
Determining Over- and Under-Constrained Systems of
Equations using Structural Constraint Delta

David Broman
Linköping University

davbr@ida.liu.se

Kaj Nyström
Linköping University

kajny@ida.liu.se

Peter Fritzson
Linköping University

petfr@ida.liu.se

Abstract
Computer aided modeling and simulation of complex phys-
ical systems, using components from multiple application
domains, such as electrical, mechanical, and hydraulic, have
in recent years witnessed a significant growth of interest.
In the last decade, equation-based object-oriented (EOO)
modeling languages, (e.g. Modelica, gPROMS, and VHDL-
AMS) based on acausal modeling using Differential Alge-
braic Equations (DAEs), have appeared. With such lan-
guages, it is possible to model physical systems at a high
level of abstraction by using reusable components.

A model in an EOO language needs to have the same
number of equations as unknowns. A previously unsolved
problem concerning this property is the efficient detection of
over- or under-constrained models in the case of separately
compiled models.

This paper describes a novel technique to determine
over- and under-constrained systems of equations in models,
based on a concept called structural constraint delta. In
many cases it is also possible to locate the source of the
constraint-problem. Our approach makes use of static type
checking and consists of a type inference algorithm. We have
implemented it for a subset of the Modelica language, and
successfully validated it on several examples.

Categories and Subject Descriptors I.6.2 [Simulation
and Modeling]: Simulation Languages

General Terms Algorithms, Languages

Keywords Equation-based, modeling, object-oriented, sep-
arate compilation, type checking, over-constrained, under-
constrained

1. Introduction
Computer aided modeling and simulation have for years pro-
vided engineers in all disciplines with powerful tools to de-
sign and test complex systems in a faster and more cost-
efficient way than physical prototyping. Computerized mod-
els also give the advantage of easy extraction of measure-

CORRECTED VERSION:
This author version has been updated with an error correction
of the type inference algorithm. Changes has been made to Al-
gorithm 2 on page 6 and in the last bullet item on page 7, left column.

Copyright c© ACM, (2006). This is the author’s version of the
work. It is posted here by permission of ACM for your personal use.
Not for redistribution. The definitive version was published in Pro-
ceedings of GPCE ’06: Proceedings of the 5th international conference
on Generative programming and component engineering, Portland,
Oregon, USA, 2006. http://doi.acm.org/10.1145/1173706.1173729

ments from the model, even those that would be hard or
even impossible to get from a physical system.
Historically, imperative implementation languages like For-
tran and C have to some extent been replaced by specialized
modeling platforms such as Simulink [8]. In recent years, new
kinds of modeling languages have emerged, which combine
the concept of object-orientation with specification of mod-
els using Differential Algebraic Equations (DAEs). We call
these languages Equation-based Object-Oriented languages,
or EOO languages for short. Modelica [6, 9] is an example
of such a language. Other examples are gPROMS [10], χ [5],
and VHDL-AMS [2].

While EOO languages provide attractive advantages,
they also present new challenges in the areas of static analy-
sis, type systems, and debugging. This paper deals with
specific problems arising with EOO languages in two areas:

• Constraint checking of separately compiled components.

• Error detection and debugging.

1.1 Constraint Checking of Separately Compiled
Components

A model in an EOO language is actually a system of equa-
tions describing the model’s behavior. The existence of a
single solution requires that the number of equations and
variables (unknowns) are equal1. If the number of equa-
tions is greater than unknowns, the model is said to be
over-constrained. Conversely, if the number of unknowns is
greater than equations, it is under-constrained.

In an EOO model, variables and equations can be speci-
fied in different subcomponents of the model. To find out if
a model has the same number of equations as variables, the
model has traditionally been elaborated into a flat system of
equations, where the number of variables and equations can
be counted. However, this simple counting approach is not
possible when one or more components in the model have
been separately compiled.

Consider a simple model of a car, consisting of axis,
gearbox, and an engine. In order to find out if the car model
has the same number of equations as unknowns, we have
to translate it into one large system of equations and count
the number of variables and equations in that system. This
is almost equivalent to a total recompilation of the entire
car model and all its components. This in turn means that
separate compilation of the subcomponents would have been
completely unnecessary.

1 This means that the incidence matrix associated with the system
of equations is square, which is a necessary but not sufficient
condition for the equation system to be structurally non-singular.

1.2 Error Detection and Debugging

If a model intended for simulation has not the same num-
ber of equations as variables, it is an error. This can be
detected after compiling the model into a system of equa-
tions. To locate and resolve the error, the system of equa-
tions must be inspected. Consider again the car model from
Section 1.1. When the model is compiled (translated into
equations), the user might be presented with an error mes-
sage such as: “There are 20237 equations and 20235 vari-
ables”. Debugging the car model with only this message and
a listing of equations and variables is extremely hard. There
exist tools [4] and methods [1] that help the user in this
process, but they require information of the model’s whole
system of equations.

1.3 Contributions

The main contribution of this work is the novel concept
of structural constraint delta, denoted CΔ. Our approach
makes use of static type checking and consists of a type
inference algorithm, which determines if a model is under-
or over-constrained without elaborating its subcomponents.
This enables separate compilation of components in EOO
languages. Furthermore, the concept also allows detection
of constraint-errors at the subcomponent level and improves
the possibilities of locating the source of the errors.

1.4 Outline

The remainder of this paper is structured as follows. Section
2 describes basic concepts and objectives of object-oriented
equation-based modeling. Section 3 gives an overview of a
Modelica compiler. Section 4 introduces a minimal EOO
language called Featherweight Modelica (FM), its syntax
and informal description of semantics and type system.
Section 5 defines the concept of structural constraint delta,
the algorithms used for constraint checking and debugging,
and how these concepts fit into the FM language’s type
system. Section 6 describes our prototype implementation,
Section 7 discusses related work, and Section 8 presents
conclusions of this paper.

2. Equation-Based Modeling in Modelica
In this section we illustrate several important concepts in
modeling with EOO languages using the Modelica language
as an example.

