
Hybrid Cosimulation: It’s About Time
MODPROD 2016, Linköping

David Broman
KTH and UC Berkeley

Contributors of the presented work
•  David Broman, KTH and UC Berkeley
•  Christopher Brooks, UC Berkeley
•  Fabio Cremona, UC Berkeley
•  Lev Greenberg, IBM Research

•  Marten Lohstroh, UC Berkeley
•  Edward A. Lee, UC Berkeley
•  Michael Masin, IBM Research
•  Stavros Tripakis, UC Berkeley and Aalto
•  Michael Wetter, Lawrence Berkeley N. Lab

Part I
Functional Mock-up Interface
(FMI)

David Broman
dbro@kth.se

2

Part II
Hybrid Cosimulation with
Superdense Integer Time

Agenda

Part II

Hybrid Cosimulation with
Superdense Integer Time

Part I
Functional Mockup

Interface (FMI)

Part I
Functional Mock-up Interface
(FMI)

David Broman
dbro@kth.se

3

Part II
Hybrid Cosimulation with
Superdense Integer Time

Part I
Functional Mock-up Interface

(FMI)

Part I
Functional Mock-up Interface
(FMI)

David Broman
dbro@kth.se

4

Part II
Hybrid Cosimulation with
Superdense Integer Time

What is FMI?

FMI

Functional Mock-up Interface (FMI) is a standard, not a tool.

Initiative from Daimler AG. Developed in a EU project called
MODELISAR. Now maintained by Modelica Association.

Current version is 2.0. Supported by more than 50 tools
(open source and commercial).

FMU

Functional Mock-Up Unit (FMU) is a model instance that can
be used in a simulation.

An FMU is a zip file containing:
-  An XML file describing static info (e.g., port names)
-  C-files and dynamically loadable libraries implement the behavior.

Master
Algorithm (MA) Master algorithms are not part of the standard.

It is “up to the tool” to implement them.

The MA orchestrates the execution of the FMUs.

Used for simulating the dynamics of complex
heterogeneous systems.

Part I
Functional Mock-up Interface
(FMI)

David Broman
dbro@kth.se

5

Part II
Hybrid Cosimulation with
Superdense Integer Time

Model Exchange or Co-Simulation?

Simulation tool A Exports

FMU for model exchange (slave)

XML
Description

Equations/
Functions

Simulation tool B
(master)

Imports

FMI
API

Solver

FMI for Co-Simulation

FMI for Model Exchange

Simulation tool A
FMU for co-simulation (slave)

Exports
XML

Description
Equations/
Functions Solver

Simulation tool B
(master)

Imports

FMI
API

This talk concerns FMI for co-simulation

Part I
Functional Mock-up Interface
(FMI)

David Broman
dbro@kth.se

6

Part II
Hybrid Cosimulation with
Superdense Integer Time

FMI 2.0 for co-simulation
cannot model reactive systems

3.2 The Need for Rollback
A main di↵erence between FMI 1.0 and 2.0 is that FMI 2.0
includes functions to save and restore the state of an FMU.
However, implementation of these functions by an FMU is
optional, not mandatory [4, 16]. Saving and restoring the
state of an FMU can be used to implement a rollback mech-
anism, which is often needed as we now explain.

Consider the example shown in Figure 5. The figure shows
two FMUs connected in series. Consider a MA that co-
simulates these two FMUs. To advance time in the simu-
lation, the master needs to call fmiDoStep on both FMUs.
The MA needs to pick an order to do so; it must either call
fmiDoStep first on FMU1 and then FMU2, or vice-versa. In
both cases, there is the possibility that the FMU on which
fmiDoStep is called first accepts the proposed communica-
tion step size whereas the FMU on which fmiDoStep is called
last rejects it. This is problematic as it requires to roll back
the FMU which accepted the step.

Figure 5: Two FMUs connected in series.

To make the scenario more concrete, suppose that the MA
calls first fmiDoStep on FMU1, passing a communication
step size h. It means that the MA “asks” whether the FMU
can advance its local time (and correspondingly also evolve
its state) from the current time t to t+h. If the FMU accepts
the step, the implied semantics is that the state of FMU1
has now evolved to a state at future time t+ h. If the FMU
rejects the step, the implied semantics is that the state of
FMU1 is still the one at time t (it remains unchanged). A
third possibility is that the FMU manages to make partial
progress and advance to some time t+ h

0 with h

0
< h.

Suppose for the sake of this example that FMU1 accepts
h. Next, the MA calls fmiDoStep on FMU2, with the same
communication step size, h. Suppose that FMU2 rejects the
step. We are now at a situation where the state of FMU1
is at time t + h, while the state of FMU2 is at time t. To
proceed with the simulation, the master needs to choose a
new (smaller) communication step size, reset the state of
FMU1 back to time t, and repeat with the new step size.

If FMU2 makes partial progress to time t+ h

0, then time
has advanced to t+h for FMU1 and to t+h

0 for FMU2. If the
MA chooses t+h

0 as the next communication point, and then
calls fmiGetXXX to retrieve the output of FMU1, FMU1 will
likely respond with the wrong output value, corresponding
to a future time point. Again, resetting the state (“rolling
back”) to time t is necessary. Note that this is true even in
models without feedback, as the one shown in Figure 5.
Rolling back to time t can be achieved as follows. Before

calling fmiDoStep, the MA uses fmiGetFMUstate to copy the
state3 of both FMU1 and FMU2 at time t. It then attempts
to advance time by h. If this is accepted by both FMUs,
the MA has succeeded. Otherwise, if say FMU2 rejects the
step, then the MA can call fmiSetFMUstate on FMU2 to
reset it back to its (copied) state at time t. However, the
implementation of fmiGetFMUstate and fmiSetFMUstate is
left optional in the FMI standard.

3In fact, the copying is done by the FMU itself which returns
a pointer to the new copy of its state.

Moreover, it may appear that if any FMU in a model
can reject a step size, then all FMUs in the model need to
support rollback. Indeed, a first algorithm that we present
in Section 5 (Algorithm 2), operates like this. We will also
show, however, that with careful design and with a small
extension to the standard, a model can contain some FMUs
that do not support rollback (Algorithm 3).

4. FMI FORMALIZATION
In this section we formalize a core subset of FMI and propose
an explicit contract between FMUs and MAs.

4.1 Function Interface
The FMI standard describes the signatures of the C func-
tions together with informal descriptions of their meaning.
In this paper, we propose a formalization of FMI, which al-
lows to prove properties of MAs, in particular determinacy
and maximal progress (see Section 5). Towards this goal,
we formalize the core subset of the FMI 2.0 specification,
leaving out parts that are not relevant for the discussion.
The formalization is summarized in Figure 6. It consists of

a set of notations and the signatures of four (mathematical)
functions, each of which corresponds directly to a C pro-
cedure defined in the FMI standard. For instance, doStep
corresponds to fmiDoStep, get corresponds to fmiGetXXX,
and so on. For simplicity, we do not include all parameters
provided in the C functions and limit the signatures to only
essential parameters. Before giving an overview of the func-
tions, let us explain further the notation used in Figure 6.

Set of FMU instances in a model C

FMU instance identifier c 2 C

Set of state valuations for instance c S

c

Set of input port variables for instance c U

c

Set of output port variables for instance c Y

c

Set of values that a variable may take on V
I/O dependency for instance c D

c

✓ U

c

⇥ Y

c

Set of all input variables in a model U =
S

c2C

U

c

Set of all output variables in a model Y =
S

c2C

Y

c

Set of all I/O dependencies D =
S

c2C

D

c

Port mapping P : U ! Y

Functions:

init
c

: R�0 ! S

c

set
c

: S
c

⇥ U

c

⇥ V ! S

c

get
c

: S
c

⇥ Y

c

! V
doStep

c

: S
c

⇥ R�0 ! S

c

⇥ R�0

Figure 6: Formalized model of FMI and connections
between FMU instances.

C denotes the set of all FMU instances that are coordinated
by (the same) MA.4 One such instance is an element c 2 C.
Given an instance c, S

c

denotes the set of all possible states
that c may be in, U

c

denotes the set of input port variables
of c, and Y

c

denotes the set of output port variables of c.
At this point we ignore typing issues, and assume a single
universe of values for all variables, denoted V.
4Note that an FMU may be instantiated more than once in a
co-simulation environment, meaning that di↵erent instances
of the same FMU have separate internal state variables, but
share the implementation of the FMI functions and solver.

3.2 The Need for Rollback
A main di↵erence between FMI 1.0 and 2.0 is that FMI 2.0
includes functions to save and restore the state of an FMU.
However, implementation of these functions by an FMU is
optional, not mandatory [4, 16]. Saving and restoring the
state of an FMU can be used to implement a rollback mech-
anism, which is often needed as we now explain.

Consider the example shown in Figure 5. The figure shows
two FMUs connected in series. Consider a MA that co-
simulates these two FMUs. To advance time in the simu-
lation, the master needs to call fmiDoStep on both FMUs.
The MA needs to pick an order to do so; it must either call
fmiDoStep first on FMU1 and then FMU2, or vice-versa. In
both cases, there is the possibility that the FMU on which
fmiDoStep is called first accepts the proposed communica-
tion step size whereas the FMU on which fmiDoStep is called
last rejects it. This is problematic as it requires to roll back
the FMU which accepted the step.

Figure 5: Two FMUs connected in series.

To make the scenario more concrete, suppose that the MA
calls first fmiDoStep on FMU1, passing a communication
step size h. It means that the MA “asks” whether the FMU
can advance its local time (and correspondingly also evolve
its state) from the current time t to t+h. If the FMU accepts
the step, the implied semantics is that the state of FMU1
has now evolved to a state at future time t+ h. If the FMU
rejects the step, the implied semantics is that the state of
FMU1 is still the one at time t (it remains unchanged). A
third possibility is that the FMU manages to make partial
progress and advance to some time t+ h

0 with h

0
< h.

Suppose for the sake of this example that FMU1 accepts
h. Next, the MA calls fmiDoStep on FMU2, with the same
communication step size, h. Suppose that FMU2 rejects the
step. We are now at a situation where the state of FMU1
is at time t + h, while the state of FMU2 is at time t. To
proceed with the simulation, the master needs to choose a
new (smaller) communication step size, reset the state of
FMU1 back to time t, and repeat with the new step size.

If FMU2 makes partial progress to time t+ h

0, then time
has advanced to t+h for FMU1 and to t+h

0 for FMU2. If the
MA chooses t+h

0 as the next communication point, and then
calls fmiGetXXX to retrieve the output of FMU1, FMU1 will
likely respond with the wrong output value, corresponding
to a future time point. Again, resetting the state (“rolling
back”) to time t is necessary. Note that this is true even in
models without feedback, as the one shown in Figure 5.
Rolling back to time t can be achieved as follows. Before

calling fmiDoStep, the MA uses fmiGetFMUstate to copy the
state3 of both FMU1 and FMU2 at time t. It then attempts
to advance time by h. If this is accepted by both FMUs,
the MA has succeeded. Otherwise, if say FMU2 rejects the
step, then the MA can call fmiSetFMUstate on FMU2 to
reset it back to its (copied) state at time t. However, the
implementation of fmiGetFMUstate and fmiSetFMUstate is
left optional in the FMI standard.

