
Abstract Syntax Can Make
the Definition of Modelica Less Abstract

David Broman and Peter Fritzson

Department of Computer and Information Science
Linköping University, Sweden

{davbr,petfr}@ida.liu.se

Abstract. Modelica is an open standardized language used for model-
ing and simulation of complex physical systems. The language specifi-
cation defines a formal concrete syntax, but the semantics is informally
described using natural language. The latter makes the language hard
to interpret, maintain and reason about, which affect both tool develop-
ment and language evolution. Even if a completely formal semantics of
the Modelica language can be seen as a natural goal, it is a well-known
fact that defining understandable and concise formal semantics specifi-
cations for large and complex languages is a very hard problem. In this
paper, we will discuss different aspects of formulating a Modelica specifi-
cation; both in terms of what should be specified and how it can be done.
Moreover, we will further argue that a ”middle-way” strategy can make
the specification both clearer and easier to reason about. A proposal
is outlined, where the current informally specified semantics is comple-
mented with several grammars, specifying intermediate representations
of abstract syntax. We believe that this kind of evolutionary strategy is
easier to gain acceptance for, and is more realistic in the short-term, than
a revolutionary approach of using a fully formal semantics definition of
the language.

1 Introduction

Modelica is an open standard language aimed primarily at modeling and sim-
ulation of complex physical systems. The first language specification 1.0 [19]
was released in September 1997. Since then, the current specification 2.2[20] has
evolved to be large and complex with many constructs.

During these past ten years, the user community has grown fairly large and
the Modelica Standard Library has evolved to include several physical domains.
The dominating Modelica tool has for a long time been the commercial tool
Dymola [4]. However, during recent years, alternative tools have emerged; both
open source (OpenModelica [7, 21]) and commercial environments (e.g., Math-
Modelica System Designer [16], MOSILAB [5], and SimulationX[12]).

The rapidly growing user community and increasing number of tool vendors
augment the demand of the language specification being precise so that different

111

tools will be compatible. Hence, the Modelica Association, who is responsible for
the language specification, has defined the goals for the next language version
both to make the specification clearer and to simplify the language itself.

1.1 Specification of the Modelica Simulation process

Modelica’s compilation and simulation process can be divided into several stages
or sub-processes. Consider Fig. 1, where a Modelica model is elaborated1 into
a Hybrid Differential Algebraic Equation (Hybrid DAE) and then transformed
into an executable, which after execution produces a simulation result.

Fig. 1. Overview of a typical Modelica compilation and simulation process.

The syntax and semantic analysis take place at compile time and the generation
of simulation output is produced at run-time.

In the current specification 2.2 [20], the concrete syntax is stated formally
using Extended Backus-Naur From (EBNF), but only the semantics of the first
part of the process is informally described using natural language backed up with
concrete source code examples.

Due to the fact that output of this process is not precisely defined, and
that the semantics is described informally using natural language, the current
specification is to a high degree open for interpretation.

1.2 Unambiguous and Understandable Language Specification

The natural goal of a language specification is to be unambiguous, so that tool
implementors interpret the specification in exactly the same way. At the same
time, it is important that the specification is easy to understand for the intended

1 In this paper, we call this process elaboration. In the Modelica specification 2.2,
this process is called instantiation. Sometimes, this transformation is also referred
to as the flattening phase, since it creates a flat system of equations. However,
we think that both these terms are misleading. The former, since it is performed
at compile time and is not allocating memory analogous to instance creating in
standard programming languages. The latter, since the final equation system does
not need to be flat - it can still be represented in a hierarchical structure.

112

audience. Unfortunately, it is not that easy to meet both of these goals when
describing a large and complex modeling language such as Modelica. There are
several specification approaches with different pros and cons. Hence, the overall
problem is to find an approach that satisfies the specification goals in the best
possible way.

If the language is described using formal semantics, e.g., structured opera-
tional semantics [25], the language semantics is precise and can in some cases
be proved to have certain properties, such as type safety [24, 26]. However, to
understand and interpret a formal language specification require a rigorous the-
oretical computer science knowledge. Furthermore, even if great effort has been
spent during the last decades in formalizing mainstream programing languages,
only a few, e.g., Standard ML [18], are actually fully formally specified. Accord-
ingly, it turns out to be a very hard task to specify an understandable and concise
formal specification of an existing complex language.

