading func(v) into SPM. If v is not where any function
call or return happens, or func(v) does not need to be loaded,
Lv will be zero. The number of times func(v) needs to be
loaded is implicitly considered in Lv , which means that the
value of Lv will be the time to load func(v) multiplied by
the number of times it needs to be loaded. Before we explain
how to model Lv , let us consider when a function needs to be
loaded.

Considering that functions are loaded only at function calls
or returns, we define one property of vertices, called context-
changing, to denote such vertices with a call or a return.

Definition 2 (Context-changing vertex). A vertex is called
context-changing if it is the beginning of a new function or
the target of a return instruction.

4

The following constant denotes if a vertex is context-
changing or not. For all vertex v 2 V ,

ccv =

⇢
1 if 9(u, v) 2 E, func(v) 6= func(u)
0 otherwise.

(4)

Also, even if v is context-changing, loading func(v) is
only necessary when func(v) is not loaded in its region, and
the contents of the region depends on the given function-to-
region mapping and the interference set. Therefore, we define
the following constants to feed information to the ILP. When
R is the set of all regions, the function-to-region mapping is
specified as follows. For all function f 2 F , g 2 F and region
r 2 R,

mf,g,r =

⇢
1 if both f and g are mapped to r

0 otherwise.
(5)

The interference sets are specified as follows. For all vertex
v 2 V and function f 2 F ,

if,v =

⇢
1 if f 2 IS[v, func(v)]
0 otherwise.

(6)

Using the above constants, we can model Lv as follows.
For all function f 2 F and region r 2 R,

Lv � nv · ccv ·mfunc(v),f,r · if,v · dma func(v) (7)

where dma func(v) is a constant that denotes the time to load
function f to SPM by DMA.

ccv checks if function loading can happen at v. mfunc(v),f,r ·
if,v checks if func(v) and f are mapped to the same region,
r, and at the same time, f is included in v’s interference set.
Thus, mfunc(v),f,r · if,v is 1 only when func(v) is mapped to
region r and may have been evicted from r by function f.

We assume that the execution of a program starts with
an empty SPM, which means that regardless of the given
mapping, a function has to be loaded at least once when it
is called for the first time during execution. The most accurate
way of modeling this is to enumerate all paths and find the
first occurrence of functions on each path, but exhaustive
path enumeration is not scalable because the number of paths
increases exponentially to the program size. In this paper, we
topologically sort the inlined CFG (with back edges removed),
and find the first occurrences of functions in the sorted graph.
Considering that a DMA transfer will take place at least once
at such vertices for initial loading, we can rewrite constraint
(7) as follows. For all functions f 2 F and regions r 2 R,

Lv �

8
>>>>><

>>>>>:

If v is the first occurrence of func(v)
dmafunc(v)+
(nv � 1) · (ccv · (mfunc(v),f,r · if,v) · dmafunc(v))

Otherwise,
nv · (ccv · (mfunc(v),f,r · if,v) · dmafunc(v))

(8)

By minimizing the objective function, Lv can be set to one
of the three values: 0, dmafunc(v), or nv · dmafunc(v), It will be
zero when v is not context-changing or when we can guarantee
that func(v) is loaded at v. It will be dmafunc(v) when v is the

first occurrence of func(v), so it will be loaded once and remain
loaded from now on. Lv can be nv · dmafunc(v) otherwise.

Solving the above ILP, we can obtain the WCET estimate
of a program using the given mapping, as the objective value
Wvs .

IV. FUNCTION-TO-REGION MAPPING FOR WCET

In this section, we present our two techniques of finding
a mapping for WCET. The first one is optimal and based on
ILP, and the second one is a polynomial-time heuristic, but
sub-optimal.

A. ILP Formulation to Find an Optimal Mapping

We can extend the ILP from the previous section to explore
all feasible mappings. Then, thanks to the minimizing objective
function, we can find the mapping that achieves the lowest
WCET estimate and the WCET estimate itself.

Since the solver explores all feasible mappings, the set of
regions R cannot be fixed because different mappings can have
different number of regions. We initially assume there are the
same number of regions as the number of functions because
that is the maximum number of region when we can map each
function into a different region. Mapping solutions that use
smaller number of regions can be modeled by having regions
to which no function is mapped.

We model a mapping decision using the following variables
for all functions f 2 F and regions r 2 R.

Mf,r =

⇢
1 if f is mapped to r

0 Otherwise
(9)

The following constraints ensure the feasibility of mapping
solutions that the solver will explore. Firstly, every function is
mapped to exactly one region.

8f 2 F,
X

r2R

Mf,r = 1 (10)

Secondly, the total required space for the mapping is not
greater than the given SPM size.