The basic structuring element in Modelica is the class.
There are several restricted class categories with specific key-
words, such as model, record (a class without equations),
and connector (a record that can be used in connections).
Just like in other OO languages, a class contains variables,
i.e., class attributes representing data. These attributes are
called elements of the class and can be instances of classes or
built-in types. If the element is an instance of a model, this
element is also called a component. The main difference
compared with traditional OO languages is that instead of
methods, Modelica primarily uses equations to specify be-
havior. Equations can be written explicitly, like a=b, or be
inherited from other classes. Equations can also be specified
by special connect-equations, also called connections. For
example connect(v1, v2) expresses coupling between el-
ements v1 and v2. These elements are called connectors
(also known as ports) and belong to the connected objects.
This gives a flexible way of specifying the topology of a phys-
ical system.

2.1 Modelica Model of an Electric Circuit

As an introduction to Modelica, we present a model of
an electrical circuit (Figure 1). A composite class like the
Circuit model specifies the system topology, i.e., the com-
ponents and the connections between the components. In
the declaration of the resistor R1, Resistor is the class
reference, R1 is the component’s name, and R=10 sets the
default resistance, R, to 10.

model Circuit
Resistor R1(R=10);
Capacitor C(C=0.01);
Resistor R2(R=100);
Inductor L(L=0.1);
VsourceAC AC;
Ground G;

equation
connect(AC.p, R1.p);
connect(R1.n, C.p);
connect(C.n, AC.n);
connect(R1.p, R2.p);
connect(R2.n, L.p);
connect(L.n, C.n);
connect(AC.n, G.p);

end Circuit;

Figure 1. Modelica model of an electrical circuit.

2.2 Connector Classes

A connector must contain all quantities needed to describe
an interaction. For electrical components we need the vari-
ables voltage v and current i to define interaction via a wire
connection. A connector class is shown below:

connector Pin
Real v;
flow Real i;

end Pin;

A connect-equation connect(R1.p,R2.p) with R1.p and
R2.p being instances of the connector class Pin, con-
nects the two pins so that they form one node. This
connect-equation generates two standard equality equa-
tions: R1.p.v = R2.p.v and R1.p.i + R2.p.i = 0.
The first equation expresses that the voltage of the con-
nected wire ends are the same. The second equation corre-
sponds to Kirchhoff’s current law saying that the currents
sum to zero at a node. The sum-to-zero equations are gen-
erated when the prefix flow is used. Similar laws apply to
flow rates in a piping network and to forces and torques
in mechanical systems. If a model contains an unconnected
connector with a flow variable, the compiler will implicitly
set this variable’s value to zero.

2.3 Base Classes and Inheritance

A common property of many electrical components is that
they have two pins. Thus it is useful to define a “base”
TwoPin component as follows:

model TwoPin "Superclass of components"
Pin p, n;
Voltage v;
Current i;

equation
v = p.v - n.v;
0 = p.i + n.i;
i = p.i;

end TwoPin;

This component has two pins p and n, a quantity v, that
defines the voltage drop across the component and a quan-
tity i that defines the current into the pin p, through the
component and out from pin n. To define a model for an elec-
trical capacitor we can now extend our base class TwoPin
and add a declaration of a variable for the capacitance and
the equation governing the capacitor’s behaviour.

model Capacitor "Ideal electrical capacitor"
extends TwoPin;
Real C "Capacitance";

equation
C*der(v) = i;

end Capacitor;

The keyword extends denotes inheritance from one or
more base classes. Elements and equations are inherited from
the parent.

2.4 Modification and Redeclaration

When extending or declaring an element, we can add mod-
ification equations. The simplest form of modification is as-
signing a value to a variable:

Resistor R1(R=100);

It is also possible to alter the internal structure of a com-
ponent when declaring or extending it, using redeclarations.
The redeclare construct changes the class of the com-
ponent being replaced. There are two restrictions on this
operation:

1. The component we are replacing must be declared as
replaceable.

2. The replacing class’s type must be a subtype of the type
of the component being replaced.

In this example, we create a model B from model A and at
the same time change resistor R1 to be a TempResistor.

model A
replaceable Resistor R1(R=100);

end model A;

model B
extends A(redeclare TempResistor R1);

end B;

2.5 Acausal Modeling and Dynamic Systems

Modelica uses acausal modeling, which means modeling
based on equations. Equations do not specify if a variable is
used for input or output. In contrast, for assignment state-
ments, variables on the left-hand side are always outputs
(results) and variables on the right-hand side are always
inputs. Thus, the causality of equations-based models is un-
specified and becomes fixed only when the corresponding
equation systems are solved. In practice, this means that
when simulating a model, the user does not have to spec-
ify what variable he is interested in. The simulation will
produce results for all variables present in the model.

Modelica is primarily used for modeling dynamic systems,
where a model’s behaviour evolves as a function of time.
This means that all variables in a model have a value for
every time step for which the model has been simulated. In
addition, since we are working with DAEs, all derivatives
of variables (denoted der(v) for the derivative of v) are
derivatives with respect to time. An example of using the
derivative function is shown in the Capacitor model in
Section 2.3.

Figure 2. The structure of
a Modelica compiler.

model B
Real y;
Real x;

equation
y=der(x);

end B;

model C
Real z=10;
Real t;

equation
t=z*2;

end C;

model A
extends C(z=5);
B b;

end A;

Figure 3. Example mod-
els to elaborate and type
check.

3. The Modelica Compiler
In order to understand the current problem involved in sep-
arate compilation of Modelica models we must first explain
how a typical Modelica compiler works. The structure of a
typical compiler is depicted in Figure 2. It is common to
view a Modelica compiler as consisting of two parts. The
first part produces a system of equations and the second
part produces an executable that solves this system of equa-
tions. The first steps in the compilation are scanning and
parsing which transforms the Modelica source code into a
parse tree. This parse tree is then elaborated into equations
and variables.

3.1 Elaboration and Type Checking

First we need a few definitions; specific for this kind of
language.