Alternatively, if the language semantics is described using natural languages,
e.g., plain English text describing the semantics, it might be easy for software
engineers to understand the specification. Many languages are described in this
way, for example Java [9], C++ [11], and Modelica [20]. However, ease of un-
derstanding does not imply that different individuals interpret the specification
in the same way. It is a well known fact that it is very hard to write unam-
biguous natural language specifications, and perhaps even harder to verify their
consistency.

1.3 Previous Specification Attempts

Several previous attempts have been made to formalize and improve the spec-
ification of the Modelica language. The most obvious one is the further devel-
opment of the official language specification itself, conducted by the Modelica
Association. The work on the next language specification includes substantial
restructuring and a more detailed description of the semantics of the language.
However, it is not planned to include any formal descriptions, apart from an
appendix containing one possible definition of Modelica abstract syntax.

Natural Semantics. Already in 1998 K̊agedal and Fritzson [14, 15], created
a formal specification for a subset of the Modelica language, influenced by the
language specification examples described in the 1997 version of [6]. The speci-
fication was using Natural Semantics [13] and the executable specification lan-
guage Relational Meta Language (RML) [22]. This work influenced the design
of the language and the official Modelica specification. The executable specifi-
cation has gradually evolved and is now the code basis for the OpenModelica
project[21]. In 2006, the code base was converted from RML to Meta-Modelica[8]
with the purpose of making it more accessible for software engineers in the Mod-
elica community. Hence, today the project is more intended to be a complete
implementation of the language than a specification itself. One lesson learned
from this specification project was that for an almost complete specification of

113

an early Modelica language version, the formal specification became hard to get
an overview of, since it grew to be very large.

Elaboration. Jakob Mauss has made several contributions to formally describe
the elaboration process (called instance creation in his work) of a subset of Mod-
elica, i.e., the translation process from a Modelica model into a system of equa-
tions. The published work [17] describes an algorithmic specification approach,
which focuses on Modelica’s complex lookup rules and modification semantics;
including redeclaration of classes and components. Semantics for describing re-
strictions on validity of a model, such as types, restricted classes, and most
prefixes are not considered. It exists also a refined version of this work, which
uses a more compact notation. However, this work is still unpublished.

Modelica Types. In our previous work on types in the Modelica language[2],
we concluded that the type concept is only implicitly defined in the Modelica
language specification. In that work, we proposed a concrete syntax of specifying
Modelica types and gave a suggestion for constraining information of element
prefixes in the types. Furthermore, it was emphasized that Modelica has a struc-
tural type system, which implies that a class and a type are two separate language
concepts. In this paper, we will not cover types, even though parts of a specifi-
cation can also be described using type rules.

A common dominator for all these isolated formal specification attempts is that
they have been conducted in parallel with the official language specification. Even
if a proposed alternative specification covers large portions of the language, it
will not be used as a specification by the community if it is not replacing the
official specification. If there are two specifications of the same concept, how do
we then know which one is valid if they are not consistent? Nevertheless, these
formal specification attempts are still very important to promote understanding
and discussion about the informal semantics. It is of great importance that these
works gradually find their way into the official specification. The question is how
to make this possible in practice, since all attempts so far only model subsets of
the real language.

1.4 Abstract Syntax as a Middle-Way Strategy

Improving the natural language description of the Modelica specification is an
obvious way of increasing the understandability and removing ambiguity. How-
ever, since this process is tedious and error prone, it is very hard to ensure that
the ambiguity decreases. Moreover, previous work on formalization of the com-
plete semantics of subsets of the language has shown to be complex and resulting
in very large specifications. Hence, there is a concrete and practical need to find
a ”middle-way” strategy to improve the clarity of the complete language, not just
subsets. This strategy must be simple enough to not require in depth theoreti-
cal computer science knowledge of the reader, but still precise enough to avoid
ambiguities.

114

When a compiler parses a model, the result is normally stored internally as
an Abstract Syntax Tree (AST). Hence, one particular model results in a specific
AST, which can be seen as an instance of the language’s abstract syntax. The
abstract syntax can be specified using a context-free grammar, and an AST can
also have a corresponding textual representation.

The internal representation of an AST is often seen as a tool implementation
issue, and not as something that is defined in a language specification. Neverthe-
less, in this paper we propose that the intermediate representations between the
transformation steps (recall Fig. 1) should be described by specifying its abstract
syntax.