3In fact, the copying is done by the FMU itself which returns
a pointer to the new copy of its state.

Moreover, it may appear that if any FMU in a model
can reject a step size, then all FMUs in the model need to
support rollback. Indeed, a first algorithm that we present
in Section 5 (Algorithm 2), operates like this. We will also
show, however, that with careful design and with a small
extension to the standard, a model can contain some FMUs
that do not support rollback (Algorithm 3).

4. FMI FORMALIZATION
In this section we formalize a core subset of FMI and propose
an explicit contract between FMUs and MAs.

4.1 Function Interface
The FMI standard describes the signatures of the C func-
tions together with informal descriptions of their meaning.
In this paper, we propose a formalization of FMI, which al-
lows to prove properties of MAs, in particular determinacy
and maximal progress (see Section 5). Towards this goal,
we formalize the core subset of the FMI 2.0 specification,
leaving out parts that are not relevant for the discussion.
The formalization is summarized in Figure 6. It consists of

a set of notations and the signatures of four (mathematical)
functions, each of which corresponds directly to a C pro-
cedure defined in the FMI standard. For instance, doStep
corresponds to fmiDoStep, get corresponds to fmiGetXXX,
and so on. For simplicity, we do not include all parameters
provided in the C functions and limit the signatures to only
essential parameters. Before giving an overview of the func-
tions, let us explain further the notation used in Figure 6.

Set of FMU instances in a model C

FMU instance identifier c 2 C

Set of state valuations for instance c S

c

Set of input port variables for instance c U

c

Set of output port variables for instance c Y

c

Set of values that a variable may take on V
I/O dependency for instance c D

c

✓ U

c

⇥ Y

c

Set of all input variables in a model U =
S

c2C

U

c

Set of all output variables in a model Y =
S

c2C

Y

c

Set of all I/O dependencies D =
S

c2C

D

c

Port mapping P : U ! Y

Functions:

init
c

: R�0 ! S

c

set
c

: S
c

⇥ U

c

⇥ V ! S

c

get
c

: S
c

⇥ Y

c

! V
doStep

c

: S
c

⇥ R�0 ! S

c

⇥ R�0

Figure 6: Formalized model of FMI and connections
between FMU instances.

C denotes the set of all FMU instances that are coordinated
by (the same) MA.4 One such instance is an element c 2 C.
Given an instance c, S

c

denotes the set of all possible states
that c may be in, U

c

denotes the set of input port variables
of c, and Y

c

denotes the set of output port variables of c.
At this point we ignore typing issues, and assume a single
universe of values for all variables, denoted V.
4Note that an FMU may be instantiated more than once in a
co-simulation environment, meaning that di↵erent instances
of the same FMU have separate internal state variables, but
share the implementation of the FMI functions and solver.

3.2 The Need for Rollback
A main di↵erence between FMI 1.0 and 2.0 is that FMI 2.0
includes functions to save and restore the state of an FMU.
However, implementation of these functions by an FMU is
optional, not mandatory [4, 16]. Saving and restoring the
state of an FMU can be used to implement a rollback mech-
anism, which is often needed as we now explain.

Consider the example shown in Figure 5. The figure shows
two FMUs connected in series. Consider a MA that co-
simulates these two FMUs. To advance time in the simu-
lation, the master needs to call fmiDoStep on both FMUs.
The MA needs to pick an order to do so; it must either call
fmiDoStep first on FMU1 and then FMU2, or vice-versa. In
both cases, there is the possibility that the FMU on which
fmiDoStep is called first accepts the proposed communica-
tion step size whereas the FMU on which fmiDoStep is called
last rejects it. This is problematic as it requires to roll back
the FMU which accepted the step.

Figure 5: Two FMUs connected in series.

To make the scenario more concrete, suppose that the MA
calls first fmiDoStep on FMU1, passing a communication
step size h. It means that the MA “asks” whether the FMU
can advance its local time (and correspondingly also evolve
its state) from the current time t to t+h. If the FMU accepts
the step, the implied semantics is that the state of FMU1
has now evolved to a state at future time t+ h. If the FMU
rejects the step, the implied semantics is that the state of
FMU1 is still the one at time t (it remains unchanged). A
third possibility is that the FMU manages to make partial
progress and advance to some time t+ h

0 with h

0
< h.

Suppose for the sake of this example that FMU1 accepts
h. Next, the MA calls fmiDoStep on FMU2, with the same
communication step size, h. Suppose that FMU2 rejects the
step. We are now at a situation where the state of FMU1
is at time t + h, while the state of FMU2 is at time t. To
proceed with the simulation, the master needs to choose a
new (smaller) communication step size, reset the state of
FMU1 back to time t, and repeat with the new step size.

If FMU2 makes partial progress to time t+ h

0, then time
has advanced to t+h for FMU1 and to t+h

0 for FMU2. If the
MA chooses t+h

0 as the next communication point, and then
calls fmiGetXXX to retrieve the output of FMU1, FMU1 will
likely respond with the wrong output value, corresponding
to a future time point. Again, resetting the state (“rolling
back”) to time t is necessary. Note that this is true even in
models without feedback, as the one shown in Figure 5.
Rolling back to time t can be achieved as follows. Before

calling fmiDoStep, the MA uses fmiGetFMUstate to copy the
state3 of both FMU1 and FMU2 at time t. It then attempts
to advance time by h. If this is accepted by both FMUs,
the MA has succeeded. Otherwise, if say FMU2 rejects the
step, then the MA can call fmiSetFMUstate on FMU2 to
reset it back to its (copied) state at time t. However, the
implementation of fmiGetFMUstate and fmiSetFMUstate is
left optional in the FMI standard.

3In fact, the copying is done by the FMU itself which returns
a pointer to the new copy of its state.

Moreover, it may appear that if any FMU in a model
can reject a step size, then all FMUs in the model need to
support rollback. Indeed, a first algorithm that we present
in Section 5 (Algorithm 2), operates like this. We will also
show, however, that with careful design and with a small
extension to the standard, a model can contain some FMUs
that do not support rollback (Algorithm 3).

4. FMI FORMALIZATION
In this section we formalize a core subset of FMI and propose
an explicit contract between FMUs and MAs.

4.1 Function Interface
The FMI standard describes the signatures of the C func-
tions together with informal descriptions of their meaning.
In this paper, we propose a formalization of FMI, which al-
lows to prove properties of MAs, in particular determinacy
and maximal progress (see Section 5). Towards this goal,
we formalize the core subset of the FMI 2.0 specification,
leaving out parts that are not relevant for the discussion.
The formalization is summarized in Figure 6. It consists of

a set of notations and the signatures of four (mathematical)
functions, each of which corresponds directly to a C pro-
cedure defined in the FMI standard. For instance, doStep
corresponds to fmiDoStep, get corresponds to fmiGetXXX,
and so on. For simplicity, we do not include all parameters
provided in the C functions and limit the signatures to only
essential parameters. Before giving an overview of the func-
tions, let us explain further the notation used in Figure 6.

Set of FMU instances in a model C

FMU instance identifier c 2 C

Set of state valuations for instance c S

c

Set of input port variables for instance c U

c

Set of output port variables for instance c Y

c

Set of values that a variable may take on V
I/O dependency for instance c D

c

✓ U

c

⇥ Y

c

Set of all input variables in a model U =
S

c2C

U

c

Set of all output variables in a model Y =
S

c2C

Y

c

Set of all I/O dependencies D =
S

c2C

D

c

Port mapping P : U ! Y

Functions:

init
c

: R�0 ! S

c

set
c

: S
c

⇥ U

c

⇥ V ! S

c

get
c

: S
c

⇥ Y

c

! V
doStep

c

: S
c

⇥ R�0 ! S

c

⇥ R�0

Figure 6: Formalized model of FMI and connections
between FMU instances.

C denotes the set of all FMU instances that are coordinated
by (the same) MA.4 One such instance is an element c 2 C.
Given an instance c, S

c

denotes the set of all possible states
that c may be in, U

c

denotes the set of input port variables
of c, and Y

c

denotes the set of output port variables of c.
At this point we ignore typing issues, and assume a single
universe of values for all variables, denoted V.
4Note that an FMU may be instantiated more than once in a
co-simulation environment, meaning that di↵erent instances
of the same FMU have separate internal state variables, but
share the implementation of the FMI functions and solver.

3.2 The Need for Rollback
A main di↵erence between FMI 1.0 and 2.0 is that FMI 2.0
includes functions to save and restore the state of an FMU.
However, implementation of these functions by an FMU is
optional, not mandatory [4, 16]. Saving and restoring the
state of an FMU can be used to implement a rollback mech-
anism, which is often needed as we now explain.

Consider the example shown in Figure 5. The figure shows
two FMUs connected in series. Consider a MA that co-
simulates these two FMUs. To advance time in the simu-
lation, the master needs to call fmiDoStep on both FMUs.
The MA needs to pick an order to do so; it must either call
fmiDoStep first on FMU1 and then FMU2, or vice-versa. In
both cases, there is the possibility that the FMU on which
fmiDoStep is called first accepts the proposed communica-
tion step size whereas the FMU on which fmiDoStep is called
last rejects it. This is problematic as it requires to roll back
the FMU which accepted the step.

Figure 5: Two FMUs connected in series.

To make the scenario more concrete, suppose that the MA
calls first fmiDoStep on FMU1, passing a communication
step size h. It means that the MA “asks” whether the FMU
can advance its local time (and correspondingly also evolve
its state) from the current time t to t+h. If the FMU accepts
the step, the implied semantics is that the state of FMU1
has now evolved to a state at future time t+ h. If the FMU
rejects the step, the implied semantics is that the state of
FMU1 is still the one at time t (it remains unchanged). A
third possibility is that the FMU manages to make partial
progress and advance to some time t+ h

0 with h

0
< h.

Suppose for the sake of this example that FMU1 accepts
h. Next, the MA calls fmiDoStep on FMU2, with the same
communication step size, h. Suppose that FMU2 rejects the
step. We are now at a situation where the state of FMU1
is at time t + h, while the state of FMU2 is at time t. To
proceed with the simulation, the master needs to choose a
new (smaller) communication step size, reset the state of
FMU1 back to time t, and repeat with the new step size.