Definition 1 (Flat system of equations). A flat system of
equations is a set of declared variables of primitive types
together with a set of equations referencing these variables.

Definition 2 (Elaboration). Elaboration is the task of pro-
ducing a flat system of equations from the parse tree of a set
of models.

We will show how elaboration of a model is done by an
example. The task is to elaborate model A in Figure 3. This
means that from the code in model A, we should extract the
corresponding system of equations. Examining model A, we
find that it extends C. Our action is then to simply copy
the contents of model C into our working copy of model
A. The modification equation to variable z in the extends
clause replaces the modification equation to variable z in C.
All modifications are resolved as equations so the overriding
modification z=5 is put in the equation section. The result
so far is shown in model A1 in Figure 4.

We do not have to do anything about declarations of
variables with primitive types. However, the component b
must be elaborated since B is not of primitive type. We
investigate model B and find that it contains the declarations
Real y and Real x. These declarations and all equations

model A1
Real z;
Real t;
B b;

equation
z=5;
t=z*2;

end A1;

model A2
Real z;
Real t;
Real b.x;
Real b.y;

equation
b.y=der(b.x);
z=5;
t=z*2;

end A2;

Figure 4. Stepwise
elaboration of model
A from Figure 3.

Figure 5. Separate compilation in
Modelica.

in model B will now be inserted in our working model A with
the prefix b. as we have now entered the namespace of the
component b. The elaboration is now complete since there
are only primitive types left in our working model. The final
result of the elaboration is shown as model A2 in Figure 4.

In this compilation strategy, type checking is completely
interleaved with the elaboration.

3.2 Symbolic Transformation and Code
Generation

After elaboration, a number of operations are performed on
the system of equations. Typically, the first step is to check
that the number of equations and variables are equal. If
this criterion is fulfilled, the compiler can go on to perform
symbolic transformation tasks, such as BLT transformation
[3]. We will not go into detail of these operations as they are
not necessary for the understanding of this paper.

The symbolic transformation module then generates a
program, usually in C code. The program uses a numerical
solver such as DASSL [11] for solving the system of equa-
tions. The generated program can then be compiled with a
C compiler which produces the executable which in turn will
produce the simulation results.

3.3 Separate Compilation

Separate compilation in Modelica would ideally work as
depicted in Figure 5.

The problem with separate compilation in Modelica is
that while components may be separately compiled, it is
hard to check if a model containing separately compiled
components is under- or over-constrained. It seems that we
must look at the entire elaborated model (flat system of
equations) in order to determine this property.

We now return to the example of the car model men-
tioned in section 1.1. Let us assume that Engine, Gearbox,
and Axis are very complex models consisting of more than
20000 equations developed by separate teams. It is clearly
undesirable to recompile the entire system in order to check
how it is constrained. Instead, we only want to elaborate the
connect equations and to check the interfaces of the compo-
nents.

3.4 Concluding Remarks

There are two deficiencies with the current practice in the
Modelica compiler that we would like to stress.

1. Complete elaboration of all elements in a model is re-
quired to determine if the model is under- or over-
constrained.

2. If the model turns out to be under- or over-constrained,
it is very hard to find the bug since the error is detected
at the level of flat system of equations rather than on a
component/model level.

4. Featherweight Modelica
Modelica is a large and complex language that includes
many concepts such as discrete simulation, algorithm sec-
tions, and functions, which are not central for our purpose.
Consequently, we have designed and extracted a subset of
the Modelica language, which models important aspects of
the continuous and object-oriented parts of the language.
We call this language Featherweight Modelica (FM). This
section will informally present the language.

4.1 Syntax and Semantics

A model designed in FM can express continuous behavior
by using Differential Algebraic Equations (DAEs). Reuse is
achieved by the extends and redeclare constructs.

In Figure 6 the syntax grammar of FM is listed using
a variant of extended Backus-Naur Form (EBNF). Alterna-
tives are separated using the ’|’ symbol, optional arguments
are given using square brackets ([· · ·]) and the curly brackets
({· · · }) denote that the enclosed elements can be repeated
zero or more times. Terminals are highlighted in bold-face.

The non-terminal root gives the starting point of a model
definition. The metavariable M ranges over names of mod-
els and m over names of instances of models; C ranges over
names of connectors and c over names of instances of con-
nectors; R ranges over names of records and r over names
of instances of records; x ranges over variable names of type
Real. Note that subscribed numbers are used to differenti-
ate between meta variables. All bold strings are keywords in
the language except for Real, which is the built in type for
R.

The foundation of the language is the class concept,
where model, connector, and record are special forms
of classes. By observing the grammar, we can see that only
models are allowed to have connections or contain elements
that can be redeclared or modified. Connectors are the only
classes whose instances can be part of a connect-equation,
while Real types and record instances can be part of
equations. Note that this can be seen in the grammar by
considering the meta variables.

There are two kinds of prefixes: access and modifiability.
Access prefixes state if an element in a model can be defined
to be public or protected. The latter is only visible
outside the model by a model extending from the class.
The second prefix category is modifiability, defining how an
element can be modified. Declaring an element replaceable
makes it possible for a user to redeclare the element. Setting
the prefix of an element to final means that the element
can neither be modified nor redeclared. Only models can be
redeclared and only Reals can be modified in FM.

root ::= {model | connector | record}
model ::= model M1

{extends M2 [modification] ;}
{[access] [modifiability]

(M3 m [modification] |
C c | R r | Real x [= lnum]) ;}
[equation {equation;}]
end M1 ;

connector ::= connector C1 {extends C2 ;}
{[flow] Real x ;}
end C1 ;

record ::= record R1 {extends R2 ;}
{(R3 r | Real x) ;}
end R1 ;

modification ::= (modification′ {, modification′})
modification′ ::= redeclare M m [modification]

| x = lnum

access ::= public | protected
modifiability ::= replaceable | modifiable

| final

equation ::= connect(c1,c2) | e1 = e2

e ::= e1 + e2 | e1 - e2 | e1 * e2 | e1 / e2

| -e | (e) | lnum | der(x) | x | r
| time | sin(e)

Figure 6. Syntax of Featherweight Modelica.