However, specifying different forms of abstract syntax cannot replace the
semantic specification need in the transformation process, since the syntax only
describes the structure of a model, while the semantics states the meaning of
it. Hence, in the short term, this specification complements the current informal
specification, by clarifying exactly what both the input and the output structure
of a transformation are.

By following this evolutionary strategy, the semantic description may then be
gradually more described using techniques such as Syntax-Directed Translation
Schemes (SDT)[1] or different forms of operational semantics. However, as earlier
described, this is not straight forward when considering the whole Modelica
language. The main purposes of including abstract syntax definitions in the
specification can be summarized to be:

1. Specifying Valid Input. Increase the clarity of what valid Modelica actu-
ally is, i.e, to make sure that different tools reject the same models.

2. Specifying Expected Output. Remove confusion of what the actual out-
come of executing a Modelica model is.

3. Promoting Language Simplification. The Modelica language has been
identified to be sometimes more complicated than necessary (e.g., relations
between the general class and restricted classes). An abstract syntax for-
mulation can be used as a guidance tool for identifying the most useful
reformulations needed.

Part of the first item is already specified using the concrete grammar. To increase
the level of details that can be specified of the abstract syntax, we will later in the
paper suggest an informal approach to include context-sensitive information in
the abstract grammar specification. This rules out parts of the informal semantics
used for rejecting invalid models. However, great parts of the rejecting semantics
must still be described using another semantic specification form.

In the following sections, we will gradually introduce more motivations and
descriptions of the abstract syntax approach. Section 2 gives an overview of
different aspects of specifying a language specification in the context of Modelica.
The discussion on different specification alternatives and aspects forms the basis
for Section 3, which more concretely elaborates on our proposal. Finally, in
Section 4 concluding remarks are stated and future work is outlined.

115

2 Specifying the Modelica Specification

Defining a new language from scratch with an unambiguous and understand-
able language specification is a difficult and time consuming task. Developing
and enhancing a language over many years and still being able to keep the
language backwards compatible and the specification clear, is perhaps an even
more challenging mission. In the previous section, we described this problem
with the current specification, motivated the need for improvement, and briefly
introduced a proposed strategy. In the beginning of this section, we will focus on
the question what should actually be specified in the Modelica specification. At
the end of the section, we will discuss how this specification can be achieved by
surveying some different specification approaches and compare how they relate
to the abstract syntax approach.

At a high level, the syntax and semantics of Modelica can be divided into
two main aspects:

– Transformation, i.e., the process of transforming a Modelica source code
model into a well defined result. Depending on the purpose, the result can
either be an intermediate form of a Hybrid Differential Algebraic Equations
(Hybrid DAE), or the final simulation result.

– Rejection, i.e., rules describing what a valid Modelica model actually is.
These rules should unambiguously describe when a tool should reject the
input model as invalid.

Both these aspects are important for a clear-cut result, so that tool vendors can
create compatible tools.

2.1 Transformation Aspects - What is Actually the Result of an
Execution?

In the introduction section of the Modelica specification 2.2 [20], it is stated
that the scope of the specification is to define the semantics of the translation
to a flat Hybrid DAE and that it does not define the result of a simulation. A
mathematical notation of the hybrid DAE is given, but no precise and complete
output is defined.

However, many constructs given in the specification are not handled during
this translation to a Hybrid DAE. Hence, the semantics of these constructs (e.g.,
when-equations, algorithm sections), are implicitly defined, even if the specifica-
tion states that this should not be the case.

So, the questions arise: what is actually the transformation process? What is
the expected result of the execution? We would argue that the answer to these
questions would differ depending on who you ask, since the current specifica-
tion is open for interpretation. In this subsection, we give our view of a typical
Modelica transformation process.

Recall Fig. 1, where the high-level view of a typical Modelica compilation
and simulation process is outlined. The translation process is divided into three
sub-processes, each having an artifact as input and output.

116

Elaboration. The elaboration process (also called instantiation and sometimes
flattening) takes as input a source code Modelica model and transforms it into a
Hybrid DAE. This is the main part described in the Modelica specification, which
includes among other things parsing, type checking, redeclarations, connection
elaboration, and generation of equations. The output is the Hybrid DAE, which
includes items such as equations, function calls, algorithm sections, declaration
of variables etc.