If FMU2 makes partial progress to time t+ h

0, then time
has advanced to t+h for FMU1 and to t+h

0 for FMU2. If the
MA chooses t+h

0 as the next communication point, and then
calls fmiGetXXX to retrieve the output of FMU1, FMU1 will
likely respond with the wrong output value, corresponding
to a future time point. Again, resetting the state (“rolling
back”) to time t is necessary. Note that this is true even in
models without feedback, as the one shown in Figure 5.
Rolling back to time t can be achieved as follows. Before

calling fmiDoStep, the MA uses fmiGetFMUstate to copy the
state3 of both FMU1 and FMU2 at time t. It then attempts
to advance time by h. If this is accepted by both FMUs,
the MA has succeeded. Otherwise, if say FMU2 rejects the
step, then the MA can call fmiSetFMUstate on FMU2 to
reset it back to its (copied) state at time t. However, the
implementation of fmiGetFMUstate and fmiSetFMUstate is
left optional in the FMI standard.

3In fact, the copying is done by the FMU itself which returns
a pointer to the new copy of its state.

Moreover, it may appear that if any FMU in a model
can reject a step size, then all FMUs in the model need to
support rollback. Indeed, a first algorithm that we present
in Section 5 (Algorithm 2), operates like this. We will also
show, however, that with careful design and with a small
extension to the standard, a model can contain some FMUs
that do not support rollback (Algorithm 3).

4. FMI FORMALIZATION
In this section we formalize a core subset of FMI and propose
an explicit contract between FMUs and MAs.

4.1 Function Interface
The FMI standard describes the signatures of the C func-
tions together with informal descriptions of their meaning.
In this paper, we propose a formalization of FMI, which al-
lows to prove properties of MAs, in particular determinacy
and maximal progress (see Section 5). Towards this goal,
we formalize the core subset of the FMI 2.0 specification,
leaving out parts that are not relevant for the discussion.
The formalization is summarized in Figure 6. It consists of

a set of notations and the signatures of four (mathematical)
functions, each of which corresponds directly to a C pro-
cedure defined in the FMI standard. For instance, doStep
corresponds to fmiDoStep, get corresponds to fmiGetXXX,
and so on. For simplicity, we do not include all parameters
provided in the C functions and limit the signatures to only
essential parameters. Before giving an overview of the func-
tions, let us explain further the notation used in Figure 6.

Set of FMU instances in a model C

FMU instance identifier c 2 C

Set of state valuations for instance c S

c

Set of input port variables for instance c U

c

Set of output port variables for instance c Y

c

Set of values that a variable may take on V
I/O dependency for instance c D

c

✓ U

c

⇥ Y

c

Set of all input variables in a model U =
S

c2C

U

c

Set of all output variables in a model Y =
S

c2C

Y

c

Set of all I/O dependencies D =
S

c2C

D

c

Port mapping P : U ! Y

Functions:

init
c

: R�0 ! S

c

set
c

: S
c

⇥ U

c

⇥ V ! S

c

get
c

: S
c

⇥ Y

c

! V
doStep

c

: S
c

⇥ R�0 ! S

c

⇥ R�0

Figure 6: Formalized model of FMI and connections
between FMU instances.

C denotes the set of all FMU instances that are coordinated
by (the same) MA.4 One such instance is an element c 2 C.
Given an instance c, S

c

denotes the set of all possible states
that c may be in, U

c

denotes the set of input port variables
of c, and Y

c

denotes the set of output port variables of c.
At this point we ignore typing issues, and assume a single
universe of values for all variables, denoted V.
4Note that an FMU may be instantiated more than once in a
co-simulation environment, meaning that di↵erent instances
of the same FMU have separate internal state variables, but
share the implementation of the FMI functions and solver.

“There is the additional restriction in “slaveInitialized”
state that it is not allowed to call fmi2GetXXX
functions after fmi2SetXXX functions without an
fmi2DoStep call in between.”

(FMI standard 2.0, July 25, 2014, page 104)

"... communication step size (hc

i
).

The latter must be > 0.0”

(FMI standard 2.0, July 25, 2014, page 100)

Version 2.0 makes it impossible to implement a
component with zero latency
(e.g., cannot implement synchronous components).

There is an initiative now to
introduce a third kind of FMU:
FMI for hybrid co-simulation.

Determinate Composition of FMUs for Co-Simulation

⇤

David Broman

1,2
Christopher Brooks

1
Lev Greenberg

3
Edward A. Lee

1

Michael Masin

3
Stavros Tripakis

1
Michael Wetter

4

{broman,cxh,eal,stavros}@eecs.berkeley.edu, {levg,michaelm}@il.ibm.com, mwetter@lbl.gov

1University of California, Berkeley, USA 2Linköping University, Sweden
3IBM 4LBNL, Berkeley, CA, USA

ABSTRACT
In this paper, we explain how to achieve deterministic exe-
cution of FMUs (Functional Mockup Units) under the FMI
(Functional Mockup Interface) standard. In particular, we
focus on co-simulation, where an FMU either contains its
own internal simulation algorithm or serves as a gateway
to a simulation tool. We give conditions on the design of
FMUs and master algorithms (which orchestrate the execu-
tion of FMUs) to achieve deterministic co-simulation. We
show that with the current version of the standard, these
conditions demand capabilities from FMUs that are optional
in the standard and rarely provided by an FMU in prac-
tice. When FMUs lacking these required capabilities are
used to compose a model, many basic modeling capabil-
ities become unachievable, including simple discrete-event
simulation and variable-step-size numerical integration al-
gorithms. We propose a small extension to the standard
and a policy for designing FMUs that enables deterministic
execution for a much broader class of models. The extension
enables a master algorithm to query an FMU for the time
of events that are expected in the future. We show that a
model can be executed deterministically if all FMUs in the

⇤This work was supported in part by the iCyPhy Research
Center (Industrial Cyber-Physical Systems, supported by
IBM and United Technologies), and the Center for Hybrid
and Embedded Software Systems (CHESS) at UC Berkeley
(supported by the National Science Foundation, NSF awards
#0720882 (CSR-EHS: PRET), #1035672 (CPS: Medium:
Ptides), and #0931843 (ActionWebs), the Naval Research
Laboratory (NRL #N0013-12-1-G015), and the following
companies: Bosch, National Instruments, and Toyota). This
work was also supported in part by the NSF Expeditions in
Computing project ExCAPE: Expeditions in Computer Aug-
mented Program Engineering and COSMOI: Compositional
System Modeling with Interfaces. This research was sup-
ported by the Assistant Secretary for Energy E�ciency and
Renewable Energy, O�ce of Building Technologies of the
U.S. Department of Energy, under Contract No. DE-AC02-
05CH11231. The first author was funded by the Swedish
Research Council #623-2011-955.

EMSOFT 2013, Montreal, Canada

model are either memoryless or implement one of rollback or
step-size prediction. We show further that such a model can
contain at most one “legacy” FMU that is not memoryless
and provides neither rollback nor step-size prediction.

Categories and Subject Descriptors
C.3 [Computer Systems Organization]: Special-Purpose
and Application-Based Systems—real-time and embedded sys-
tems

1. INTRODUCTION
FMI (Functional Mockup Interface) is an evolving standard
for composing model components designed using distinct
modeling tools [3, 4, 16, 17]. Initially developed within
the MODELISAR project, and currently supported by a
number of industrial partners and tools (see https://www.

fmi-standard.org/), FMI shows enormous promise for en-
abling the exchange and interoperation of model compo-
nents. FMI is particularly suitable for cyber-physical sys-
tems (CPSs), where model components may represent dis-
tinct subsystems that are best designed with distinct mod-
eling tools. The FMI standard supports both co-simulation
(where a component, called an FMU (Functional Mock-up
Unit), implements its own simulation algorithm) and model
exchange (where an FMU describes the model su�ciently
for an external simulation algorithm to execute simulation).
In this paper we focus the discussion on co-simulation in the
current version of the standard (version 2.0, Beta 4 [16]).
A model is a collection of interconnected FMUs, as shown

in Figure 1. These FMU slaves are to be executed by some
master algorithm (MA), which orchestrates the execution of
the FMUs, according to its own semantics. The MA orches-
trates the communication of the FMUs through their inputs

Figure 1: A model consisting of FMUs connected in
a block diagram.

978-1-4799-1443-2/13/$31.00 ©2013 IEEE

Set input values and get
output values at distinct
communication points.

doStep advances the state
and the time.

Our work concerns a possible
solution for such a standard.

Part I
Functional Mock-up Interface
(FMI)

David Broman
dbro@kth.se

7

Part II
Hybrid Cosimulation with
Superdense Integer Time

Part II
Hybrid Cosimulation with
Superdense Integer Time

Part I
Functional Mock-up Interface
(FMI)

David Broman
dbro@kth.se

8

Part II
Hybrid Cosimulation with
Superdense Integer Time

Superdense Time

Non-negative real numbers
represent time in usual
Newtonian sense.

Set of natural numbers

Every communication
point is a member of T
and T is totally ordered.

n is called the microstep, which
indexes sequences of values at time t.

Part I
Functional Mock-up Interface
(FMI)

David Broman
dbro@kth.se

9

Part II
Hybrid Cosimulation with
Superdense Integer Time

Implementing Time

Specification uses real numbers, which is often approximated
using floating-point numbers in implementations.

Problem: not safe to compare for
equality (necessary in for instance a
discrete-event formalism)

react to further stimulus in the future. A component changes state as time advances, and every observer of
this component should see state changes in the same order.

We also require a semantic notion of time to respect an intuitive notion of causality. If one event A causes
another B, then every observer should see A ordered before B.

In order to cleanly support discrete events, we also require a semantic notion of simultaneity. Under such
a notion, two events are simultaneous if all observers see them occurring at the same time. We need to avoid
models where one observer deems two events to be simultaneous and another does not.

We could easily now digress into philosophy or modern physics. For example, how could a notion of
simultaneity be justifiable, given relativity and the uncertainty principles of quantum mechanics? We resist
the temptation to digress, and appeal instead to practicality. We need models that are useful for cosimulation.
The goal is be able to design and build better simulators, not to unlock the secrets of the universe. Even
after the development of relativity and quantum mechanics, Newtonian ideal time is a practical choice for
studying many macroscopic systems.

But ironically, Newtonian time proves not so practical for hybrid cosimulation. The most obvious rea-
son is that digital computers do not work with real numbers. Computer programs typically approximate
real numbers using floating-point numbers, which can create problems. For example, real numbers can be
compared for equality (e.g. to define “simultaneity”), but it rarely makes sense to do so for floating point
numbers. In fact, some software bug finders, such as Coverity, report equality tests of floating point numbers
as potential bugs.

Consider a model where two components produce periodic events with the same period starting at the
same time. The modeling paradigm should assure that those events will appear simultaneously at any other
component that observes them. Without such a notion of simultaneity, then the order of these events will
be arbitrary, and changing the order of discrete events can have a much bigger e↵ect than perturbing their
timing, and a much bigger e↵ect than perturbing samples of a continuous signals. Periods that are simple
multiples of one another should also yield simultaneous events. Quantization errors should not be permitted
to weaken this property.