4.2 Type-Equivalence and Subtyping

Modelica is using a so called structural type system [12],
where the type of a class is determined by the structure of
its components. In contrast, other object-oriented languages,
such as Java, are using primarily a nominal type system,
where the name of the declared class identifies the type.

The Modelica language specification [9] is informally de-
scribing the semantics and type system of the language.
From the specification, the following definition of type equiv-
alence can be extracted:

Definition 3 (Type Equivalence). Two types T and U are
equivalent if T and U denote the same built-in type, or
T and U are types of classes, T and U contain the same
public declaration elements (according to their names), and
the elements’ types in T are equivalent to the corresponding
element types in U.

Note that a class C is not the same as the type of class C,
since the type only represents the interface of the class and
not the private implementation or semantic part, such as
equations.

Besides type equivalence, the Modelica language defines
subtyping relationships between types of classes.

Definition 4 (Subtyping). For any types S and C, S is a
supertype of C and C is a subtype of S if they are equivalent
or if: every public declaration element of S also exists in C
(according to their names) and those element types in S are
supertypes of the corresponding element types in C.

In the following text, we will use the notation of C <: S,
meaning that the type of class C is a subtype of class S’s
type.

model A model B model C
Real p; Real p; extends A;
Real c; Real c; Real q;

equation Real q; equation
c = 2; equation q = p*p;
der(p) = -c*p; c = 2; end C;

end A; der(p) = -c*p;
end B;

Figure 7. Three different Modelica models.

Now, consider the three models given in Figure 7. Accord-
ing to Definition 4, we can see that B <: A since the public
elements p and c that exist in A also exist in B. We can see
that C extends A, i.e., C inherits all components and equa-
tions from A. Furthermore, C defines an element q, which
makes C <: A. In addition, since both B and C hold the
same public elements, it can be concluded from Definition 3
that B and C are type equivalent.

Subtyping is a fundamental concept in many program-
ming languages. Generally, it means that if a type S has all
the properties of another type T , then S can be safely used
in all contexts where type T is expected. This view of sub-
typing is often called the principle of safe substitution [12].
Now the question arise if this is true for the type system
and examples described above. The main question is what
we mean by safe substitution in the context of equation-
based object-oriented languages. If we count the number of
variables and equations in each of the models in Figure 7, we
can see that model A has 2 variables and 2 equations, model
B has 3 variables and 2 equations and finally model C has
3 variables and 3 equations. In the current type system of
Modelica, both B and C are said to be safe replacements of A.
However, in this case we know that replacing A with C gives
us a potentially solvable system with 3 variables and 3 equa-
tions, but replacing A with B results in a under-constrained
system with 3 variables and 2 equations, which will not give
a unique solution. Can we after these observation still regard
B as a safe replacement of A? We think not, and will in the
next subsections propose a solution.

5. The Approach of Structural Constraint
Delta

In this section, we will present an approach that addresses
the problem of determining under- and over-constrained
components without performing elaboration. We start by
giving a definition:

Definition 5 (Structural Constraint Delta, CΔ). Given an
arbitrary class C, containing components, equations, and
connections, the type of C has a defined integer attribute
called structural constraint delta, CΔ. This attribute states,
for C and all its subcomponents, the integer difference be-
tween the total number of defined equations and variables.

The term structural indicates that the equations and vari-
ables are counted as they are declared in the model. For ex-
ample, two linearly dependent equations in an equation sys-
tem will still be counted as two separate equations. Hence,
CΔ = 0 for a system of equations does not guarantee a
unique solution, it will only indicate that a single solution
might exist. If CΔ < 0, we have an under-constrained prob-
lem with more unknowns than equations, which might give
an infinite number of solutions. If CΔ > 0, we have an over-

constrained system of equations, which most likely will not
give a unique solution. However, since the algorithm for com-
puting CΔ does not check if equations are linearly indepen-
dent or not, a system with CΔ > 0 may be solvable. To be
able to guarantee that a system of equations has a unique so-
lution, complete knowledge of the entire system of equation
must be available. Since this is obviously not possible when
inspecting components separately, the value of CΔ only pro-
vides a good indication whether a system of equations has
a unique solution or not.

For example, if CΔ is to be calculated for the types
of the models given in Figure 7, the difference between
the number of equations and variables in the model gives
the value of CΔ. In this case, CΔ = 0 for A and C, but
CΔ = −1 for B. Since our models so far only contain
variables and equations, calculating CΔ is straightforward.
However, if a model contains hundreds of subcomponents,
using connections, connectors, and records, the resulting
flattened system might consist of thousands of equations.
To be able to formulate algorithms for calculating CΔ, we
need another definition:

Definition 6 (Constraint Delta Effect, EΔ). Let C be an
arbitrary class containing two elements c1 and c2 that are
instances of classes C1 and C2, which contain only elements
and no equations or connections. Given an equation or con-
nection E located in C representing a relation between c1 and
c2, the constraint delta effect EΔ is a type attribute of both
C1 and C2, which states the effect E has when computing
CΔ of C.

Note that CΔ is not the same as EΔ. Simply stated, we say
that EΔ of two elements represents the change of the current
model’s CΔ when an equation or connection is introduced
between the two elements. For example, if we in model
B in Figure 7 introduce a new equation q = 2 * p, this
equation will have the effect of changing model B’s CΔ from
−1 to 0. Therefore, involved variables q and p, are said to
have EΔ = 1 (or to be precise; the attributes to the types of
the elements). However, we will soon see that elements do
not always have EΔ = 1.

5.1 Algorithms for Computing CΔ and EΔ

In this section, we present algorithms for calculating CΔ

and EΔ. Even if the algorithms for calculating the type
attributes CΔ and EΔ could be stated by using a formal
type system, we have chosen to illustrate the algorithm more
informally using pseudo-code algorithms. The main reasons
for this are that the Modelica language itself has currently no
formal semantics or type system and the target audience of
this paper is not only computer scientists, but also engineers
from the modeling and simulation community.