Equation Transformation and Code Generation The Hybrid DAE is sim-
plified and transformed (index reduction, generation of Block Lower Triangular
form (BLT)). Finally, target code is generated (typically C-code), which is linked
together with a numerical solver, such as DASSL[23].

Simulation The final transformation step is basically running the executable,
where the actual simulation takes place. During this step, numerical integration
of the continuous system and discrete event handling occurs.

Static vs. Dynamic. In the example above, it was assumed that the process
was compiled and not interpreted. This is not a specification requirement, even
if it is common that tools are implemented as compilers. The definitions of sta-
tic and dynamic semantics are often confusing in relation to compile-time and
simulation-time. Some people will argue that the dynamic semantics is only the
simulation sub-process and that the elaboration and equation transformation as
well as the code generation phases are the static semantics. If the tool is imple-
mented as an interpreter, the distinction becomes less clear. In such a case, it
is natural to view all three processes as the dynamic semantics. Even if this is
only a matter of definitions, it becomes significantly important when reasoning
about type checking and separate compilation.

From the discussion above, it is clear that we need to have a precise definition
of the input and the output of the elaboration process. Whether the two last
sub-processes should be part of the specification is an open design issue, but
it is obviously important that the decision is made if it should be completely
included or removed.

2.2 Rejection Aspects - What is actually a Valid Modelica Model?

In the current specification, it is hard to interpret what valid Modelica input
is, i.e., it is difficult for a tool implementor to know which models that should
be rejected as invalid Modelica. A restrictive abstract syntax definition can help
clarifying several issues.

Besides specifying the translation semantics of a model, a language specifica-
tion typically describes which models that should be treated as valid, and which

117

should not. By an invalid model we mean an transformation that should result
in an error report by the tool. In order for different tool vendors to be able to
state that exactly the same models are invalid, when and how to detect model
faults must be clearly and precisely described in the language specification. Un-
fortunately, this is not as easy as it might seem.

Basically, rules in a specification for stating a valid model can be specified
by using one of the following strategies, or a combination of both:

– Specify rules that indicate valid models. All models that do not fit to these
rules are assumed to be invalid.

– Assume that all models are valid. Explicitly state exceptions where models
are not valid.

The current Modelica specification mostly follows the latter approach. Here the
concrete syntax constrains the set of legal models at a syntactic level. Then,
informal rules given in natural language together with concrete examples state
when a model can be legal or illegal.

The problem with this approach is that it is very hard for a tool vendor to
be sure that it is compliant with the specification.

Time of checking. Detecting that a model is invalid can take place at different
points in time during the compilation and simulation phase. Even if this can
be regarded as a tool issue and not a language specification detail, the checking
time have great implications on the tools ability to guarantee detection of invalid
models.

Fig. 2 outlines a simplified view of the earlier described compilation and simu-
lation process, where sub-processes of equation-transformation, code generation
and simulation are combined into one transformation step.

Fig. 2. Possible checking-time during the process

The figure shows five (T1 - T5) conceptual points in time where the checking
and rejection of models can take place. Starting from the end, T5 illustrates the
final step of checking that the simulation result data is correct according to some
requirements. This checking can normally not be conducted by a tool, but only
by humans who have the domain knowledge.

The checking at point T4 takes place during simulation of the model. This is
what many would refer to as dynamic checking, since it is performed during run-
time. Errors which can occur here are for example numerical singularities after
events or array out-of-bound errors. Since Modelica does not have an exception

118

handling mechanism, it is implicitly assumed that the tool exits with an error
statement. Checking point T3 is performed after the elaboration phase. This can
for example concern the control that the number of equations equals the number
of unknowns.

Even if it is not stated in the Modelica specification, T2 is our interpretation
of the specification where the type checking takes place. Here, the naming of
this kind of checking is often a source of confusion. If the elaboration phase
is regarded as the static semantics, some people call this static type checking.
However, since the elaboration phase is the major part of the semantics described
in the specification, and it involves complex transformation semantics, this can
be viewed as something dynamic from an interpretive semantics point of view,
or as something static from a translational semantics point of view. Using an
interpretive semantics style, T2 would involve dynamic type checking.

Following this argumentation, then T1 would represent static type checking,
i.e., the types in the language are checked before elaboration. This reasoning is
analogous to dynamic checking in languages such as PHP and Common LISP,
compared to static type checking in Haskell, Standard ML, or Java. Even if the
Modelica specification does not currently support this kind of static checking, it
has a major impact on the ability to detect and isolate for example over- and
under-constrained systems of equations[3] or to enable separate compilation.