8f 2 F, Sr � mf,r · sf (11)

spm size �
X

r2R

Sr (12)

where spm size is the size of the given SPM, and sf is the
size of function f . Sr is a variable that represents the size
requirement of the region r which is calculated by taking the
maximum of the size of every function mapped to r.

In the previous formulation, the mapping is specified by
constants mf,g,r, and Lv is modeled using mf,g,r. We need
to express mappings in the same form as mf,g,r, but now the
mapping solutions that are explored by the solver are expressed
with variables Mf,r. We use variables Mf,g,r whose values are
defined as follows.

Mf,g,r =

⇢
1 if Mf,r = 1 ^Mg,r = 1
0 otherwise.

(13)

5

The logical conditions can be linearized by the following
approach from [19]. For each region r, Mf,g,r can be 1 only
when both Mf,r and Mg,r are 1, which means the sum of two
terms will be greater than 1. Otherwise, the sum will be less
than or equal to 1, and Mf,g,r needs to be 0 in such case.
The following constraints ensure that Mf,g,r is 1 if and only
if both Mf,r and Mg,r is 1.

2 · (1�Mf,g,r) +Mf,r +Mg,r > 1 (14)
2 ·Mf,g,r + 1 � Mf,r +Mg,r (15)

Then, the constraint (16) is rewritten using Mfunc(v),f,r
instead of mfunc(v),f,r as follows.

Lv �

8
>>>>><

>>>>>:

If v is the first occurrence of func(v)
dmafunc(v)+
(nv � 1) · (ccv · (Mfunc(v),f,r · if,v) · dmafunc(v))

Otherwise,
nv · (ccv · (Mfunc(v),f,r · if,v) · dmafunc(v))

(16)

Solving the modified ILP with the above, we can obtain
the lowest WCET estimate of the given program achievable by
function-level dynamic code management. The mapping that
achieves such estimate can be obtained by looking at the values
of Mf,r of the solution.

B. Our Heuristic

The ILP-based mapping technique presented in Sec-
tion IV-A can find an optimal solution, but is not scalable.
For example, the number of functions in a program is one of
the factors that have the greatest impact on the time to solve
the ILP. The number of mapping choices (the solution space of
the ILP) grows exponentially with the number of functions in
a program. In our experiments with benchmarks, it takes less
than a second for ‘matmult’ which has 6 functions but more
than a week for ‘adpcm’ which has 17 functions.

To solve this problem, we present a polynomial-time
heuristic technique which builds upon the ways of search-
ing the solution space of our previous techniques, function
mapping by updating and merging (FMUM) and function
mapping by updating and partitioning (FMUP) [13]. As the
name suggests, FMUM starts with assigning a separate region
to every function and tries to merge regions so that the
mapping can fit in the SPM and the cost of the mapping
decrease, whereas FMUP starts with having only one region
and iteratively partitions a region into two regions. While the
cost function in these techniques estimates the overall amount
of DMA transfers, we introduce a new cost function which
estimates the WCET of the program.

Algorithm 3 shows its pseudocode. Given an inlined CFG
G, the interference sets IS and the size of SPM, it returns a
mapping M . A mapping solution, M , is represented by an
integer array. We assign a unique number to each function
from 1 to |G.F |. Similarly, each region is also identified by
a unique id from 1 to |G.F |. The number of regions is 1
when all functions are mapped to the same region, and |G.F |
when each function is mapped to a separate region. Then, any
mapping solution can be represented by an array, for example,
if function 1 is mapped to region 2, M [1] = 2.

Algorithm 3 A heuristic to find a mapping for WCET
1: function FINDMAPPING(G, IS, SPMSIZE)
2: Remove all back edges in G

3: Topologically sort G
4: Mm MERGE(G, IS, SPMSIZE)
5: Mp PARTITION(G, IS, SPMSIZE)
6: if COST(G, IS,Mm) < COST(G, IS,Mp) then
7: M Mm

8: else
9: M Mp

10: return M

11:
12: function COST(G, IS,M)
13: for each v 2 G.V do . initialize dist

14: dist[v] 0

15: for each v 2 G.V in topological order do
16: w compv . the weight of v
17: if cc(v) = 1 then
18: for each g 2 IS[v, func(v)] do
19: if M [g] = M [func(v) then
20: w w+ dmafunc(v) . add the cost for DMA
21: dist[v] max(u,v)2G.E dist[u] + w

22: return dist[G.vt]

We first remove all back edges and topologically sort the
graph (line 2-3). This is needed for calculating cost of a map-
ping during the course of algorithm, by calling function COST.
We find two mapping solutions by merging and partitioning
(line 4-5) which are shown in Algorithm 4 and Algorithm 5.
After comparing their costs (line 6-9), we return the one with
the smaller cost for the final solution.