Broman et al. [7] list three requirements for a model of time:

1. The precision with which time is represented should be finite and should be the same for all observers
in a model. Infinite precision (as provided by real numbers) is not practically realizable in computers,
and if precisions di↵er to di↵erent observers, then the di↵erent observers will not agree on which events
are simultaneous.

2. The precision with which time is represented should be independent of the absolute magnitude of the
time. In other words, the time origin (the choice for the meaning of time zero) should not a↵ect the
precision.

3. Addition of time should be associative. That is, for any three time intervals t1, t2, and t3,

(t1 + t2) + t3 = t1 + (t2 + t3).

Here, “precision” means the numerical amount by which one representable value of time di↵ers from the
next larger representable value of time. For instance, if times 0.001s, 0.002s, 0.003s, . . . are representable,
and no times in between are representable, then the precision is one millisecond.

Properties 2 and 3 are not satisfied by floating-point numbers due to rounding errors. For instance,
consider the following C code that adds double-precision floating-point numbers.

double r = 0.8;
double k = 0.7;
k = k + 0.1;
printf("%f,%f,%d\n",r,k,r==k);

The output of this program is 0.800000,0.800000,0. Both r and k appears to have value 0.800000, but
due to rounding errors, the test for equality r==k evaluates to false, which is represented as a 0 value integer

4

react to further stimulus in the future. A component changes state as time advances, and every observer of
this component should see state changes in the same order.

We also require a semantic notion of time to respect an intuitive notion of causality. If one event A causes
another B, then every observer should see A ordered before B.

In order to cleanly support discrete events, we also require a semantic notion of simultaneity. Under such
a notion, two events are simultaneous if all observers see them occurring at the same time. We need to avoid
models where one observer deems two events to be simultaneous and another does not.

We could easily now digress into philosophy or modern physics. For example, how could a notion of
simultaneity be justifiable, given relativity and the uncertainty principles of quantum mechanics? We resist
the temptation to digress, and appeal instead to practicality. We need models that are useful for cosimulation.
The goal is be able to design and build better simulators, not to unlock the secrets of the universe. Even
after the development of relativity and quantum mechanics, Newtonian ideal time is a practical choice for
studying many macroscopic systems.

But ironically, Newtonian time proves not so practical for hybrid cosimulation. The most obvious rea-
son is that digital computers do not work with real numbers. Computer programs typically approximate
real numbers using floating-point numbers, which can create problems. For example, real numbers can be
compared for equality (e.g. to define “simultaneity”), but it rarely makes sense to do so for floating point
numbers. In fact, some software bug finders, such as Coverity, report equality tests of floating point numbers
as potential bugs.

Consider a model where two components produce periodic events with the same period starting at the
same time. The modeling paradigm should assure that those events will appear simultaneously at any other
component that observes them. Without such a notion of simultaneity, then the order of these events will
be arbitrary, and changing the order of discrete events can have a much bigger e↵ect than perturbing their
timing, and a much bigger e↵ect than perturbing samples of a continuous signals. Periods that are simple
multiples of one another should also yield simultaneous events. Quantization errors should not be permitted
to weaken this property.

Broman et al. [7] list three requirements for a model of time:

1. The precision with which time is represented should be finite and should be the same for all observers
in a model. Infinite precision (as provided by real numbers) is not practically realizable in computers,
and if precisions di↵er to di↵erent observers, then the di↵erent observers will not agree on which events
are simultaneous.

2. The precision with which time is represented should be independent of the absolute magnitude of the
time. In other words, the time origin (the choice for the meaning of time zero) should not a↵ect the
precision.

3. Addition of time should be associative. That is, for any three time intervals t1, t2, and t3,

(t1 + t2) + t3 = t1 + (t2 + t3).

Here, “precision” means the numerical amount by which one representable value of time di↵ers from the
next larger representable value of time. For instance, if times 0.001s, 0.002s, 0.003s, . . . are representable,
and no times in between are representable, then the precision is one millisecond.

Properties 2 and 3 are not satisfied by floating-point numbers due to rounding errors. For instance,
consider the following C code that adds double-precision floating-point numbers.

double r = 0.8;
double k = 0.7;
k = k + 0.1;
printf("%f,%f,%d\n",r,k,r==k);

The output of this program is 0.800000,0.800000,0. Both r and k appears to have value 0.800000, but
due to rounding errors, the test for equality r==k evaluates to false, which is represented as a 0 value integer

4

r == k is false.

A solution should provide the
following properties:

1. The time origin should not
affect the precision.

2. Addition of time must be
associative.

These items do
not hold for
floating-point
numbers.

Part I
Functional Mock-up Interface
(FMI)

David Broman
dbro@kth.se

10

Part II
Hybrid Cosimulation with
Superdense Integer Time

Continuous-Time (CT) and
Discrete-event (DE) Signals

components (Section 2).
• We define and formalize a nearly minimal set of test

components that are critical for covering a hybrid co-
simulation standard (Section 3).

• We provide a set of test cases that combines some of the
test components. These test cases demonstrate necessary
constraints for a co-simulation master algorithm that is
coordinating the execution of components (Section 4).

All of the mechanisms presented in this paper are realized in
Ptolemy II. What we are working on is a C version for FMI,
possibly with di↵erent choices about representation of time.
Ptolemy is a cosimulation engine, of a sort, since it supports
mixing distinct directors. There are many ways to meet the
requirements given here, and an analysis of the alternatives
would take this paper in a very di↵erent direction.

2. PRINCIPLES

2.1 Definitions
We adopt the following definitions: A host simulator is
a tool that imports a modeling component (an FMU) that
is either written by hand or exported from another tool (or
possibly even the same tool). The master algorithm is
the execution procedure and policy by which the host sim-
ulator invokes the interface procedures of a component (an
FMU). A communication point is the simulation time
at which the master algorithm invokes an interface proce-
dure of an FMU. A deterministic FMU is one where the
output values and states are uniquely defined given initial
conditions, input values, and communication points. A de-
terministic composition of deterministic FMUs is one
where for a valid sequence of communication points, given
initial conditions and inputs from outside the composition,
the values of outputs of the deterministic FMUs are uniquely
defined. Note that practical implementations may approx-
imate those values using imprecise numerical methods, but
the composition is still deterministic if the ideal correct val-
ues are uniquely defined. The definition of determinism is a
bit subtle. See [12] for a rigorous definition.

2.2 Assumptions
We assume the following principles:

• We prefer a weaker contract over a stronger contract.
That is, we prefer fewer constraints on the design of
FMUs and master algorithms. This will maximize inter-
operability of FMUs and master algorithms.

• We assume superdense time and piecewise continuous sig-
nals (see below and [13]). This is necessary for rigorous
modeling of discontinuities and discrete signals and is al-
ready included in FMI 2.0 for model exchange. .

• The specification should enable, but not require, e�cient
execution.

2.3 Notation
We use a particular mathematical notation to define the test
cases in this paper. This notation is not intended to be used
explicitly in the FMI specification for hybrid cosimulation.
It is a mathematical idealization of what would be realized
in an FMU and the host simulator.

The set T = R+⇥N represents time, where R+ is the set of
non-negative real numbers, and N = {0, 1, 2, · · · } is the set of
natural numbers. A superdense time ⌧ 2 T is two-tuple,

⌧ = (t, n), where the real number t represents a time in
the usual Newtonian sense, and n is the microstep, which
indexes sequences of values at Newtonian time t. Every
communication point is a member of the set T .
T is a totally ordered set, where for any ⌧1, ⌧2 2 T where

⌧1 = (t1, n1) and ⌧2 = (t2, n2), then ⌧1 > ⌧2 if either t1 > t2,
or t1 = t2 and n1 > n2. Otherwise, ⌧1  ⌧2.
A signal x is a function of the form x : T ! R [{"},

where " represents the absence of a value. In the ideal, the
signal is total, defined at all T , but in a simulation, signal
values will be computed only at a finite subset of values of
T . Note that the FMI specification will need to deal with
data types other than reals as well, but we assume here that
those data types simply match what is provided by FMI
2.0. There is no need for a hybrid cosimulation standard
to deviate from the existing standard in this regard. Also
note that nothing in this paper requires that FMI include
any explicit representation of ". It is a semantical concept.
A continuous-time (CT) signal is one that has a non-

absent value for all ⌧ 2 T . A discrete-event (DE) signal
is one that has a non-absent value at only some ⌧ 2 T .
Specifically, following [13], a DE signal x has a non-absent
value x(⌧) only for ⌧ 2 D ⇢ T , where D is a discrete set.1

A signal is discontinuous at any time t 2 R if there exist
n,m 2 N such that x(t, n) 6= x(t,m).
The initial-value signal xi for a signal x is a function

of the form xi : R+ ! R [{"} given by xi(t) = x(t, 0) for
all t 2 R+. At any t 2 R+, the final microstep mt of
a signal x is a number mt 2 N such that for all m > mt,
x(t,m) = x(t,mt). The final value at time t is x(t,mt). If
for any t 2 R+, x has no final microstep, then x is said to
be a chattering Zeno signal. It has a Zeno condition at
time t, where it has an infinite sequence of changing values.
Put another way, for a chattering Zeno signal, there exists
a time where the signal does not settle to a final value.
The final-value signal xf for a non-chattering Zeno sig-

nal x is a function of the form xf : R+ ! R [{"} given
by xf (t) = x(t,mt) for all t 2 R+, where mt is the final
microstep at time t.
A continuous signal is a CT signal where for all t 2 R+,

mt = 0 and xi is continuous at t (in the usual sense for
functions of reals). A piecewise-continuous CT signal
is one where
1. mt = 0 for all t 2 R+, except t 2 D, where D ⇢ R+ is a

discrete set.
2. xi is left-continuous for all t (in the usual sense for func-

tions of reals).
3. xf is right-continuous for all t.
We can extend the notion of a piecewise-continuous signal
to include DE signals and signals that are neither CT nor
DE (they are absent over some intervals and present over
others). A piecewise-continuous signal is one where
1. mt = 0 for all t 2 R+, except t 2 D, where D ⇢ R+ is a

discrete set.
2. If xi(t) 6= ", then xi is left-continuous at t (in the usual

sense for functions of reals).
3. If xi(t) = ", then there exists a � > 0 such that for all

0  ✏ < �, xi(t� ✏) = ".
4. If xf (t) 6= ", then xf is right-continuous at t (in the usual

sense for functions of reals).

1A discrete set is an ordered set that is order isomorphic
with a subset of the natural numbers [13].

A signal x is a
function of time.

Represents the absent
of a value. Note: An implementation do

NOT need to implement
absent explicitly.

ulation time and yet be ordered in time. This is neces-
sary for rigorous modeling of discontinuities and discrete
signals and is already included in FMI 2.0 for model ex-
change.