2.3 Specification Approaches - How can we state what it’s all
about?

When it is clear what to specify, the next obvious question is how to specify it.
There are several specification approaches, and we have briefly mentioned some
of them earlier in this paper.

As evaluation criteria, it is natural to use the specification goals of under-
standability2 and unambiguity. Furthermore, it is also of interest to estimate the
expressiveness of the approach, i.e., how much of the intended specification task
can be covered by the approach.

In the following table, a number of possible specification approaches are
listed, with our judgements of the evaluation criteria.
A natural language specification can be understandable and expressive, depend-
ing on the size and quality of the text, but easily leads as we have discussed earlier
to ambiguous specifications. Using a formal type system together with formal
semantics [24] is here seen as having low understandability, since it requires high
technical training. It is however very precise and fairly expressive.

The expressiveness of the abstract syntax is stated as higher than the concrete
syntax, since we can introduce context dependent information in the grammar
using meta-variables. An example of this will be given in the next section.

2 Understandability is of course a very subjective measurement. In this context, we
have chosen to also include the level of needed knowledge to understand the concept,
i.e., a concept requiring an extensive computer science or mathematical background
results in lower understandability rating.

119

Approach Understandability Expressiveness Unambiguous

Natural language description High-Medium High Low
Formal semantics Low Medium High
Abstract Syntax Grammar Medium Medium High
Concrete Syntax Grammar Medium Low High
Test suite High High Low
Reference Implementation Low High High

Table 1. Possible specification approaches with estimated evaluation criteria.

We have also, for the sake of completeness, included related approaches such as
the use of a test suite and reference implementation. The approach to use a test
suite as a specification can be an interesting complement to abstract syntax and
informal semantics. However, it is very important to state which description that
has precedence if ambiguities are discovered. Finally, a reference implementation
can also be seen as a specification, even if it is hard to get an good overview and
reason about it.

3 An Abstract Syntax Specification Approach

In the following section we will go into more details about the proposal to use ab-
stract syntax as part of the Modelica specification. Initially, the different abstract
syntax representations are outlined in relation to the transformation process de-
scribed in Section 2.1, followed by a discussion about the specification and rep-
resentation of the syntax. Finally a small example of abstract syntax grammar
is given and discussed.

3.1 Specifying the Elaboration Process

An Abstract Syntax Tree (AST) can be seen as a specific instance of an abstract
syntax. Transformation processes inside an compiler can be defined as transfor-
mations from one intermediate representation to another. ASTs are a natural
form of intermediate representation.

Consider Fig. 3, where the elaboration process is shown with surrounding
ASTs. The first step in the process is the ordinary scanning and parsing step,

Fig. 3. Modelica’s compilation process divided into intermediate representations in the
form of abstract syntax trees (ASTs).

120

which is formally defined in the specification using lexical definitions and concrete
syntax definitions using Extended BNF.

Complete AST (C-AST). This step transforms into the first tree called Com-
plete AST (C-AST), which is a direct mapping of the concrete syntax. Although
this is a natural step in a compiler implementation, it is of minor interest from
a specification perspective.

Simplified AST (S-AST). From the C-AST, a simplification transformation
translates the C-AST into a simplified form called Simplified AST (S-AST). This
transformation’s goals are:

– Desugaring : The process of removing so called syntactic sugar, which is a
convenient syntactic extension for the modeling engineer, but with no direct
implication on the semantics. Example of such desugaring of a model is to
collect all equation sections into one list, since the Modelica syntax allows
several algorithm and equation sections to be defined in a model.

– Canonical Transformations Minor transformations and operations that help
the S-AST to be a canonical form which is more suitable as input to the
elaboration process. For example assigning correct prefixes to subelements
(e.g., Section 3.2.2.1 in [20]).

– Checking model validity. One of the purposes with S-AST is that it is more
restrictive than the C-AST. Hence, some C-AST are not valid S-AST. This
restriction gives the possibility to ensure certain model properties, which in
the current Modelica specification is described using informal natural lan-
guages. For example, which kind of restricted classes is the record class al-
lowed to contain as its elements?

The S-AST can be seen as a simplified internal language analogously to the bare
language of Standard ML[18]. However, initially, we do not see a similar short
and precise way of specifying the transformation from C-AST to S-AST, as the
transformation rules are given in the Standard ML specification.