The function COST calculates the length of the longest
path in G. We use an integer array dist for storing the
longest distance from G.vs to v for all v 2 G.V . Since G is
already topologically sorted, for any v, the value dist for all
predecessors are already calculated. For each vertex v, dist[v]
is set to the sum of maximum dist value of all predecessors
and its own weight w (line 21). The algorithm returns the
dist value of the terminal node vt which is the longest path
from vs to vt. The weight of v is assigned according to the
mapping M and the interference sets IS. If vertex v is not
context-changing, the weight of v is set to compv (line 5). If
v is context-changing, and if any function interferes with it
(line17-19), the cost of transferring func(v) by DMA is added
to the weight (line 20).

Algorithm 4 and Algorithm 5 show our two algorithms
for searching mapping solutions, MERGE and PARTITION, re-
spectively. In both algorithms, we use function SIZE. SIZE(M)
calculates the memory size requirement of mapping M, which
can be calculated by summing up the size of the largest
function in each region. We omit its algorithm for brevity.

In Algorithm 4, MERGE starts with mapping each function
to a separate region (line 2-3). Then, in the while loop at line
4-21, we take every combination of two regions (line 7-8), and
create a temporary mapping M 0 where two regions are merged
(line 9-13). We check the cost of the temporary mapping (line
14) and keep a record of the best two regions to be merged (line
15-18). After trying all combinations, we update the current
mapping by merging the best pair of regions (line 19-21).

6

Algorithm 4 Search the solution space by merging
1: function MERGE(G, IS, SPMSIZE)
2: for i = 1 to |G.F | do . initial mapping M

3: M [i] i

4: while SIZE(M) > SPMSIZE do
5: c COST(G, IS,M)
6: bc c . the best cost found so far
7: for r1 = 1 to |G.F |� 1 do
8: for r2 = r1 + 1 to |G.F | do
9: for f = 1 to |G.F | do . merge r1 and r2

10: if M [f] = r2 then
11: M

0
[f] = r1

12: else
13: M

0
[f] = M [f]

14: tc COST(G, IS,M 0)
15: if tc < bc then . record the best pair, r1 and r2

16: br1 = r1

17: br2 = r2

18: bc tc

19: for f = 1 to |G.F | do . merge br1 and br2

20: if M [f] = br2 then
21: M [f] = br1

22: return M

In Algorithm 5, PARTITION starts with mapping all func-
tions to one region (line 2-4). We move one function to a
different region per iteration of the while loop at line 5-26.
For every function, we try moving it to a different region or
creating a new region nr + 1 for it (line 10-13). We keep
a record of the best combination of a function to be moved,
bf , and the new region for it, br (line 15-19). After trying all
functions, we update the current mapping by moving function
bf to region br (line 21-22). br being greater than nr means
that we just made a new region, so we increase the number of
regions (line 23-24). We stop when the cost of the mapping
does not get improved.

The while loop in MERGE at line 4 takes at most |G.F |�1
times because the number of regions decreases by one at every
iteration. The for-loop nest at line 7-9 takes |G.F |3 times,
and the time complexity of COST is O(|G.V | · |G.F |) since it
visits every vertex only once, and an interference set can have
all functions in the worst-case. Thus, the time complexity of
MERGE is O(|G.F |4 · |G.V |). PARTITION has the same time
complexity which can be calculated similarly.

V. EVALUATION

We evaluate our approach by comparing it with our pre-
vious mapping algorithms for ACET: FMUM, FMUP [13],
and simultaneous determination of regions and mapping
(SDRM) [14]. Their cost functions estimate the overall amount
of data transfer for a given mapping. As explained in Sec-
tion IV-B, FMUM and FMUP start from a simple initial
mapping solution and iteratively improve it so that the cost
of the mapping decreases. SDRM calculates the cost for each
function, which is the product of the function size and the
number of execution, and iteratively assigns a separate region
starting from the function with the highest cost.