It is important to stress that CΔ and EΔ are defined as
attributes to the types of the classes, and not for the classes
themselves. This implies that when calculating the value for
a specific class C, we do not need to recursively calculate CΔ

and EΔ for each subelement, since they are already defined
by the type of the elements. The process of calculating CΔ

and EΔ is a form of type inference, i.e., the type attributes
are inferred from equations given in the class and types of
the elements in the class.

The algorithm for computing CΔ is given in Algorithm 1.
This algorithm uses a help function defined in Algorithm 2.
The algorithm for computing EΔ is listed in Algorithm 3.
Note that the indentation of the algorithms is significant

Algorithm 1: Compute CΔ of a class

Input: An arbitrary Class
Output: CΔ of the class
CΔ ← 01

switch Class do2

case model3

foreach e ∈ getElements(Class) do4

CΔ ← CΔ+ getDelta(e)5

if hasDefaultValue(e) then6

CΔ ← CΔ+ 17

foreach m ∈ getModifiedElements(e) do8

if not hasDefaultValue(m) then9

CΔ ← CΔ+ 110

foreach e ∈ getEquations(Class) do11

CΔ ← CΔ+ getEffect(e)12

foreach c ∈ getConnectors(Class) do13

Poutside ← FALSE14

Pinherited ← FALSE15

if not isVisited(c) then16

traverseConnectorGraph(c)17

if Poutside then18

CΔ ← CΔ+ getOutsideAdjustment(c)19

foreach b ∈ getBaseClasses(Class) do20

foreach m ∈ getModifiedElements(b) do21

if not hasDefaultValue(m) then22

CΔ ← CΔ+ 123

CΔ ← CΔ+getDelta(b)24

case record25

foreach e ∈ getElements(Class) do26

CΔ ← CΔ+ getDelta(e)27

foreach b ∈ getBaseClasses(Class) do28

CΔ ← CΔ+ getDelta(b)29

case connector30

foreach e ∈ getElements(Class) do31

if not hasFlowPrefix(e) then32

CΔ ← CΔ+ getDelta(e)33

foreach b ∈ getBaseClasses(Class) do34

CΔ ← CΔ+ getDelta(b)35

case variable36

CΔ ← −137

end38

Algorithm 2: traverseConnectorGraph(c1)

Input: Connector c1 from which graph traversal starts
Output: Global variables Poutside, Pinherited, and CΔ

if ((isOutside(c1) and isInherited(c1)) or ((isOutside(c1)1

or isInherited(c1)) and (Poutside or Pinherited))2

then typeCheckingFailed()
else3

markAsVisited(c1)4

Poutside ← Poutside or isOutside(c1)5

Pinherited ← Pinherited or isInherited(c1)6

foreach c2 ∈ getAdjacencyConnectors(c1) do7

if not isVisited(c2) then8

CΔ ← CΔ+ getEffect(getTypeOf(c2))9

traverseConnectorGraph(c2)10

and delimits blocks for the foreach, if, and switch
statements.

To make the algorithms more easy to follow, the following
help functions are defined:

Algorithm 3: Compute EΔ of a class

Input: An arbitrary Class
Output: EΔ of the class
EΔ ← 01

switch Class do2

case record3

foreach e ∈ getElements(Class) do4

EΔ ← EΔ+ getEffect(e)5

foreach b ∈ getBaseClasses(Class) do6

EΔ ← EΔ+ getEffect(b)7

case connector8

foreach e ∈ getElements(Class) do9

if hasFlowPrefix(e) then10

EΔ ← EΔ−getEffect(e)11

else EΔ ← EΔ+ getEffect(e)12

foreach b ∈ getBaseClasses(Class) do13

EΔ ← EΔ+ getEffect(b)14

case variable15

EΔ ← 116

end17

• getAdjacencyConnectors (c) - the set of connectors
that are directly connected to c by connect-equations
declared in the local class.

• getBaseClasses (C) - the set of types for the base
classes to C.

• getConnectors(C) - the set of accessible connectors
that are used by connections in class C. All connectors
are initially marked as unvisited.

• getDelta(t) - attribute CΔ part of type t.

• getElements(C) - the set of types for elements part of
class C.

• getEquations(C) - the set of equations part of the local
class C, excluding connect-equations and equations from
base classes. Each element in the set represents the type
of the expressions declared equal by the equation.

• getEffect(t) - the attribute EΔ part of type t.

• getModifiedElements(e) - the set of elements’ types
in e, which is modified by modification equations.

• getOutsideAdjustment(c) - an integer value repre-
senting adjustments to be made if connector c is part
of a connector set that is connected to an outside con-
nector. The integer value is equal to the positive number
of flow variables inside connector c.

• getTypeOf(c) - the type of connector c.

• hasDefualtValue(e) - TRUE if element type e has a
defined default value.

• hasFlowPrefix(e) - TRUE if element e is prefixed with
keyword flow.

• isInherited(c) - TRUE if connector c is inherited from
a base class.

• isVisited(c) - TRUE if connector c is marked as visited.

• isOutside(c) - TRUE if connector c is seen as an outside
connector in the local class.

• markAsVisited(c) - mark connector c as visited.

• typeCheckingFailed() - terminates the type checking,
since two outside or inherited connectors are connected,
or a connected connector is both outside and inherited.

5.1.1 Computing CΔ - Equations, Inheritance, and
Modification

We start by illustrating the algorithms using trivial exam-
ples, where the models only contain equations, records, and
variables. Consider the following FM listing:

record R CΔ=-2 EΔ=2 model B CΔ=0
Real p; CΔ=-1 EΔ=1 Real y=10;CΔ=0EΔ=1
Real q; CΔ=-1 EΔ=1 end B;

end R;
model M CΔ=-1

model A CΔ=-3 extends A(p=1);CΔ=-2
R r1; CΔ=-2 EΔ=2 B b1(y=20); CΔ=0
R r2; CΔ=-2 EΔ=2 B b2; CΔ=0
Real p; CΔ=-1 EΔ=1 equation

equation b1.y = p;
r1 = r2; end M;

end A;

Model M extends from model A, which implies that all
equations and elements in A will be merged into M. Model A
contains two instances of record R. If each of these models
were to be compiled separately, we would need to calculate
CΔ for each of the models without any knowledge of the
internal semantics of the subcomponents, i.e., the equations.
Calculated CΔ and EΔ for every class and element are given
to the right in the listing.