• Where possible, the specification should use mechanisms
already present in FMI 1.0 and 2.0, rather than replacing
them with new mechanisms.

• The specification should enable, but not require, e�cient
execution.

2.3 Requirements
The FMI specification extension for hybrid cosimulation

shall provide the following:

• It shall be able to handle all test cases that are described
in this document, with approximations where necessary,
as indicated in the discussion of the test cases below.

• It shall provide an unambiguous way of cosimulating FMUs.
• It shall enable (but not necessarily mandate) master al-

gorithms that assure deterministic composition of deter-
ministic FMUs.

• It shall be backwards compatible, meaning that current
version 2.0 FMUs for cosimulation shall be possible to
simulate, at least with continuous inputs, together with
new FMUs designed specifically for hybrid cosimulation.

2.4 Notation
We use a particular mathematical notation to define the

test cases in this paper. This notation is not intended to be
used explicitly in the FMI specification for hybrid cosimu-
lation. It is a mathematical idealization of what would be
realized in an FMU and the host simulator.

The set T = R+⇥N represents time, where R+ is the set of
non-negative real numbers, and N = {0, 1, 2, · · · } is the set of
natural numbers. A superdense time ⌧ 2 T is two-tuple,
⌧ = (t, n), where the real number t represents a time in
the usual Newtonian sense, and n is the microstep, which
indexes sequences of values at Newtonian time t. Every
communication point is a member of the set T .

T is a totally ordered set, where for any ⌧1, ⌧2 2 T where
⌧1 = (t1, n1) and ⌧2 = (t2, n2), then ⌧1 > ⌧2 if either t1 > t2,
or t1 = t2 and n1 > n2. Otherwise, ⌧1  ⌧2.

A signal x is a function of the form

x : T ! R [{"}, (1)

where " represents the absence of a value. In the ideal, the
signal is total, defined at all T , but in a simulation, signal
values will be computed only at a finite subset of values of
T . Note that the FMI specification will need to deal with
data types other than reals as well, but we assume here that
those data types simply match what is provided by FMI
2.0. There is no need for a hybrid cosimulation standard
to deviate from the existing standard in this regard. Also
note that nothing in this paper requires that FMI include
any explicit representation of ". It is a semantical concept.

A continuous-time (CT) signal is one that has a non-
absent value for all ⌧ 2 T .

A discrete-event (DE) signal is one that has a non-absent
value at only some ⌧ 2 D ⇢ T , where D is a discrete set.

A signal is discontinuous at any time t 2 R if there exist
n,m 2 N such that x(t, n) 6= x(t,m).

The initial-value signal xi for a signal x is a function of
the form xi : R+ ! R [{"} given by xi(t) = x(t, 0) for all
t 2 R+.

At any t 2 R+, the final microstep mt of a signal x is a
numbermt 2 N such that for allm > mt, x(t,m) = x(t,mt).

The final value at time t is x(t,mt).

If for any t 2 R+, x has no final microstep, then x is said to
be a chattering Zeno signal.

It has a Zeno condition at time t, where it has an infinite
sequence of changing values. Put another way, for a chat-
tering Zeno signal, there exists a time where the signal does
not settle to a final value.

The final-value signal xf for a non-chattering Zeno signal
x is a function of the form xf : R+ ! R[{"} given by xf (t) =
x(t,mt) for all t 2 R+, where mt is the final microstep at
time t.

A continuous signal is a CT signal where for all t 2 R+,
mt = 0 and xi is continuous at t (in the usual sense for
functions of reals).

A piecewise-continuous CT signal is one where
1. mt = 0 for all t 2 R+, except t 2 D, where D ⇢ R+ is a

discrete set.
2. xi is left-continuous for all t (in the usual sense for func-

tions of reals).
3. xf is right-continuous for all t.

We can extend the notion of a piecewise-continuous signal
to include DE signals and signals that are neither CT nor
DE (they are absent over some intervals and present over
others). A piecewise-continuous signal is one where
1. mt = 0 for all t 2 R+, except t 2 D, where D ⇢ R+ is a

discrete set.
2. If xi(t) 6= ", then xi is left-continuous at t (in the usual

sense for functions of reals).
3. If xi(t) = ", then there exists a � > 0 such that for all

0  ✏ < �, xi(t� ✏) = ".
4. If xf (t) 6= ", then xf is right-continuous at t (in the usual

sense for functions of reals).
5. If xf (t) = ", then there exists a � > 0 such that for all

0  ✏ < �, xf (t+ ✏) = ".
This simply extends the usual notion of left and right con-
tinuity to absent values.

A well formed simulation models a system where all
signals are piecewise continuous. Every piecewise-continuous
signal has a well-defined (possibly empty) sequence of times

ulation time and yet be ordered in time. This is neces-
sary for rigorous modeling of discontinuities and discrete
signals and is already included in FMI 2.0 for model ex-
change.

• Where possible, the specification should use mechanisms
already present in FMI 1.0 and 2.0, rather than replacing
them with new mechanisms.

• The specification should enable, but not require, e�cient
execution.

2.3 Requirements
The FMI specification extension for hybrid cosimulation

shall provide the following:

• It shall be able to handle all test cases that are described
in this document, with approximations where necessary,
as indicated in the discussion of the test cases below.

• It shall provide an unambiguous way of cosimulating FMUs.
• It shall enable (but not necessarily mandate) master al-

gorithms that assure deterministic composition of deter-
ministic FMUs.

• It shall be backwards compatible, meaning that current
version 2.0 FMUs for cosimulation shall be possible to
simulate, at least with continuous inputs, together with
new FMUs designed specifically for hybrid cosimulation.

2.4 Notation
We use a particular mathematical notation to define the

test cases in this paper. This notation is not intended to be
used explicitly in the FMI specification for hybrid cosimu-
lation. It is a mathematical idealization of what would be
realized in an FMU and the host simulator.

The set T = R+⇥N represents time, where R+ is the set of
non-negative real numbers, and N = {0, 1, 2, · · · } is the set of
natural numbers. A superdense time ⌧ 2 T is two-tuple,
⌧ = (t, n), where the real number t represents a time in
the usual Newtonian sense, and n is the microstep, which
indexes sequences of values at Newtonian time t. Every
communication point is a member of the set T .

T is a totally ordered set, where for any ⌧1, ⌧2 2 T where
⌧1 = (t1, n1) and ⌧2 = (t2, n2), then ⌧1 > ⌧2 if either t1 > t2,
or t1 = t2 and n1 > n2. Otherwise, ⌧1  ⌧2.

A signal x is a function of the form

x : T ! R [{"}, (1)

where " represents the absence of a value. In the ideal, the
signal is total, defined at all T , but in a simulation, signal
values will be computed only at a finite subset of values of
T . Note that the FMI specification will need to deal with
data types other than reals as well, but we assume here that
those data types simply match what is provided by FMI
2.0. There is no need for a hybrid cosimulation standard
to deviate from the existing standard in this regard. Also
note that nothing in this paper requires that FMI include
any explicit representation of ". It is a semantical concept.

A continuous-time (CT) signal is one that has a non-
absent value for all ⌧ 2 T .

A discrete-event (DE) signal is one that has a non-absent
value at only some ⌧ 2 D ⇢ T , where D is a discrete set.

A signal is discontinuous at any time t 2 R if there exist
n,m 2 N such that x(t, n) 6= x(t,m).

The initial-value signal xi for a signal x is a function of
the form xi : R+ ! R [{"} given by xi(t) = x(t, 0) for all
t 2 R+.

At any t 2 R+, the final microstep mt of a signal x is a
numbermt 2 N such that for allm > mt, x(t,m) = x(t,mt).

The final value at time t is x(t,mt).

If for any t 2 R+, x has no final microstep, then x is said to
be a chattering Zeno signal.

It has a Zeno condition at time t, where it has an infinite
sequence of changing values. Put another way, for a chat-
tering Zeno signal, there exists a time where the signal does
not settle to a final value.

The final-value signal xf for a non-chattering Zeno signal
x is a function of the form xf : R+ ! R[{"} given by xf (t) =
x(t,mt) for all t 2 R+, where mt is the final microstep at
time t.

A continuous signal is a CT signal where for all t 2 R+,
mt = 0 and xi is continuous at t (in the usual sense for
functions of reals).

A piecewise-continuous CT signal is one where
1. mt = 0 for all t 2 R+, except t 2 D, where D ⇢ R+ is a

discrete set.
2. xi is left-continuous for all t (in the usual sense for func-

tions of reals).
3. xf is right-continuous for all t.

We can extend the notion of a piecewise-continuous signal
to include DE signals and signals that are neither CT nor
DE (they are absent over some intervals and present over
others). A piecewise-continuous signal is one where
1. mt = 0 for all t 2 R+, except t 2 D, where D ⇢ R+ is a

discrete set.
2. If xi(t) 6= ", then xi is left-continuous at t (in the usual

sense for functions of reals).
3. If xi(t) = ", then there exists a � > 0 such that for all

0  ✏ < �, xi(t� ✏) = ".
4. If xf (t) 6= ", then xf is right-continuous at t (in the usual

sense for functions of reals).
5. If xf (t) = ", then there exists a � > 0 such that for all

0  ✏ < �, xf (t+ ✏) = ".
This simply extends the usual notion of left and right con-
tinuity to absent values.

A well formed simulation models a system where all
signals are piecewise continuous. Every piecewise-continuous
signal has a well-defined (possibly empty) sequence of times

ulation time and yet be ordered in time. This is neces-
sary for rigorous modeling of discontinuities and discrete
signals and is already included in FMI 2.0 for model ex-
change.

• Where possible, the specification should use mechanisms
already present in FMI 1.0 and 2.0, rather than replacing
them with new mechanisms.

• The specification should enable, but not require, e�cient
execution.

2.3 Requirements
The FMI specification extension for hybrid cosimulation

shall provide the following:

• It shall be able to handle all test cases that are described
in this document, with approximations where necessary,
as indicated in the discussion of the test cases below.

• It shall provide an unambiguous way of cosimulating FMUs.
• It shall enable (but not necessarily mandate) master al-

gorithms that assure deterministic composition of deter-
ministic FMUs.

• It shall be backwards compatible, meaning that current
version 2.0 FMUs for cosimulation shall be possible to
simulate, at least with continuous inputs, together with
new FMUs designed specifically for hybrid cosimulation.

2.4 Notation
We use a particular mathematical notation to define the

test cases in this paper. This notation is not intended to be
used explicitly in the FMI specification for hybrid cosimu-
lation. It is a mathematical idealization of what would be
realized in an FMU and the host simulator.

The set T = R+⇥N represents time, where R+ is the set of
non-negative real numbers, and N = {0, 1, 2, · · · } is the set of
natural numbers. A superdense time ⌧ 2 T is two-tuple,
⌧ = (t, n), where the real number t represents a time in
the usual Newtonian sense, and n is the microstep, which
indexes sequences of values at Newtonian time t. Every
communication point is a member of the set T .