A. Experimental Setup

We use various benchmarks from the Mälardalen WCET
benchmark suite [16] and MiBench suite [17]. We compile

Algorithm 5 Search the solution space by partitioning
1: function PARTITION(G, IS, SPMSIZE)
2: for i = 1 to |G.F | do . initial mapping M

3: M [i] 1

4: nr 1 . the number of region is 1
5: while nr  |G.F | do
6: c COST(G, IS,M)
7: bc c . the best cost found so far
8: for f = 1 to |G.F | do
9: or M [f] . record f ’s original region

10: for r = 1 to nr + 1 do
11: if M [f] = r then
12: continue
13: M [f] r . move f back to r

14: tc COST(G, IS,M)
15: if SIZE(M)  SPMSIZE then
16: if tc < bc then . record the best f and r

17: bf f

18: br r

19: bc tc

20: M [f] or . move f back to or

21: if bc < c then . move bf to br

22: M [bf] br

23: if br = nr + 1 then
24: nr nr + 1 . update the number of region
25: else
26: break
27: return M

benchmarks for ARM v4 ISA [20] and generate inlined CFGs
from the disassembly of the binaries. Loop bounds are obtained
by profiling.

There are 31 benchmarks in Mälardalen suite and 29
benchmarks in MiBench suite. Among these, we exclude
ones that are recursive since inlined CFGs cannot represent
recursive programs as we discussed in Section III. We also
exclude benchmarks that have less than six functions for more
effective comparison of mapping algorithms as the number
of functions forms the solution space in a function-to-region
mapping problem2. After excluding 1 for recursion and 22
for the number of functions, we use all of the remaining
benchmarks, which are 8, from Mälardalen suite. MiBench
suite is in general much larger in size and more complicated,

2We only consider functions in the user code, and library function calls are
treated as normal instructions that take one cycle.

TABLE II. BENCHMARKS USED IN OUR EVALUATION

Total code
size (bytes)

Largest
function size

(bytes)

Number
of

functions

Benchmark
Suite

susan 51440 9968 19 MiBench
rijndael 23136 8028 7 MiBench

statemate 11120 3568 8 Malardalen
adpcm 10564 2896 17 Malardalen

edn 5232 1972 9 Malardalen
sha 4092 1276 8 MiBench

compress 3936 1056 9 Malardalen
lms 3696 900 8 Malardalen
fft1 3304 1836 6 Malardalen

dijkstra 2244 1052 6 MiBench
matmult 1632 472 6 Malardalen

cnt 1368 384 6 Malardalen

7

and we were not able to generate the inlined CFGs of 6
benchmarks due to the presence of recursion or function
pointers3, and 19 due to the complexity of compiled binaries4.
We use the remaining 4 benchmarks in our evaluation. Table II
shows our benchmarks5.

To simplify computing WCET estimates, we assume that
every instruction takes exactly one cycle as it is on processors
designed for timing predictability, such as PRET [5].

We model the cost of loading x bytes into SPM by DMA as
n ·(46+dx/4e), where n is the number of cores. When n is 1,
this is the same as the model for a single core by Whitham et
al. [21]. We take the most conservative way of considering the
inference of other cores, i.e., multiplying the cost of a single
core by the number of cores. We assume the number of cores
is 4 in our experiments, although our comparison results of
mapping algorithms are independent of this number.

The correctness of our WCET estimation is verified by
running selected benchmarks on gem5 simulator [22]. We
modified the simulator so that every instruction takes one
cycle, and added an SPM component and DMA instructions
so that binaries with our management code can run on the
simulator. The number of cycles each benchmark took on the
simulator was always less than or equal to the WCET estimates
we obtained by analysis.

Table II show the size of each benchmark after we insert
DMA instructions and the code for checking the state of
regions. Since the sizes of benchmarks are largely different,
we use different SPM sizes for different benchmarks. This
is to make our comparison experiments more effective. For
example, if we use the same SPM size for all benchmarks,
for some small benchmarks, the whole code can fit in the
SPM. In this case, any mapping technique would assign a
separate region to every function. Also, if we choose small
enough SPM size to make the mapping problem interesting
for small benchmarks, such SPM size is smaller than the size
of the largest function for larger benchmarks, which makes the
mapping problem infeasible because the largest function must
fit in the SPM. Therefore, we use two different SPM sizes for
each benchmark: 60% and 75% of the code size.

B. Experimental Results

We evaluate our mapping techniques in comparison with
previous mapping techniques. For each mapping technique, we
obtain mapping solutions for benchmarks and then calculate
the WCET estimates of benchmarks using the ILP from
Section III. Then, the WCET estimates are normalized to the
WCET estimates obtained with the mappings found by solving
our ILP formulation from Section IV-A. The mapping solutions
found by the ILP are optimal except for two cases, both for
‘adpcm’ when the SPM size is 60% of the code size and 75%

3We were not able to identify callee functions in compile-time.
4We generate inlined CFGs by parsing disassembly files, and we were not

able to parse the disassembly files of these benchmarks within a limited time
frame due to their irregular patterns, which is only a technical difficulty and
not a limitation of our approach.