Consider Algorithm 1, which takes an arbitrary class as
input and calculates the CΔ value for this class. First, we can
see that calculating CΔ of a record simply adds the CΔ value
for each element (rows 26-27), which in the case of record R
gives CΔ = −2 since R holds 2 variables. In Algorithm 3, we
can see that calculating the effect of R gives EΔ = 2. But
what does this mean? Recall that EΔ, given in Definition 6,
states the effect on CΔ when connecting two elements. In
model A, an equation r1 = r2 is given, which uses record R.
This equation will after elaboration generate two equations,
namely r1.p = r2.p and r1.q = r2.q, which is why EΔ

for R is 2. The rest of the procedure for computing CΔ

of model A should be pretty straightforward by following
Algorithm 1. Note that only CΔ and not EΔ is given for
models, since models are not allowed to be interconnected.

The more interesting aspects of calculating CΔ in this
example are shown in model M. First of all, we can see
that model M extends from A, which results in that CΔ of
A is added to CΔ of M (see rows 20-24 in Algorithm 1).
Since variable p is modified with p=1, we see that CΔ is
increased by EΔ of the type of p, i.e., Real. Hence, the
CΔ contribution from base class A is −2. The CΔ value for
model B is 0. When instantiated to element b1 in model M, its
element y is modified with y=20. However, this modification
does not effect CΔ, since y already has a default value (see
rows 8-10 in Algorithm 1). Finally, we can see that the total
calculation of M will result in a CΔ value of −1.

5.1.2 Computing CΔ - Connectors, Connections,
and Flow Variables

Consider the source code listing and graphical representation
given in Figure 8. Model M contains components a and b,
which are instances of model K. Each model consist of several
connector instance, all instances of a connector class C.

The semantics of the Modelica language distinguish be-
tween outside connectors and inside connectors, where the
former are connector instances denoting the border of a
model, e.g., oc1 and oc2, and the latter represents con-
nectors available in local components, e.g., a.ic1, a.ic2,
b.ic1, and b.ic2. Note that a connector instance can be

seen as both an outside and an inside connector, depend-
ing which model is being processed. In this example we are
looking at model M.

Calculating CΔ of connector C can be achieved by using
rows 30-35 in Algorithm 1. On row 32, we can see that
CΔ is only added if the variable has not got a flow prefix.
The reason for this is that an unconnected flow variable
has always a defined default equation, setting its value to 0.
Hence, introducing a flow variable gives one extra variable
and one equation, i.e., CΔ = 0. Further inspection of the
algorithm, yields CΔ = −2 for model K.

Calculating CΔ of M is more complicated. On row 13 in
Algorithm 1 it is stated that we iterate over all involved con-
nectors, in this case a.ic1, a.ic2, b.ic1, b.ic2, oc1,
and oc2. Variable Poutside becomes TRUE if the algorithm
has passed an outside connector, and Pinherited becomes
TRUE if it has passed an inherited element. The latter case
will not be illustrated in this example. The first thing to
notice is that the connector graph is traversed by using the
recursive function traverseConnectorGraph(), listed in Algo-
rithm 2. The algorithm performs a depth-first search visiting
each connector (vertex) only once, by marking it as visited.
Note that function traverseConnectorGraph() has side ef-
fects and updates the variables Poutside, Pinherited, and CΔ.
Each connect-equation (edge) in the graph contribute to the
CΔ of the class being computed, by adding EΔ of a connec-
tor in the connection (see row 9 in Algorithm 2). Since all
connectors traversed in one iteration of the foreach loop are
connected (row 13-19 in Algorithm 1), all types of the con-
nectors hold the same value of EΔ.

By using Algorithm 3, rows 9-12, we can see that EΔ = 0
for connector C. Consequently, all the connections in model
M will not change the value of CΔ. Why is this the case?
We know that connecting non-flow variables will always
result in an extra equation, i.e., for non-flow variables,
EΔ must be 1. However, when connecting two flow vari-
ables, one equation is added, but two default equations
are removed. For example in connect(a.ic2, b.ic1);,
the two default equations a.ic2.x=0 and b.ic1.x=0
are removed and replaced with the sum-to-zero equation
a.ic2.x + b.ic1.x = 0. Hence, the effect of connect-
ing two flow variables is EΔ = −1.

There are several aspects covered by the algorithms,
which we will not be able to explain in detail in this paper,
due to space limitations. The following items briefly describe
some of these issues:

• If cycles appear in the connector graph, there ex-
ists a redundant connect-equation which does not con-
tribute to the value of CΔ. For example, if connections
connect(oc1,b.ic1) and connect(a.ic1,a.ic2)
would be introduced in M, one connection would be re-
dundant. This issue is handled by making sure that
connectors are only visited once (see rows 7-10 in Al-
gorithm 2.)

• Connecting an inside connector to an outside connector
does not give the same effect on CΔ as connecting inside
to inside. For example, when connecting oc1 to a local
connector inside M, the default variable oc1.x=0 will not
be removed. This default equation will only be removed
when oc1 is connected outside model M, i.e., when an-
other model is using M as a component. This issue is
managed on rows 18-19 in Algorithm 1.

• The algorithm does not allow direct or indirect connec-
tions between outside connectors. For example a con-

nection connect(oc1,b.ic2) would generate a type
checking error (see row 1-2 in Algorithm 2). The same
semantics hold for connections between connectors inher-
ited from base classes. We use this conservative approach
since without it, the type of a class must be extended with
information regarding the connectors that are connected.

model K connector C
C ic1; flow Real x;
C ic2; Real y;

end K; end C;

model M
K a;
K b;
C oc1;
C oc2;

equation
connect(a.ic1, oc1);
connect(a.ic2, b.ic1);
connect(b.ic2, oc2);

end M;

Figure 8. Model M with inside connectors (e.g. a.ic1 and
b.ic2) and outside connectors (oc1 and oc2).