T is a totally ordered set, where for any ⌧1, ⌧2 2 T where
⌧1 = (t1, n1) and ⌧2 = (t2, n2), then ⌧1 > ⌧2 if either t1 > t2,
or t1 = t2 and n1 > n2. Otherwise, ⌧1  ⌧2.

A signal x is a function of the form

x : T ! R [{"}, (1)

where " represents the absence of a value. In the ideal, the
signal is total, defined at all T , but in a simulation, signal
values will be computed only at a finite subset of values of
T . Note that the FMI specification will need to deal with
data types other than reals as well, but we assume here that
those data types simply match what is provided by FMI
2.0. There is no need for a hybrid cosimulation standard
to deviate from the existing standard in this regard. Also
note that nothing in this paper requires that FMI include
any explicit representation of ". It is a semantical concept.

A continuous-time (CT) signal is one that has a non-
absent value for all ⌧ 2 T .

A discrete-event (DE) signal is one that has a non-absent
value at only some ⌧ 2 D ⇢ T , where D is a discrete set.

A signal is discontinuous at any time t 2 R if there exist
n,m 2 N such that x(t, n) 6= x(t,m).

The initial-value signal xi for a signal x is a function of
the form xi : R+ ! R [{"} given by xi(t) = x(t, 0) for all
t 2 R+.

At any t 2 R+, the final microstep mt of a signal x is a
numbermt 2 N such that for allm > mt, x(t,m) = x(t,mt).

The final value at time t is x(t,mt).

If for any t 2 R+, x has no final microstep, then x is said to
be a chattering Zeno signal.

It has a Zeno condition at time t, where it has an infinite
sequence of changing values. Put another way, for a chat-
tering Zeno signal, there exists a time where the signal does
not settle to a final value.

The final-value signal xf for a non-chattering Zeno signal
x is a function of the form xf : R+ ! R[{"} given by xf (t) =
x(t,mt) for all t 2 R+, where mt is the final microstep at
time t.

A continuous signal is a CT signal where for all t 2 R+,
mt = 0 and xi is continuous at t (in the usual sense for
functions of reals).

A piecewise-continuous CT signal is one where
1. mt = 0 for all t 2 R+, except t 2 D, where D ⇢ R+ is a

discrete set.
2. xi is left-continuous for all t (in the usual sense for func-

tions of reals).
3. xf is right-continuous for all t.

We can extend the notion of a piecewise-continuous signal
to include DE signals and signals that are neither CT nor
DE (they are absent over some intervals and present over
others). A piecewise-continuous signal is one where
1. mt = 0 for all t 2 R+, except t 2 D, where D ⇢ R+ is a

discrete set.
2. If xi(t) 6= ", then xi is left-continuous at t (in the usual

sense for functions of reals).
3. If xi(t) = ", then there exists a � > 0 such that for all

0  ✏ < �, xi(t� ✏) = ".
4. If xf (t) 6= ", then xf is right-continuous at t (in the usual

sense for functions of reals).
5. If xf (t) = ", then there exists a � > 0 such that for all

0  ✏ < �, xf (t+ ✏) = ".
This simply extends the usual notion of left and right con-
tinuity to absent values.

A well formed simulation models a system where all
signals are piecewise continuous. Every piecewise-continuous
signal has a well-defined (possibly empty) sequence of times

set of requirements, and not on making cosimulation more
e�cient.

Note that the current 2.0 FMI standard for cosimulation
cannot realize this component, even for CT inputs only. We
believe that there is no implementation of this component
consistent with this constraint that supports the calling se-
quences defined in page 104 of the standard document [17].
Specifically, the standard states, “there is the additional re-
striction ... that it is not allowed to call fmi2GetXXX func-
tions after fmi2SetXXX functions without an fmi2DoStep
call in between.” In addition, when fmi2DoStep is called,
the standard requires that the step size be greater than zero
(p.100: “... communicationStepSize ... must be > 0.0”).
Hence, time must advance between setting the inputs and
reading the resulting outputs.

3.3 Adder
Input signals x1 and x2. Output signal y.

For all ⌧ 2 T ,

y(⌧) =

8
>><

>>:

x1(⌧) + x2(⌧) if x1(⌧) 6= " and x2(⌧) 6= "

x1(⌧) if x1(⌧) 6= " and x2(⌧) = "

x2(⌧) if x1(⌧) = " and x2(⌧) 6= "

" otherwise
(3)

Discussion. This component illustrates that an FMU may
be presented at a communication point with some inputs
that are absent and some that are not, and that its behav-
ior may depend on which inputs are present. Of course,
a simpler Adder component would require all inputs to be
present simultaneously, or would use previous input values if
an input is not present. We can certainly design such Adder
components, and indeed a library for simulation might pre-
fer those semantics. But our goal here is to test capabilities
that may be required in hybrid cosimulation, and reacting
di↵erently to di↵erent patterns of presence of inputs most
certainly will be required.

This component imposes no constraints on the communi-
cation points, but points of discontinuity of the inputs must
be presented as communication points in order for the out-
put to reflect the ensuing discontinuity.

3.4 Periodic Piecewise Constant Signal Gen-
erator

CT output signal y. Real parameters a, b, p.
Informally, this component outputs the constant a from

time zero to p, b from time p to 2p, a from 2p to 3p, etc.,
alternating between a and b, as illustrated in Figure 1.
We require that the output be piecewise continuous. Specif-

y(t, n)

t

b

a

0 p 2p 3p

Figure 1: Example output from the Periodic Piece-
wise Constant component. The unfilled dots show
values that occur only at microsteps n � 1, whereas
the filled dots and lines show values at n = 0.

y(t, n)

t

a

0 p 2p 3p

Figure 2: Example output from the Periodic Dis-
crete Signal Generator. The unfilled dots are the
only non-absent values, and they occur only at mi-
crostep n = 1.

ically, for all ⌧ = (t, n) 2 T ,

y(t, n) =

8
>>><

>>>:

a if kp < t < (k + 1)p and k 2 N is even;
b if kp < t < (k + 1)p and k 2 N is odd;
b if t is an odd multiple of p and n � 1;
b if t is an even multiple of p, t > 0, n = 0;
a otherwise.

Discussion. A correct implementation of this component
and host simulator will produce at least the output values
shown in Figure 1 as filled and unfilled dots. Hence, in a
correct implementation, two communication points can be
used at each multiple of p, one at microstep zero and one at
microstep one. A host simulator may choose to invoke the
FMU implementation at additional communication points,
but this is not required. Typically a host simulator will use
a step-size adjustment algorithm to choose communication
points.

3.5 Periodic Discrete Signal Generator
DE output signal y. Real parameters a, p.
This component outputs the constant a at integer multi-

ples of p (see Figure 2), and otherwise its output is absent.
To be piecewise continuous, the output signal should be ab-
sent for all (t, n) 2 T where n = 0 or n > 1. Specifically, for
all ⌧ = (t, n) 2 T ,

y(t, n) =

⇢
a if t = kp and n = 1, where k 2 N;
" otherwise.

Discussion. This component provides a canonical source
for a DE signal. It can be used to build regression tests to
verify, for example, that the Gain component above behaves
correctly with DE inputs. It can also be used to provide
discrete inputs to any of the test cases below that require
discrete inputs.
This component requires that there be a communication

point at all t = (kp, 1), k 2 N. Communication points at
other times are not required, but if the host simulator pro-
vides them, then this component will produce no output (its
output will be absent).

3.6 Modal Model with Discrete Control
DE input signal x. CT output signal y. Real parameters
a, b.
This component initially outputs the constant a. When

the first input event arrives, it switches to producing output
b. When the second input event arrives, it switches back to
a. Etc. Formally,

y(t, n) =

⇢
a if s(t, n) = 0
b otherwise.

(4)

Part I
Functional Mock-up Interface
(FMI)

David Broman
dbro@kth.se

11

Part II
Hybrid Cosimulation with
Superdense Integer Time

Test Case: Simultaneous Events

tor [21], which implements hybrid system simulation, also
always provides a communication point (t, 0) for every com-
munication point (t, n). So a Zero-Order Hold FMU will
never be forced to reject a time step if Ptolemy II is the
host simulator.

But even if the future hybrid cosimulation standard does
provide a mechanism to advance from communication point
(t0, n0) to (t1, n1), where t1 > t0 and n1 > 0, then an FMU
implementing this Zero-Order Hold component can reject
the proposed step. It thereby ensures that for every com-
munication point (t, n), there will also be a communication
point (t, 0). This mechanism does not require anticipating
future events.

3.11 Sampler
Input signal x. DE input signal s. DE output signal y.

For all ⌧ 2 T , the output is

y(⌧) =

⇢
x(⌧) if s(⌧) 6= "

" otherwise

Discussion. The output is a discrete sampling of a con-
tinuous input. As long as the input s is a piecewise contin-
uous DE signal, the output will be a piecewise continuous
DE signal. Since the output is a DE signal, it will be absent
at all (t, 0) 2 T . If the input s is free of chattering Zeno
conditions, then the output will also be free of chattering
Zeno conditions. The communication points should include
at least every ⌧ 2 T where s(⌧) 6= ".

3.12 Discrete Time Delay
DE input signal x. DE output signal y. Real parameter
d, where d > 0.

For all (t, n) 2 T , the output is

y(t, n) =

⇢
x(t� d, n) if t � d

" otherwise

The output is a time-delayed input.
Discussion. The communication points should include ev-
ery (t, n) where x(t, n) 6= ", and also every (t+ d, n). Notice
that we do not attempt to define this for CT inputs because
such time delays are extremely di�cult to realize in simu-
lation. In theory, they have an uncountably infinite state
space. And they wreak havoc with step-size control mecha-
nisms in variable-step solvers.

3.13 Discrete Microstep Delay
DE input signal x. DE output signal y.

For all (t, n) 2 T , the output is

y(t, n) =

⇢
x(t, n� 1) if n � 1

" if n = 0

The output is a microstep-delayed input.
Discussion. The communication points should include at
least every (t, n) where x(t, n) 6= " and also (t, n+ 1). This
component, therefore, requires a mechanism for ensuring
zero step advancement of superdense time (which the mi-
crostep only advances).

Notice that we do not attempt to define this for CT inputs.
Indeed, if presented with a CT input, this component will
produce a rather odd output signal, one whose initial value
is always absent, and subsequent values are present. If the
input is a piecewise continuous DE signal, then the input is
always absent at microstep zero, and the output will also be

piecewise continuous. If the input is free of chattering Zeno
conditions, then the output will be free of chattering Zeno
conditions. In this case, the final value of the input is also
", so the final value of the output will be ".