5‘dijkstra’ has a recursive function call for printing out results, so we com-
mented out the recursive function call. The core algorithm of the benchmark
is not recursive.

of the code size6. The ILP solver did not finish for these two
cases after a week on 2Ghz dual-core machine with 2GB of
main memory. Instead, we set a time limit of three hours and
used the best solutions found by the time limit.

In Fig. 5, we compare the normalized WCET estimates
in three different SPM sizes. On the x-axis, the number of
functions in the benchmark and the SPM size are written
under the name of each benchmark. The maximum value of
the y-axis is limited at 3, so any columns that go beyond that
are truncated. We also show the geometric means of different
mapping techniques in the right most columns for each SPM
size. Overall, our heuristic can reduce the WCET estimate up
to 69% compared to FMUM (in ‘compress’ when the SPM
size is 60% of the code size), 79% compared to FMUP (in
‘fft1’ when the SPM size is 75% of the code size), and 79%
compared to SDRM (in ‘adpcm’ and ‘fft1’ when the SPM
size is 75% of the code size). Note that all techniques find the
same mapping for ‘edn’ because it has a very simple pattern
of function calls where all functions are called only once in
main function in sequence.

The normalized WCET estimates are always greater than
or equal to 1, and this means that no technique performs better
than the ILP. Even for the time-limited ILP used for ‘adpcm’,
the ILP outperforms all other techniques.

The normalized WCET estimates of our heuristic are 1 in
most cases, and this means that it can find the same solution
as the ILP in most cases. However, there are cases where our
heuristic cannot find the same solution as the ILP such as
‘adpcm’. Even in such cases, our heuristic can find better
mapping solutions than all previous techniques except for
‘adpcm’ when the SPM size is 60% of the code size. Our
heuristic cannot always find a better solution because it does
not try all mappings and can get stuck in a local optimum.

Note that all previous heuristics suffer from the same
problem since they do not explore the whole solution space
either. Thus, we cannot conclude that any mapping technique
can always find better mappings than others, except that our
ILP-based technique can always find the optimal mapping.
However, the strength of our heuristic is in WCET-awareness.
Our heuristic’s optimization is always focused on the WCET
of the program, whereas previous heuristics try to optimize
the whole program. This fact can be demonstrated by the
counterintuitive results we observe in our experiments in which
the WCET estimate of a benchmark increases with previous
mapping techniques for larger SPM sizes. For example, in
case of FMUP, the WCET estimate of ‘matmult’ is increased
from 564094 to 752456 (33% increase) when the SPM size
is increased from 992B to 1232B. This means that previous
techniques do not have any notion of the WCET, so their
optimization may improve the ACET but can end up increasing
the WCET.

Our heuristic mapping algorithm is intended for the scal-
ability rather than the optimality. To obtain a mapping for a
benchmark using our heuristic algorithm, we need to perform
the interference analysis and then run our heuristic algorithm.

6We can see that ‘adpcm’ is not the largest in terms of code size nor
the number of functions in Table II. The complexity of an ILP problem is
dependent on various parameters such as the number of functions, number of
basic blocks, the number of paths, the function sizes and the size of the SPM.

8

1.
00
$

1.
00
$

1.
00
$

1.
15
$

1.
00
$

1.
01
$

1.
00
$

1.
06
$

1.
00
$

1.
00
$

1.
00
$

1.
00
$

1.
02
$

1.
50
$

2.
30
$

1.
11
$

1.
07
$

1.
00
$

1.
29
$

3.
22
$

1.
22
$

1.
03
$

1.
10
$

1.
41
$

2.
11
$

1.
42
$

1.
63
$

2.
12
$

1.
05
$

1.
22
$

1.
01
$

1.
54
$ 3.

22
$

1.
89
$

1.
00
$

1.
00
$

1.
41
$

2.
09
$

1.
49
$2.