5.2 Extending the Type System with CΔ

The latter sections described how we can calculate CΔ and
EΔ of classes, resulting in value attributes for types in the
language. However, this is of no use if we do not apply this
new information to the type system. A new extended version
of the Featherweight Modelica language, denoted FMΔ, is
defined by extending Definition 3 and Definition 4 for type-
equivalence and subtyping with the following definitions:

Definition 7 (Type-equivalence and CΔ). For any types T
and U to be type-equivalent, Definition 3 must hold and the
CΔ-value of T and U must be equal.

Definition 8 (Subtyping and CΔ). For any types S and C,
S is a supertype of C and C is a subtype of S if Definition 4
holds and the CΔ-value of S is equal to that of C.

Hence, the extended language FMΔ guarantees that the
difference between declared variables and equations does not
change when using the rule of subsumption. If we recall the
models listed in Figure 7, we can now see that model C is a
subtype of model A, but model B is not.

6. Prototype Implementation
To validate and verify our algorithms, a prototype Feath-
erweight Modelica Compiler (fmc) was implemented con-
sisting of a type-checker for FMΔ, where CΔ and EΔ au-
tomatically are inferred and represented as attribute to the
types. The prototype compiler was implemented as a batch-
program, which takes a FMΔ .mo-file (containing FMΔ

models) as input and returning to standard output the
pretty-printed type of the last model defined in the .mo-
file.

To validate the correctness of our solution, the following
procedure has been used:

1. Create relevant models in FMΔ.

2. Run the prototype compiler for FMΔ on the models.
The output is the listed type of the model including CΔ

information.

3. Elaborate the model and manually inspect the flat Mod-
elica code generated by the compilers Dymola version 6
[4] and OpenModelica version 1.4.1 [7].

We will now analyze, by using a simple circuit example,
how the concept of structural constraint delta attacks the
problems of constraint checking with separately compiled
components, and error detection and debugging. In the
examples, fmc and Dymola version 6 are used when testing
the models.

6.1 Constraint Checking of Separately Compiled
Components

Consider the following listing, stating the model Resistor,
a connector Pin and a base class TwoPin:

model TwoPin connector Pin
Pin p; Real v;
Pin n; flow Real i;
Real v; end Pin;
Real i;

equation model Resistor
v = p.v - n.v; extends TwoPin;
0 = p.i + n.i; Real R = 100;
i = p.i; equation

end TwoPin; R*i = v;
end Resistor;

When using fmc, each of these models are separately type
checked. For example, when typechecking model Resistor,
model TwoPin and connector Pin are not elaborated. In-
stead, only the types of TwoPin and Pin are used. This
information is available after these classes are compiled.

Below the output generated by fmc is listed, with some
pretty printing added for readability:

model classtype CΔ=0
public final connector objtype CΔ=-1 EΔ=0
nonflow Real objtype v;
flow Real objtype i;

end p;
public final connector objtype CΔ=-1 EΔ=0
nonflow Real objtype v;
flow Real objtype i;

end n;
public modifiable Real objtype v;
public modifiable Real objtype i;
public modifiable Real objtype* R;

end

The lines above represent the type of model Resistor.
Note the difference made between class type (the type of
a class that can be instantiated), and a objtype (the type
of an object that has been instantiated by a class). The
type’s of elements p and n have CΔ = −1 and EΔ = 0. The
latter indicates that when the Resistor model is used by
connecting p or n, CΔ will not change. Finally, we can see
that that CΔ = 0 for the whole type of Resistor.

Now, if the following code is added to our .mo-file,
we have a complete model named Circuit that we can
simulate.

model Ground model VsourceAC
Pin p; extends TwoPin;

equation Real VA = 220;
p.v = 0; Real f = 50;

end Ground; Real PI = 3.1416;
equation

v = VA*sin(2*PI*f*time);
end VsourceAC;

model Inductor model Circuit
Pin p; protected
Pin n; replaceable Resistor R1(R=10);
Real v; replaceable Inductor L(L=0.1);
Real i; VsourceAC AC;
Real L = 1; Ground G;

equation equation
L*der(i) = v; connect(AC.p, R1.p);

end Inductor; connect(R1.n, L.p);
connect(L.n, AC.n);
connect(AC.n, G.p);

end Circuit;

Trying to simulate the above model Circuit in the com-
mercial Modelica environment Dymola, the error feedback
states that it is not possible to simulate it because there
are 22 equations and 25 variables in the flattened equation
system.

Executing the model in fmc, we get the response that
model circuit has CΔ = −3, which corresponds to the
message Dymola reported. Note that Dymola had to elabo-
rate all the models to a flattened system of equation to get to
this result. fmc on the other hand could use the separately
type checked components and just use the types of these
components to get the same result. Hence, this example il-
lustrates how our approach can be used to enable separate
compilation of components.

6.2 Error Detection and Debugging

Now the following question arise: How can we know where
the problem is located? The user needs to either analyse the
model code or to inspect the flat system of equations. In
both cases, this problem seems hard to manage.