Hybrid DAE AST (HDAE-AST). Besides S-AST, the output of the elabo-
ration phase called Hybrid DAE AST (HDAE-AST) is proposed to be specified
formally in the specification. The HDAE-AST must not just be a high-level
mathematical description of an Hybrid DAE, but an explicit syntax description
describing a complete specification of what the actual output of the elaboration
phase is. This does not only include equations and variables, but function def-
initions, algorithm sections, when-equations and when-statements. Even if this
information is possible to derive from the current specification, it would be a

121

great help for the reader to actually know what the output is, not just assume
it.

Note that our approach suggests that the language specification should ini-
tially include a precise description of the possible structures of the ASTs; spec-
ifying input and output to the transformation process. The semantics of the
transformation must still be described using another approach.

3.2 Specifying the Abstract Syntax

The specification of the syntax must be described using some kind of gram-
mar, or data type construct in a language such as in Haskell, Standard ML, or
MetaModelica [8].

The syntax can be specified using a context-free grammar, e.g. in Backus-
Naur Form (BNF). However, we propose a more abstract definition of a grammar,
where certain meta-variables range over names and identifiers. The notation has
to some extent similarities to and is inspired by the abstract syntax definition
of Featherweight Java[10].

For example, by stating that a meta variable Rr ranges over names (iden-
tifiers with possible dot-notation) referencing a record , we have introduced a
contextual dependency in the grammar. The grammar declaratively states the
requirement that this name must after lookup be a record, without stating how
the name lookup should be performed. The latter must of course also be de-
scribed in the specification, but in this way the different issues are separated.
Consequently, this grammar is not intended to be used directly by a parser gen-
erator tool such as Yacc, but as a high-level specification which is less open for
interpretation.

3.3 The Structure of an Abstract Syntax

Depending on the purpose and language for an abstract syntax, the structure of
the syntax itself can be very different.

When specifying a simple functional languages, it is common that the gram-
mar of the abstract syntax only has one non-terminal, namely a term [24]. Hence,
all evaluation semantics is performed on this node type only, and all terms can be
nested into each other. This gives a very expressive language, but the constrain-
ing rules ensuring the validity of an input program must be given in another
form. This form is normally a formal type system, describing allowed terms.

Another method is to describe the abstract syntax with many non-terminals;
more than needed for a production compiler. In for example the Modelica case,
the different restricted classes: model , block , connector , package , and
record would not be represented as one non-terminal class, but as different
non-terminals. This structure would be more verbose, but also give the possibil-
ity of more precisely describing relations between restricted classes.

Somewhere inbetween those two extremes is for example the SCODErepresen-
tation used in the earlier RML specification[14] and the current OpenModelica
implementation.

122

connector ::= Connector(

{Extends(Cr conModification) }
{DeclCon(modifiability outinner Cd connector) }
{DeclRec(modifiability outinner Rd record) }
{CompCon(conconstraint Cr cd conModification) }
{CompRec(conconstraint Rr rd recModification) }
{CompInt(conconstraint xd) }
{CompReal(conconstraint flowprefix yd) }
)

access ::= Public | Protected

modifiability ::= Replaceable | Final

outinner ::= Outer | Inner | OuterInner | NotOuterInner

conconstraint ::= Input | Output | InputOutput

flowprefix ::= Flow | NonFlow

Fig. 4. Example of a grammar for the connector non-terminal.

For the specification purpose, we suggest to use the most verbose alternative, i.e.
the second alternative using many non-terminals. The rational for this choice is
basically that this more restrictive form gives more information about what the
actual input and output of the elaboration processes are.

3.4 A Connector S-AST Example with Meta-Variables

To give a concrete example where a grammar for S-AST can improve the clar-
ity compared to the current informal specification, we take the restricted class
connector as an example. In the Modelica specification it is stated that for
a connector ”No equations are allowed in the definition or in any of its compo-
nents”. What does this mean? That no equations are allowed at all? Are declara-
tion equations allowed, for example Real x = 4 ? Obviously, it is not allowed
to have instances of models that contain equations, but is it allowed to have
models that do not contain equations? Is it only allowed to have connectors in-
side connectors, or can we also have records in connectors, since these are not
allowed to have equations either? These questions are not easy to answer with
the current specification, because it is open for interpretation.