98
$

2.
12
$

1.
01
$

4.
81
$

1.
00
$ 1.
97
$

2.
53
$

1.
92
$

1.
03
$

1.
10
$

1.
41
$

2.
09
$

1.
78
$

0.0$

0.5$

1.0$

1.5$

2.0$

2.5$

3.0$

susan$
|F|=19$
(30864)$

rijndael$
|F|=7$
(13888)$

statemate$
|F|=8$
(6672)$

adpcm$
|F|=17$
(6352)$

edn$
|F|=9$
(3152)$

sha$
|F|=8$
(2464)$

compress$
|F|=9$
(2368)$

lms$
|F|=8$
(2224)$

B1$
|F|=6$
(1984)$

dijkstra$
|F|=6$
(1360)$

matmult$
|F|=6$
(992)$

cnt$
|F|=6$
(832)$

AVG$N
or
m
al
iz
ed

$W
CE

T$
Es
M
m
at
es
$

Our$HeurisMc$ FMUM$ FMUP$ SDRM$

(a) Normalized WCET Estimates when the SPM size is 60% of the code size

1.
00
$

1.
00
$

1.
01
$

1.
03
$

1.
00
$

1.
00
$

1.
00
$

1.
00
$

1.
00
$

1.
00
$

1.
00
$

1.
00
$

1.
00
$

1.
50
$

1.
03
$

1.
33
$

1.
05
$

1.
00
$

1.
08
$

1.
78
$

1.
23
$

1.
16
$

1.
71
$

1.
41
$

2.
13
$

1.
33
$

1.
16
$

1.
00
$

1.
18
$

1.
14
$

1.
00
$

1.
26
$

1.
78
$

1.
57
$

4.
56
$

3.
36
$

1.
88
$

2.
12
$

1.
62
$2.
98
$

2.
12
$

1.
05
$

4.
85
$

1.
00
$

1.
84
$ 2.
91
$

1.
57
$

4.
56
$

3.
69
$

1.
41
$

2.
10
$

2.
21
$

0.0$

0.5$

1.0$

1.5$

2.0$

2.5$

3.0$

susan$
|F|=19$
(38592)$

rijndael$
|F|=7$
(17360)$

statemate$
|F|=8$
(8352)$

adpcm$
|F|=17$
(7936)$

edn$
|F|=9$
(3936)$

sha$
|F|=8$
(3072)$

compress$
|F|=9$
(2960)$

lms$
|F|=8$
(2784)$

B1$
|F|=6$
(2480)$

dijkstra$
|F|=6$
(1696)$

matmult$
|F|=6$
(1232)$

cnt$
|F|=6$
(1040)$

AVG$N
or
m
al
iz
ed

$W
CE

T$
Es
M
m
at
es
$

Our$HeurisMc$ FMUM$ FMUP$ SDRM$

(b) Normalized WCET Estimates when the SPM size is 75% of the code size

Fig. 5. WCET estimates are normalized to the WCET estimate obtained by the mapping found by the ILP. Under the name of each benchmark, we show the
number of functions and the size of SPM in bytes in parentheses. In most cases, our heuristic can find the optimal solution that are found by solving the ILP,
and reduce the WCET estimates significantly compared to previous mapping techniques.

We also need to solve the ILP from Section III to get a WCET
estimate for the given mapping. The total elapsed time for all
these three steps was less than one second for all benchmarks
on 2Ghz dual-core machine with 2GB of main memory.

Note that the ILP solver was also able to find the optimal
mapping in less than one minute for all benchmarks except
for ‘adpcm’ and ‘sha’ — it took 104 minutes for ‘sha’ when
the SPM size is 75% of the code size, but for ‘adpcm’ the
solver did not finish even after a week for both memory sizes.
Interestingly, even for these two, the best objective value that
the ILP solver can find did not get improved any more after
twenty minutes, and the solver kept iterating on the same
objective value. As it can be seen in Fig. 5(a) and Fig. 5(b),
even those suboptimal solutions are better than mappings found
by any other mapping techniques. This means that solving the
ILP with reasonable time limits (e.g. twenty minutes) can be
a good heuristic method itself.

VI. RELATED WORK

Previous code management techniques have been focusing
on reducing average-case execution time or energy consump-
tion [23]–[25]. These approaches are not suitable for hard real-
time systems because improving the ACET does not always
improve the WCET and can even increase the WCET, as
discussed in Section II.

There are approaches for reducing the WCET [26], [27],
but these are static. Thus, the contents in the SPM are
fixed before execution and no changes occur during runtime.
Static approaches cannot exploit the locality of large programs
because they cannot load all code with locality before execu-
tion. Dynamic approaches, on the other hand, can update the
contents in the SPM during runtime, thus better exploiting the
locality in different parts of a program. Puaut and Pais [11]
propose a dynamic management technique that selects basic

blocks to be loaded in the SPM and finds reload points where
such basic blocks are loaded at runtime. Wu et al. [12] propose
an optimal algorithm for non-nested loops and a heuristic for
loop nests.

All of the above techniques for reducing the WCET are for
traditional architectures with SPM where cores can directly
access main memory. They find a set of basic blocks to be
loaded in the SPM, and those basic blocks not loaded in the
SPM have to be accessed directly from main memory which
will be slower than the SPM. Note that such techniques are
not usable in SMM architecture where cores cannot directly
access main memory.