If we run this model in fmc, we get the following type
information for model Circuit (for readability, parts of the
type are replaced by a dotted line):

model classtype CΔ=-3
protected replaceable model objtype CΔ=0

...
end R1;
protected replaceable model objtype CΔ=-3

...
end L;
protected modifiable model objtype CΔ=0

...
end AC;
protected modifiable model objtype CΔ=0

...
end G;

end

Analyzing the type information, it indicates that it is
component L, which is an instance of Inductor that proba-
bly causes the under-constrained system. After a closer look,
we notice that Inductor is not extending from TwoPin, as
it should. After replacing the old Inductor model with

model Inductor
extends TwoPin;
Real L = 1;

equation
L*der(i) = v;

end Inductor;

it is possible to simulate the model.
Now, let us assume that we want to build a larger model

having model Circuit as a subcomponent. However, this
time we do not want to use a Resistor in Circuit. In-
stead, the goal is to redeclare R with a temperature depen-

dent resistor called TempResistor. Consider the following
models:

model TempResistor
extends TwoPin;
Real R; // Resistance at. reference temp.
Real RT=0; // Temp. dependent resistance
Real Tref=20; // Reference temperature
Real Temp; // Actual temperature

equation
v = i * (R + RT * (Temp-Tref));

end TempResistor;

model Circuit2
extends Circuit(redeclare TempResistor R1(R=35));

end Circuit2;

Trying to simulate this model in Dymola results in a flat-
tened model with 28 variables and 27 equations, which can-
not be simulated. By elaborating all components and an-
alyzing the system of equations, Dymola hints that R1 is
structurally singular.

However, using fmc, this model does not even pass the
type checker. The compiler reports that CΔ for the original
type is 0 (Resistor), but the redeclaring model’s type is -1
(TempResistor). Hence, the subtyping rule is not legal and
the redeclaration is incorrect. The following listing shows
a correct redeclaration, where the temperature parameter
Temp has been assigned a value.

model Circuit3
extends Circuit
(redeclare TempResistor R1(R=35, Temp=20));

end Circuit3;

Consequently, our approach finds the incorrect model at an
early stage during type checking. Furthermore, since the
type checking was performed on precompiled models, there is
no need for elaborating the model’s subcomponents. Hence,
this approach is not only useful for separate compilation,
but also for users when locating errors in models.

7. Related Work
We have used the Modelica language as an example to
explain the problems associated with over- and under-
constrained systems. These problems arise in languages
using hierarchical modeling with components, where the
component semantics contain DAEs. While it is trivial to
count equations in a simple model, we have seen that the
complexity increases when introducing connect semantics,
existing in e.g. the χ [5] language. Both flow variables, used
in e.g. VHDL-AMS [2] (called through) and inheritance
part of e.g. gPROMS [10], complicate matters further.

The Modelica language includes all these concepts, and
there exist methods for locating errors at the level of flat
system of equations [1]. The Modelica tool Dymola [4] de-
tects constraint-errors at the flat system of equations, and
can sometimes also pinpoint the errors. One downside with
these approaches is that the entire model must be elabo-
rated, making separate compilation difficult.

An attractive simplification related to the CΔ concept
would be to require all separately compiled models to have
the same number of equations as unknowns, i.e., CΔ = 0.
However, it is an open question if this approach is not too
conservative for expressing models in the general case.

To the best of our knowledge, no solution has previously
been presented for any applicable language that determines
if a model is under- or over-constrained, without elaborating
the model.

8. Conclusions
We have presented the concept of structural constraint
delta (CΔ) for equation-based object-oriented modeling lan-
guages. Algorithms for computing CΔ were given, and it
was shown how CΔ is used to determine if a model is under-
or over-constrained without having to elaborate a model’s
components. We have also illustrated how the concept of CΔ

allows the user to detect and pinpoint some model errors.
The concept has been implemented for a subset of the Mod-
elica language and successfully tested on several models.

Acknowledgments
Thanks to Peter Bunus, John Wilander, Thomas Schön, and
Åsa Broman for many useful comments. This research work
was funded by CUGS (the National Graduate School in
Computer Science), SSF in the Visimod-II project, Math-
Core Engineering, and by Vinnova in the NETPROG Safe
& Secure Modeling and the GridModelica projects.

References
[1] Peter Bunus and Peter Fritzson. Automated Static Analysis

of Equation-Based Components. SIMULATION, 80(7–
8):321–245, 2004.

[2] Ernst Christen and Kenneth Bakalar. VHDL-AMS - A
Hardware Description Language for Analog and Mixed-
Signal Applications. IEEE Transactions on Circuits
and Systems II: Analog and Digital Signal Processing,
46(10):1263–1272, 1999.

[3] Iain. S. Duff and John K. Reid. Algorithm 529: Permutations
To Block Triangular Form [F1]. ACM Trans. Math. Softw.,
4(2):189–192, 1978.

[4] Dynasim. Dymola - Dynamic Modeling Laboratory with
Modelica (Dynasim AB). http://www.dynasim.se/ [Last
accessed: 8 May 2006].

[5] Georgina Fábián. A Language and Simulator for Hybrid
Systems. PhD thesis, Technische Universiteit Eindhoven,
the Netherlands, 1999.

[6] Peter Fritzson. Principles of Object-Oriented Modeling and
Simulation with Modelica 2.1. Wiley-IEEE Press, New York,
USA, 2004.

[7] Peter Fritzson, Peter Aronsson, H̊akan Lundvall, Kaj
Nyström, Adrian Pop, Levon Saldamli, and David Broman.
The OpenModelica Modeling, Simulation, and Development
Environment. In Proceedings of the 46th Conference
on Simulation and Modeling (SIMS’05), pages 83–90,
Trondheim, Norway, 2005.

[8] MathWorks. The Mathworks - Simulink - Simulation
and Model-Based Design. http://www.mathworks.com/
products/simulink/ [Last accessed: 15 May 2006].

[9] Modelica Association. Modelica - A Unified Object-Oriented
Language for Physical Systems Modeling - Language
Specification Version 2.2, February 2005. Available from:
http://www.modelica.org [Last accessed: 29 March
2006].

[10] M. Oh and Costas C. Pantelides. A modelling and Simulation
Language for Combined Lumped and Distributed Parameter
Systems. Computers and Chemical Engineering, 20(6–
7):611–633, 1996.

[11] Linda R. Petzold. A Description of DASSL: A Differen-
tial/Algebraic System Solver. In IMACS Trans. on Sci-
entific Comp., 10th IMACS World Congress on Systems
Simulation and Scientific Comp., Montreal, Canada, 1982.

[12] Benjamin C. Pierce. Types and Programming Languages.
The MIT Press, 2002.