Consider Fig. 4, where an example of the non-terminal for a connector is
listed using a variant of Extended BNF3. As usual, alternatives are seprated using

3 The following example grammar is not intended to exactly describe the current
Modelica specification. The aim is only to outline the principle of such grammar in
order to describe the abstract syntax approach.

123

the ’|’ symbol, and curly brackets ({. . . }) denote that the enclosing elements can
be repeated zero or more times.

The grammar is extended with a more abstract notation of metavariables,
which range over names or identifiers. Metavariables Cd and Rd range over iden-
tifiers declaring a new connector respectively record; Cr and Rr range over con-
nector and record names referencing an already declared connector or record.
Metavariables cd, rd, xd, and yd range over component identifiers having the
type of connector, record, Integer, and Real. All bold strings denote a node in
the AST. If the AST is given in a concrete textual representation, these keywords
are used when performing a pre-order traversal of the tree.

In the example, connector can hold zero or many extends nodes, referencing
the meta-variable Cr, denoting all names that reference a declared connector.
Hence, using this meta-variable notation, this rule states that a connector is only
allowed to inherit from another connector.

Furthermore, the example shows that a connector is allowed to have two
kinds of local classes: Connector and Record (nodes DeclCon and DeclRec).
CompConand CompRec state that a connector can have both connector and
record components.

For each of the different kinds of elements, it is stated exactly which prefixes
that are allowed. This description is more restrictive than the concrete syntax,
which basically allows any prefix. In the current specification these restrictions
are stated in natural languages, spread out over the specification. For example,
on one page it is stated ”Variables declared with the flow type prefix shall be a
subtype of Real”. Such a text is superfluous when the grammar for S-AST is
specified (note that flowprefix is only available in the CompReal node).

3.5 What can and should be specified by the abstract syntax?

In the previous sections we have briefly outlined how an abstract syntax grammar
can specify the structure of input and output of a transformation, but also as a
method for specifying context-dependent information about rejection of illegal
models. The question then arise: what should be specified using this grammar
approach, and what should be addressed with other semantic rules?

The proposed grammar approach with meta-variables is declarative in the
sense that it does not state information about how the rejecting rules should
be implemented. Hence, it is less formal compared to e.g. a formal type system.
However, it is still more precise than giving the rules using natural languages.

We believe that as long as the alternative semantic description is using nat-
ural languages, the abstract syntax approach can both be easier to understand
and less ambiguous. Furthermore, if it can be complemented with aspects which
are more precisely described, e.g. the lookup-process, it can clarify the specifi-
cation even more. However, several parts of the rejection aspect, e.g. subtyping
rules, cannot be described with the abstract syntax grammar. The other aspect
of transformation semantics can of course not be specified with this approach.

The concept is still at a very early stage, and further investigations need to
be performed, to see if this approach can cover the current Modelica language.

124

4 Conclusion

In this paper we have given an overview of different aspects of defining a modeling
language; using the Modelica language’s syntax and semantics.

Furthermore, we have argued that an approach which uses abstract syntax
to describe both the input to Modelica’s elaboration process (S-AST) as well as
its output (HDAE-AST) can both clarify the transformation process as well as
the rejection of invalid models. Furthermore, while developing the language, this
approach promotes the focus on semantic issues, to avoid getting trapped in the
common syntax pitfall.

The obvious next step for future work would be to design and implement the
S-AST and HDAE-AST, and to verify that the ASTs meets most of the current
code base publicly available.

We have described this as an evolutionary approach, which is intended to be
practical in the short-term. However, in the long term, we still think that it is
important that a formal semantics is given for the Modelica language.

Acknowledgments

We would like to thank the anonymous reviewers for their suggestions and Johan
Åkesson and Åsa Broman for useful comments and feedback.

This research work was funded by CUGS (the Swedish National Graduate
School in Computer Science), by SSF under the VISIMOD project, and by Vin-
nova under the NETPROG Safe and Secure Modeling and Simulation on the
GRID project.

References

1. Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers:
Principles, Techniques, and Tools. Addison-Wesley, 2nd edition.

2. David Broman, Peter Fritzson, and Sébastien Furic. Types in the Modelica Lan-
guage. In Proceedings of the Fifth International Modelica Conference, Vienna,
Austria, 2006.