In SMM architecture, all code must be present in SPM at
the time of execution. Function-level dynamic code manage-
ment techniques [9], [13]–[15], originally proposed for Cell
processor [10] which is an example of SMM architectures, are
the only applicable here and thus our closest related work. All
previous approaches are, however, optimized for reducing the
ACET and do not consider the WCET. Our approaches can
not only reduce the WCET but also find the optimal mapping
for WCET. A point worth noting here is that function-level
dynamic code management techniques are not exclusively for
SMM architectures, which means that our technique can also
be used in traditional architectures with SPM.

SMM architectures were originally proposed for power-
efficiency [8], [9], not for predictability. Some recent processor
designs for real-time applications are, however, using an SMM
style of memory model, as a way to achieve fine-grained
timing predictability. For instance, FlexPRET [6] has both
hard and soft real-time hardware threads, where the hard real-
time threads can only access the SPM. As a consequence, our
approach is directly applicable for this kind of processor when
the hard real-time threads have code sizes that cannot fit in
the SPM. Our work may also be applicable in WCET-aware

9

compilers [28] and can potentially, after further extensions,
be used as an important component of a precision timed
infrastructure [29].

VII. CONCLUSION

SMM architectures are promising for real-time embedded
systems due to power efficiency, scalability, and predictability.
In SMM architectures, all code must be present in SPM before
execution because cores cannot directly access main memory.
Previous WCET-aware code management techniques for SPMs
in traditional architectures are not applicable in SMM architec-
ture because they require cores to have a direct access to main
memory. All previous dynamic code management techniques
for SMM architectures are optimized for reducing the ACET
of a program. In this paper, on the other hand, we present
techniques for optimizing the WCET. Our ILP-based technique
finds an optimal solution for WCET, whereas our heuristic is
sub-optimal but scalable. We evaluate our techniques in com-
parison with three previous mapping techniques. Experimental
results with benchmarks from Mälardalen WCET suite and
MiBench suite show that our approaches can reduce the WCET
estimates significantly compared to previous approaches.

ACKNOWLEDGMENTS

We are grateful to all members in the PRET project at UC
Berkeley for discussions and feedback. We would like to give
special thanks to Ke Bai for help with our experiments and
to Michael Zimmer for proofreading our early manuscripts.
We are also very thankful to Edward Lee and Christopher
Brooks for their generous support that enabled our research
collaboration at UC Berkeley.

REFERENCES

[1] G. C. Buttazzo, Hard Real-time Computing Systems: Predictable
Scheduling Algorithms and Applications, 3rd ed. Springer, 2011.

[2] D. Broman, P. Derler, and J. C. Eidson, “Temporal issues in cyber-
physical systems,” Journal of Indian Institute of Science, vol. 93, no. 3,
pp. 389–402, 2013.

[3] G. Blake, R. G. Dreslinski, and T. Mudge, “A Survey of Multicore
Processors,” IEEE Signal Processing Magazine, vol. 26, no. 6, pp. 26–
37, 2009.

[4] M. Paolieri, J. Mische, S. Metzlaff, M. Gerdes, E. Quiñones, S. Uhrig,
T. Ungerer, and F. J. Cazorla, “A Hard Real-time Capable Multi-core
SMT Processor,” ACM Transactions on Embedded Computing System,
vol. 12, no. 3, pp. 79:1–79:26, Apr. 2013.

[5] I. Liu, J. Reineke, D. Broman, M. Zimmer, and E. A. Lee, “A PRET
Microarchitecture Implementation with Repeatable Timing and Com-
petitive Performance,” in Proceedings of the International Conference
on Computer Design, 2012, pp. 87–93.

[6] M. Zimmer, D. Broman, C. Shaver, and E. A. Lee, “FlexPRET: A
Processor Platform for Mixed-Criticality Systems,” in Proceedings of
the Real Time and Embedded Technology and Applications Symposium,
2014.

[7] S. Chattopadhyay, C. L. Kee, A. Roychoudhury, T. Kelter, P. Marwedel,
and H. Falk, “A Unified WCET Analysis Framework for Multi-core
Platforms,” in Proceedings of the Real Time and Embedded Technology
and Applications Symposium, 2012, pp. 99–108.

[8] J. Lu, K. Bai, and A. Shrivastava, “SSDM: Smart Stack Data Manage-
ment for software managed multicores (SMMs),” in Proceedings of the
Design Automation Conference, 2013, pp. 1–8.

[9] K. Bai, J. Lu, A. Shrivastava, and B. Holton, “CMSM: An Efficient
and Effective Code Management for Software Managed Multicores,”
in Proceedings of the International Conference on Hardware/Software
Codesign and System Synthesis, 2013, pp. 1–9.