4. COMPOSITION TEST CASES
A hybrid cosimulation FMI standard that enables defini-
tion of the above components provides a rich framework
for composition of discrete and continuous simulation tools.
Any such standard should be able to unambiguously define
FMUs that realize such components and should ensure that
host simulators are capable of executing these FMUs. Such
capabilities can be verified using unit tests that check each of
the above components individually by providing a range of
inputs and verifying that the outputs match the ideal (up to
some precision, where appropriate). But such unit tests are
not quite su�cient. We also need to ensure that interactions
between multiple components behave correctly.
In this section, we discuss some test cases that combine a

few of the above components, and give acceptance criteria
that define correct behavior. These test cases are, in e↵ect,
constraints on master algorithms. Host simulators that con-
form with the standard must implement master algorithms
that satisfy these acceptance criteria.

4.1 Simultaneous Events
This test case checks that multiple components with discrete
timed behavior coordinate their representations of time. Con-
sider the following composition:

This has three components:
1. Periodic Discrete Signal Generator. Period p=q, a=1.
2. Periodic Discrete Signal Generator. Period p=2q, a=1.
3. Sampler with DE input x
The criterion is that the output of the Sampler should equal
the output of second Periodic Discrete Signal Generator at
all superdense times. Here, q is any representable time such
that 2q is also a representable time.
Discussion. FMUs may internally use representations

of time that are di↵erent from that of the host simulator.
This test criterion is intended to ensure that no matter how
the FMU and host simulator internally represent time, the
Sampler and Periodic Discrete Signal Generator semantics
are respected. This test case also checks for a well-defined
notion of simultaneity. In particular, the periods chosen
are not exactly representable with double precision floating
point numbers, and the test is intended to ensure that de-
spite any roundo↵ errors, every second output of the first
Periodic Discrete Signal Generator is exactly synchronous
with every output of the second one. The Test component
must see the events at the same communication point in
superdense time.

Test for well-defined notion of
simultaneity. An example where
correct implementation of time
is needed.

Samples exactly with
period p=2*q

set of requirements, and not on making cosimulation more
e�cient.

Note that the current 2.0 FMI standard for cosimulation
cannot realize this component, even for CT inputs only. We
believe that there is no implementation of this component
consistent with this constraint that supports the calling se-
quences defined in page 104 of the standard document [17].
Specifically, the standard states, “there is the additional re-
striction ... that it is not allowed to call fmi2GetXXX func-
tions after fmi2SetXXX functions without an fmi2DoStep
call in between.” In addition, when fmi2DoStep is called,
the standard requires that the step size be greater than zero
(p.100: “... communicationStepSize ... must be > 0.0”).
Hence, time must advance between setting the inputs and
reading the resulting outputs.

3.3 Adder
Input signals x1 and x2. Output signal y.

For all ⌧ 2 T ,

y(⌧) =

8
>><

>>:

x1(⌧) + x2(⌧) if x1(⌧) 6= " and x2(⌧) 6= "

x1(⌧) if x1(⌧) 6= " and x2(⌧) = "

x2(⌧) if x1(⌧) = " and x2(⌧) 6= "

" otherwise
(3)

Discussion. This component illustrates that an FMU may
be presented at a communication point with some inputs
that are absent and some that are not, and that its behav-
ior may depend on which inputs are present. Of course,
a simpler Adder component would require all inputs to be
present simultaneously, or would use previous input values if
an input is not present. We can certainly design such Adder
components, and indeed a library for simulation might pre-
fer those semantics. But our goal here is to test capabilities
that may be required in hybrid cosimulation, and reacting
di↵erently to di↵erent patterns of presence of inputs most
certainly will be required.

This component imposes no constraints on the communi-
cation points, but points of discontinuity of the inputs must
be presented as communication points in order for the out-
put to reflect the ensuing discontinuity.

3.4 Periodic Piecewise Constant Signal Gen-
erator

CT output signal y. Real parameters a, b, p.
Informally, this component outputs the constant a from

time zero to p, b from time p to 2p, a from 2p to 3p, etc.,
alternating between a and b, as illustrated in Figure 1.
We require that the output be piecewise continuous. Specif-

y(t, n)

t

b

a

0 p 2p 3p

Figure 1: Example output from the Periodic Piece-
wise Constant component. The unfilled dots show
values that occur only at microsteps n � 1, whereas
the filled dots and lines show values at n = 0.

y(t, n)

t

a

0 p 2p 3p

Figure 2: Example output from the Periodic Dis-
crete Signal Generator. The unfilled dots are the
only non-absent values, and they occur only at mi-
crostep n = 1.

ically, for all ⌧ = (t, n) 2 T ,

y(t, n) =

8
>>><

>>>:

a if kp < t < (k + 1)p and k 2 N is even;
b if kp < t < (k + 1)p and k 2 N is odd;
b if t is an odd multiple of p and n � 1;
b if t is an even multiple of p, t > 0, n = 0;
a otherwise.

Discussion. A correct implementation of this component
and host simulator will produce at least the output values
shown in Figure 1 as filled and unfilled dots. Hence, in a
correct implementation, two communication points can be
used at each multiple of p, one at microstep zero and one at
microstep one. A host simulator may choose to invoke the
FMU implementation at additional communication points,
but this is not required. Typically a host simulator will use
a step-size adjustment algorithm to choose communication
points.

3.5 Periodic Discrete Signal Generator
DE output signal y. Real parameters a, p.
This component outputs the constant a at integer multi-

ples of p (see Figure 2), and otherwise its output is absent.
To be piecewise continuous, the output signal should be ab-
sent for all (t, n) 2 T where n = 0 or n > 1. Specifically, for
all ⌧ = (t, n) 2 T ,

y(t, n) =

⇢
a if t = kp and n = 1, where k 2 N;
" otherwise.

Discussion. This component provides a canonical source
for a DE signal. It can be used to build regression tests to
verify, for example, that the Gain component above behaves
correctly with DE inputs. It can also be used to provide
discrete inputs to any of the test cases below that require
discrete inputs.
This component requires that there be a communication

point at all t = (kp, 1), k 2 N. Communication points at
other times are not required, but if the host simulator pro-
vides them, then this component will produce no output (its
output will be absent).

3.6 Modal Model with Discrete Control
DE input signal x. CT output signal y. Real parameters
a, b.
This component initially outputs the constant a. When

the first input event arrives, it switches to producing output
b. When the second input event arrives, it switches back to
a. Etc. Formally,

y(t, n) =

⇢
a if s(t, n) = 0
b otherwise.

(4)

Part I
Functional Mock-up Interface
(FMI)

David Broman
dbro@kth.se

12

Part II
Hybrid Cosimulation with
Superdense Integer Time

Test Case: Integrating Discontinuous Signals

The output should be continuous

4.2 Integrating Discontinuous Signals
The following figure shows a test case that integrates a

discontinuous input.

The output is continuous, and should match the following:

y(t, n)

t

1

0
0 1 2 3

Every acceptable test result will produce at least one output
sample at the times of the discontinuities of the output of the
Periodic Piecewise Constant Signal Generator. Samples in
between these points in time are optional, and may depend
on the step-size control algorithm used by the host simulator.

Discussion. The key feature being tested here is that a
host simulator does not get confused by a signal that has
two distinct values at the same (real) time, at distinct mi-
crosteps, and that a sequence of values at a (real) time does
not a↵ect the output of an Integrator, except that the fi-
nal value at a discontinuity becomes the initial value for the
next integration interval.

4.3 Integrating Glitches
The following Figure shows a test case that verifies that
the Integrator output is una↵ected by input values whose
duration is zero.

In this test case, a constant-valued signal is modified using
an Adder so that its value at integer-valued times sequences
from 1 to 2 and back to 1, without time elapsing. These
glitches have zero width, and hence should not a↵ect the
output of the Integrator.

4.4 Zero-Delay Feedback
The following Figure shows a test model using a Zero-Crossing
Detector in a feedback loop.

The Integrator with Reset is integrating a constant 1, and
hence will produce a line with unit slope. When that line
crosses 1, the Zero-Crossing Detector is triggered. The event
it produces, which has value 0, is fed back through a Discrete
Microstep Delay to the reset input of the Integrator with
Reset. The expected output is as follows:

y(t, n)

t

1

0
0 1 2 3

Because of the approximate nature of the Zero-Crossing De-
tector (see Section 3.9), the times at which the reset occurs
and the value at which it is triggered are approximate, so a
regression test needs to specify a tolerance.
In the plot above, the filled and unfilled dots are required

samples, occurring at microsteps 0 and 2 respectively. Sam-
ples in between are optional and may depend on the step-size
control algorithm of the host simulator. Specifically, at time
t = 1, the output of the Integrator With Reset should be

y(1, 0) = a y(1, 1) = a y(1, 2) = 0

where a ⇡ 1. Notice that the reset actually occurs in mi-
crostep 2, because the event at the output of the Zero-
Crossing Detector occurs at microstep 1, and it is then de-
layed by one additional microstep. In this particular in-
stance, the Discrete Microstep Delay in the feedback loop
might not seem to be required because the input to the
Zero-Crossing Detector is continuous, and by the definition
of the Zero-Crossing Detector, it introduces a microstep de-
lay when the zero crossing occurs in a continuous region
of the input. Nevertheless, our test case includes a Dis-
crete Microstep Delay for two reasons. First, it provides a
test where microsteps explicitly go beyond 1. Second, the
Zero-Crossing Detector introduces a microstep delay only
for some inputs. So the presence of a microstep delay in the
loop is not a static property, which complicates scheduling
of the components. Specifically, the Discrete Microstep De-
lay is non-strict, meaning that its input at superdense time
⌧ need not be known to retrieve its output at ⌧ . A scheduler
can take this into account to break the apparent dependency
loop created by the feedback. The Zero-Crossing Detector,
however, is only non-strict at microstep zero (because its
output is always absent at microstep zero). Hence, without
the Discrete Microstep Delay, we would have a causality loop
at all microsteps but zero. A master algorithm would have
to ensure that at the input to the Zero-Crossing Detector,
mt = 0 for all t. In general, this is di�cult to ensure.
Discussion. A subtle point raised by this composition

is that the master algorithm needs to “know” at any time t

when all signals have reached their final microstep. Specifi-
cally, it is not su�cient to stop incrementing microsteps at
time t when all signals become absent at time t. First, CT
signals never become absent at time t, so the mere presence
of a CT signal will foil this strategy. Second, the Discrete
Microstep Delay may have an absent input, and yet, in the
next microstep, produce a non-absent output.
Our assumption is that each FMU constrains step sizes so

that prior to reaching the final microstep of its outputs, it
prevents the master algorithm from advancing time. It only
permits advances in microstep. When no component does
this, the master algorithm can assume that all signals have

set of requirements, and not on making cosimulation more
e�cient.