3. David Broman, Kaj Nyström, and Peter Fritzson. Determining Over- and Under-
Constrained Systems of Equations using Structural Constraint Delta. In Pro-
ceedings of the Fifth International Conference on Generative Programming and
Component Engineering (GPCE’06), Portland, Oregon, USA, 2006. ACM Press.

4. Dynasim. Dymola - Dynamic Modeling Laboratory with Modelica (Dynasim AB).
http://www.dynasim.se/ [Last accessed: 22 June 2007].

5. Christoph Nytsch-Geusen et. al. MOSILAB: Development of a Modelica based
generic simulation tool supporting model structural dynamics. In Proceedings of
the 4th International Modelica Conference, Hamburg, Germany, 2005.

6. Peter Fritzson. Developing Efficient Language Implementations from Structural
and Natural Semantics - Draft Version 0.97. 2006. Book draft available from:
http://www.ida.liu.se/~pelab/rml/ .

125

7. Peter Fritzson, Peter Aronsson, Adrian Pop, H̊akan Lundvall, Kaj Nyström, Levon
Saldamli, David Broman, and Anders Sandholm. OpenModelica - A Free Open-
Source Environment for System Modeling, Simulation, and Teaching. In IEEE
International Symposium on Computer-Aided Control Systems Design, Munich,
Germany, 2006.

8. Peter Fritzson, Adrian Pop, and Peter Aronsson. Towards Comprehensive Meta-
Modeling and Meta-Programming Capabilities in Modelica. In Proceedings of the
4th International Modelica Conference, Hamburg, Germany, 2005.

9. James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language Spec-
ification, 3rd Edition. Prentice Hall, 2005.

10. Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java:
a minimal core calculus for Java and GJ. ACM Trans. Program. Lang. Syst.,
23(3):396–450, 2001.

11. ISO/IEC. ISO/ IEC 14882 : Programming language C++. ANSI, New York, USA,
1998.

12. ITI. SimulationX. http://www.iti.de/ [Last accessed: 22 June 2007].
13. Gilles Kahn. Natural semantics. In 4th Annual Symposium on Theoretical Aspects

of Computer Sciences on STACS 87, pages 22–39, London, UK, 1987. Springer-
Verlag.

14. David K̊agedal. A Natural Semantics specification for the equation-based modeling
languge Modelica. Master’s thesis, Linköping University, 1998.

15. David K̊agedal and Peter Fritzson. Generating a Modelica Compiler from Nat-
ural Semantics Specifications. In Proceedings of the Summer Computer Simulation
Conference, 1998.

16. MathCore. MathModelica System Designer: Model based design of
multi-engineering systems. http://www.mathcore.com/products/
mathmodelica/ [Last accessed: 8 March 2007].

17. Jakob Mauss. Modelica Instance Creation. In Proceedings of the 4th International
Modelica Conference, Hamburg, Germany, 2005.

18. Robin Milner, Mads Tofte, Robert Harper, and David MacQuee. The Definition
of Standard ML - Revised. The MIT Press, 1997.

19. Modelica Association. Modelica - A Unified Object-Oriented Language for Physical
Systems Modeling - Version 1, September 1997. Available from: http://www.
modelica.org .

20. Modelica Association. Modelica - A Unified Object-Oriented Language for Physical
Systems Modeling - Language Specification Version 2.2, February 2005. Available
from: http://www.modelica.org .

21. OpenModelica. Project. http://www.ida.liu.se/~pelab/modelica/
OpenModelica.html [Last accessed: 22 June 2007].

22. Mikael Pettersson. Compiling Natural Semantics. PhD thesis, Linköping Univer-
sity, 1995.

23. Linda R. Petzold. A Description of DASSL: A Differential/Algebraic System Solver.
In IMACS Trans. on Scientific Comp., 10th IMACS World Congress on Systems
Simulation and Scientific Comp., Montreal, Canada, 1982.

24. Benjamin C. Pierce. Types and Programming Languages. The MIT Press, 2002.
25. Gordon D. Plotkin. A Structural Approach to Operational Semantics. Technical

report, Dept. of Computer Science, University of Aarhus, 1981.
26. Andrew K. Wright and Matthias Felleisen. A Syntactic Approach to Type Sound-

ness. Information and Computation, 115(1):38–94, 1994.

126

	Berlin, Germany, July 30, 2007, conjunction with ECOOP
	Table of Contents
	Preface
	Program Chairmen
	Program Committee
	Organizing Committee