[10] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer, and
D. Shippy, “Introduction to the Cell Multiprocessor,” IBM Journal of
Research and Development, vol. 49, no. 4.5, pp. 589 –604, july 2005.

[11] I. Puaut and C. Pais, “Scratchpad Memories vs Locked Caches in Hard
Real-Time Systems: A Quantitative Comparison,” in Proceedings of the
Design, Automation Test in Europe Conference Exhibition, 2007, pp. 1–
6.

[12] H. Wu, J. Xue, and S. Parameswaran, “Optimal WCET-Aware Code
Selection for Scratchpad Memory,” in Proceedings of the International
Conference on Embedded Software, 2010, pp. 59–68.

[13] S. Jung, A. Shrivastava, and K. Bai, “Dynamic Code Mapping for
Limited Local Memory Systems,” in Proceedings of the International
Conference on Application-specific Systems Architectures and Proces-
sors, July 2010, pp. 13–20.

[14] A. Pabalkar, A. Shrivastava, A. Kannan, and J. Lee, “SDRM: Simul-
taneous Determination of Regions and Function-to-region Mapping for
Scratchpad Memories,” in Proceedings of the International Conference
on High Performance Computing, 2008, pp. 569–582.

[15] M. A. Baker, A. Panda, N. Ghadge, A. Kadne, and K. S. Chatha,
“A Performance Model and Code Overlay Generator for Scratchpad
Enhanced Embedded Processors,” in Proceedings of the International
Conference on Hardware/Software Codesign and System Synthesis,
2010, pp. 287–296.

[16] J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper, “The Mälardalen
WCET Benchmarks - Past, Present and Future,” in Proceedings of the
Workshop on Worst-Case Execution Time Analysis, July 2010.

[17] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge,
and R. B. Brown, “MiBench: A Free, Commercially Representative
Embedded Benchmark Suite,” in Proceedings of the International
Workshop on Workload Characterization, 2001, pp. 3–14.

[18] V. Suhendra, T. Mitra, A. Roychoudhury, and T. Chen, “WCET Centric
Data Allocation to Scratchpad Memory,” in Proceedings of International
Real-Time Systems Symposium, 2005, pp. 10 pp.–232.

[19] D.-S. Chen, R. G. Batson, and Y. Dang, Applied Integer Programming:
Modeling and Solution. Wiley, 2010.

[20] D. Seal, ARM Architecture Reference Manual, 2nd ed. Addison-Wesley
Longman Publishing Co., Inc., 2000.

[21] J. Whitham and N. Audsley, “Implementing Time-Predictable Load and
Store Operations,” in Proceedings of the International Conference on
Embedded Software, 2009, pp. 265–274.

[22] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5
Simulator,” SIGARCH Computer Architecture News, vol. 39, no. 2, pp.
1–7, Aug. 2011.

[23] M. Kandemir, J. Ramanujam, J. Irwin, N. Vijaykrishnan, I. Kadayif, and
A. Parikh, “Dynamic Management of Scratch-pad Memory Space,” in
Proceedings of the Design Automation Conference, 2001, pp. 690–695.

[24] L. Li, L. Gao, and J. Xue, “Memory Coloring: A Compiler Approach for
Scratchpad Memory Management,” in Proceedings of the International
Conference on Parallel Architectures and Compilation Techniques,
2005, pp. 329–338.

[25] M. Verma, L. Wehmeyer, and P. Marwedel, “Cache-Aware Scratchpad
Allocation Algorithm,” in Proceedings of the Design, Automation and
Test in Europe Conference Exhibition, 2004, pp. 21 264–.

[26] J. C. Kleinsorge, “WCET-Centric Code Allocation for Scratchpad
Memories,” Diploma Thesis, TU Dortmund, 2008.

[27] S. Plazar, J. C. Kleinsorge, P. Marwedel, and H. Falk, “WCET-
Aware Static Locking of Jnstruction Caches,” in Proceedings of the
International Symposium on Code Generation and Optimization, 2012,
pp. 44–52.

[28] H. Falk and P. Lokuciejewski, “A Compiler Framework for the Reduc-
tion of Worst-case Execution Times,” Real-Time Systems, vol. 46, no. 2,
pp. 251–300, 2010.

[29] D. Broman, M. Zimmer, Y. Kim, H. Kim, J. Cai, A. Shrivastava,
S. A. Edwards, and E. A. Lee, “Precision Timed Infrastructure: Design
Challenges,” in Proceedings of the Electronic System Level Synthesis
Conference, 2013.

10