Note that the current 2.0 FMI standard for cosimulation
cannot realize this component, even for CT inputs only. We
believe that there is no implementation of this component
consistent with this constraint that supports the calling se-
quences defined in page 104 of the standard document [17].
Specifically, the standard states, “there is the additional re-
striction ... that it is not allowed to call fmi2GetXXX func-
tions after fmi2SetXXX functions without an fmi2DoStep
call in between.” In addition, when fmi2DoStep is called,
the standard requires that the step size be greater than zero
(p.100: “... communicationStepSize ... must be > 0.0”).
Hence, time must advance between setting the inputs and
reading the resulting outputs.

3.3 Adder
Input signals x1 and x2. Output signal y.

For all ⌧ 2 T ,

y(⌧) =

8
>><

>>:

x1(⌧) + x2(⌧) if x1(⌧) 6= " and x2(⌧) 6= "

x1(⌧) if x1(⌧) 6= " and x2(⌧) = "

x2(⌧) if x1(⌧) = " and x2(⌧) 6= "

" otherwise
(3)

Discussion. This component illustrates that an FMU may
be presented at a communication point with some inputs
that are absent and some that are not, and that its behav-
ior may depend on which inputs are present. Of course,
a simpler Adder component would require all inputs to be
present simultaneously, or would use previous input values if
an input is not present. We can certainly design such Adder
components, and indeed a library for simulation might pre-
fer those semantics. But our goal here is to test capabilities
that may be required in hybrid cosimulation, and reacting
di↵erently to di↵erent patterns of presence of inputs most
certainly will be required.

This component imposes no constraints on the communi-
cation points, but points of discontinuity of the inputs must
be presented as communication points in order for the out-
put to reflect the ensuing discontinuity.

3.4 Periodic Piecewise Constant Signal Gen-
erator

CT output signal y. Real parameters a, b, p.
Informally, this component outputs the constant a from

time zero to p, b from time p to 2p, a from 2p to 3p, etc.,
alternating between a and b, as illustrated in Figure 1.
We require that the output be piecewise continuous. Specif-

y(t, n)

t

b

a

0 p 2p 3p

Figure 1: Example output from the Periodic Piece-
wise Constant component. The unfilled dots show
values that occur only at microsteps n � 1, whereas
the filled dots and lines show values at n = 0.

y(t, n)

t

a

0 p 2p 3p

Figure 2: Example output from the Periodic Dis-
crete Signal Generator. The unfilled dots are the
only non-absent values, and they occur only at mi-
crostep n = 1.

ically, for all ⌧ = (t, n) 2 T ,

y(t, n) =

8
>>><

>>>:

a if kp < t < (k + 1)p and k 2 N is even;
b if kp < t < (k + 1)p and k 2 N is odd;
b if t is an odd multiple of p and n � 1;
b if t is an even multiple of p, t > 0, n = 0;
a otherwise.

Discussion. A correct implementation of this component
and host simulator will produce at least the output values
shown in Figure 1 as filled and unfilled dots. Hence, in a
correct implementation, two communication points can be
used at each multiple of p, one at microstep zero and one at
microstep one. A host simulator may choose to invoke the
FMU implementation at additional communication points,
but this is not required. Typically a host simulator will use
a step-size adjustment algorithm to choose communication
points.

3.5 Periodic Discrete Signal Generator
DE output signal y. Real parameters a, p.
This component outputs the constant a at integer multi-

ples of p (see Figure 2), and otherwise its output is absent.
To be piecewise continuous, the output signal should be ab-
sent for all (t, n) 2 T where n = 0 or n > 1. Specifically, for
all ⌧ = (t, n) 2 T ,

y(t, n) =

⇢
a if t = kp and n = 1, where k 2 N;
" otherwise.

Discussion. This component provides a canonical source
for a DE signal. It can be used to build regression tests to
verify, for example, that the Gain component above behaves
correctly with DE inputs. It can also be used to provide
discrete inputs to any of the test cases below that require
discrete inputs.
This component requires that there be a communication

point at all t = (kp, 1), k 2 N. Communication points at
other times are not required, but if the host simulator pro-
vides them, then this component will produce no output (its
output will be absent).

3.6 Modal Model with Discrete Control
DE input signal x. CT output signal y. Real parameters
a, b.
This component initially outputs the constant a. When

the first input event arrives, it switches to producing output
b. When the second input event arrives, it switches back to
a. Etc. Formally,

y(t, n) =

⇢
a if s(t, n) = 0
b otherwise.

(4)

4.2 Integrating Discontinuous Signals
The following figure shows a test case that integrates a

discontinuous input.

The output is continuous, and should match the following:

y(t, n)

t

1

0
0 1 2 3

Every acceptable test result will produce at least one output
sample at the times of the discontinuities of the output of the
Periodic Piecewise Constant Signal Generator. Samples in
between these points in time are optional, and may depend
on the step-size control algorithm used by the host simulator.

Discussion. The key feature being tested here is that a
host simulator does not get confused by a signal that has
two distinct values at the same (real) time, at distinct mi-
crosteps, and that a sequence of values at a (real) time does
not a↵ect the output of an Integrator, except that the fi-
nal value at a discontinuity becomes the initial value for the
next integration interval.

4.3 Integrating Glitches
The following Figure shows a test case that verifies that
the Integrator output is una↵ected by input values whose
duration is zero.

In this test case, a constant-valued signal is modified using
an Adder so that its value at integer-valued times sequences
from 1 to 2 and back to 1, without time elapsing. These
glitches have zero width, and hence should not a↵ect the
output of the Integrator.

4.4 Zero-Delay Feedback
The following Figure shows a test model using a Zero-Crossing
Detector in a feedback loop.

The Integrator with Reset is integrating a constant 1, and
hence will produce a line with unit slope. When that line
crosses 1, the Zero-Crossing Detector is triggered. The event
it produces, which has value 0, is fed back through a Discrete
Microstep Delay to the reset input of the Integrator with
Reset. The expected output is as follows:

y(t, n)

t

1

0
0 1 2 3

Because of the approximate nature of the Zero-Crossing De-
tector (see Section 3.9), the times at which the reset occurs
and the value at which it is triggered are approximate, so a
regression test needs to specify a tolerance.
In the plot above, the filled and unfilled dots are required

samples, occurring at microsteps 0 and 2 respectively. Sam-
ples in between are optional and may depend on the step-size
control algorithm of the host simulator. Specifically, at time
t = 1, the output of the Integrator With Reset should be

y(1, 0) = a y(1, 1) = a y(1, 2) = 0

where a ⇡ 1. Notice that the reset actually occurs in mi-
crostep 2, because the event at the output of the Zero-
Crossing Detector occurs at microstep 1, and it is then de-
layed by one additional microstep. In this particular in-
stance, the Discrete Microstep Delay in the feedback loop
might not seem to be required because the input to the
Zero-Crossing Detector is continuous, and by the definition
of the Zero-Crossing Detector, it introduces a microstep de-
lay when the zero crossing occurs in a continuous region
of the input. Nevertheless, our test case includes a Dis-
crete Microstep Delay for two reasons. First, it provides a
test where microsteps explicitly go beyond 1. Second, the
Zero-Crossing Detector introduces a microstep delay only
for some inputs. So the presence of a microstep delay in the
loop is not a static property, which complicates scheduling
of the components. Specifically, the Discrete Microstep De-
lay is non-strict, meaning that its input at superdense time
⌧ need not be known to retrieve its output at ⌧ . A scheduler
can take this into account to break the apparent dependency
loop created by the feedback. The Zero-Crossing Detector,
however, is only non-strict at microstep zero (because its
output is always absent at microstep zero). Hence, without
the Discrete Microstep Delay, we would have a causality loop
at all microsteps but zero. A master algorithm would have
to ensure that at the input to the Zero-Crossing Detector,
mt = 0 for all t. In general, this is di�cult to ensure.
Discussion. A subtle point raised by this composition

is that the master algorithm needs to “know” at any time t

when all signals have reached their final microstep. Specifi-
cally, it is not su�cient to stop incrementing microsteps at
time t when all signals become absent at time t. First, CT
signals never become absent at time t, so the mere presence
of a CT signal will foil this strategy. Second, the Discrete
Microstep Delay may have an absent input, and yet, in the
next microstep, produce a non-absent output.
Our assumption is that each FMU constrains step sizes so

that prior to reaching the final microstep of its outputs, it
prevents the master algorithm from advancing time. It only
permits advances in microstep. When no component does
this, the master algorithm can assume that all signals have

Part I
Functional Mock-up Interface
(FMI)

David Broman
dbro@kth.se

13

Part II
Hybrid Cosimulation with
Superdense Integer Time

Extending FMI with Integer Time

Master
Algorithm

FMU

FMU

doStepHybrid()

Communication step
size as an integer,
instead of a floating-
point number.

FMU
FMU

What should the time resolution be? Who determines the resolution?
The MA? The FMUs? The user?

getPreferredResolution()
The FMU tells the
MA what it prefers.

setResolution() The MA tells the
FMU what it
should use.

Part I
Functional Mock-up Interface
(FMI)

David Broman
dbro@kth.se

14

Part II
Hybrid Cosimulation with
Superdense Integer Time

Extending FMI with Superdense Integer Time

FMU C0

Categories of FMU

doStepHybrid()

getPreferredResolution()

setResolution()

doStep()

FMU C1

FMU C2

FMU C3

FMU C4

doStepHybrid()

doStepHybrid()

doStepHybrid()
getPreferredResolution()
setResolution()

The FMU does not
consider time (state
update or output)

The MA must
perform translations

The MA states the
resolution.

Negotiation. MA uses
the highest resolution
among all FMUs.

Also need to handle
FMUs with floating-
point time

Master
Algorithm

FMI Simulation tool

Wrapper

Wrapper

Wrapper

Wrapper

Wrapper

Part I
Functional Mock-up Interface
(FMI)

David Broman
dbro@kth.se

15

Part II
Hybrid Cosimulation with
Superdense Integer Time

Conclusions

Part I
Functional Mock-up Interface
(FMI)

David Broman
dbro@kth.se

16

Part II
Hybrid Cosimulation with
Superdense Integer Time

Conclusions

Thanks for
listening!

Some key take away points:

•  The current FMI standard 2.0 lacks the
possibility of hybrid co-simulation.

•  A possible extension can be based on superdense time
and integer time with negotiation of resolution between
FMUs and MA

David Broman, Christopher Brooks, Lev Greenberg, Edward A. Lee, Michael Masin, Stavros Tripakis,
and Michael Wetter. Determinate Composition of FMUs for Co-Simulation. In Proceedings of the
International Conference on Embedded Software (EMSOFT 2013), Montreal, Canada, 2013.

David Broman, Lev Greenberg, Edward A. Lee, Michael Masin, Stavros Tripakis, and Michael Wetter.
Requirements for Hybrid Cosimulation Standards. In Proceedings of 18th ACM International
Conference on Hybrid Systems: Computation and Control (HSCC 2015), Pages 179-188, CPSWeek,
Seattle, WA, USA, 2015.

