
Programming with Time for
Mixed Criticality Systems
Dagstuhl Seminar, March 16-20, 2015
Mixed Criticality on Multicore/Manycore Platforms

David Broman
Associate Professor, KTH Royal Institute of Technology

Assistant Research Engineer, University of California, Berkeley

Slide 9 was updated July 8, 2015.

Part I
The Implementation
View

Part II
The Specification
View

David Broman
dbro@kth.se

2

What is mixed criticality?

Mixed Time-Critical Systems

Mixed-Criticality Systems (MCS) Challenge
Reconcile the conflicting requirements of:
•  Partitioning (for safety assurance)
•  Sharing (for efficient resource usage)
(Burns & Davis, 2013)

This talk focuses on the time and timing
aspects of the problem

Other aspects are equally important (hardware failures, network
aspects etc.), but are not considered here.

Part I
The Implementation
View

Part II
The Specification
View

David Broman
dbro@kth.se

3

Viewpoints on the MCS timing aspect

Viewpoint I

The Implementation View
Viewpoint II

The Specification View

•  Software Scheduling
Vestal’s model (and variants
thereof) with different WCET num-
bers for different criticality levels.

•  Hardware Scheduling
For instance, the FlexPRET
approach (Zimmer et. al 2014) with
predictable and less predictable
hardware threads.

•  A Task Model with Bounded
Frequencies
Yip et al. (2014) on relaxed the
synchronous approach for MSC.

•  Programming with Time
Express timing constraints and
fault handling explicitly in a
programming language.

Part I
The Implementation
View

Part II
The Specification
View

David Broman
dbro@kth.se

4

Hardware Scheduling with FlexPRET

Fine-grained Multithreaded Processor Platform
(thread interleaved) implemented on an FPGA

Flexible schedule (1 to 8 active threads) and
scheduling frequency (1, 1/2, 2/3, 1/4, 1/8 etc.)

Hard real-time threads (HRTT) with predictable timing
behavior
•  Thread-interleaved pipeline (no pipeline hazards)
•  Scratchpad memory instead of cache

Soft real-time threads (SRTT) with cycle stealing
from HRTT

FlexPRET Softcore

Open Source:
https://github.com/pretis/flexpret

Note: Not limited to 8 tasks. Can schedule several tasks
on the same hardware thread using software scheduling.

Zimmer, Broman, Shaver, and Lee. “FlexPRET: A Processor
Platform for Mixed-Criticality Systems” (RTAS 2014)

Part I
The Implementation
View

Part II
The Specification
View

David Broman
dbro@kth.se

5

Viewpoints on the MCS timing aspect

Viewpoint I

The Implementation View
Viewpoint II

The Specification View

•  Software Scheduling
Vestal’s model (and variants
thereof) with different WCET num-
bers for different criticality levels.

•  Hardware Scheduling
For instance, the FlexPRET
approach (Zimmer et. al 2014) with
predictable and less predictable
hardware threads.

•  A Task Model with Bounded
Frequencies
Yip et al. (2014) on relaxed the
synchronous approach for MSC.

•  Programming with Time
Express timing constraints and
fault handling explicitly in a
programming language.

Part I
The Implementation
View

Part II
The Specification
View

David Broman
dbro@kth.se

6

A Task Model With Bounded Frequencies

task model and an Early-Release EDF scheduling algorithm
for uni-processors to guarantee minimum service levels for
low criticality tasks. Every low criticality task has a maximum
period and a set of shorter desired periods. At runtime, the
low criticality tasks are released according to their maximum
period. If there is enough slack in the system, then the tasks are
released at one of their earliest desired periods. This approach
was later extended to multi-processors [11].

Contributions. We propose a novel extension to multi-rate
synchronous languages that allows the modeling of mixed-
criticality systems. The synchrony hypothesis is relaxed to
allow the specification of tasks with soft real-time deadlines.
Instead of requiring tasks to execute at constant frequencies,
low criticality tasks can execute within a specified range
of frequencies. We also propose a multi-processor schedul-
ing method for the proposed multi-rate, mixed criticality,
synchronous task model. Tasks are statically scheduled on
processors such that their minimum execution frequencies are
met. Slack in the static schedule is consumed by increasing the
scheduled time of the low criticality tasks, thereby increasing
their execution frequency. Additional slack can develop at
runtime when tasks execute for less than their WCET. The
additional slack is used to reschedule low criticality tasks
to further increase their execution frequency. We claim that
this is the first multi-rate, mixed criticality framework for
synchronous languages on multi-processors. In summary, our
main contributions are:

• Relaxing the synchrony hypothesis to capture the tim-
ing requirements of mixed-criticality tasks. We offer
frequency-based parameters for specifying different
levels of criticality. The parameters are tightly coupled
to embedded multi-rate applications by relating task
frequency bounds to task criticality. (Section II).

• The relaxation of the synchrony hypothesis to support
mixed-criticality violates the synchronous model of
communication. To address this, we use a simple
lossless buffering approach with bounded queue sizes.
In contrast to closely related formalisms, such as
Synchronous Data Flow [20], tasks in our approach
can produce dynamically varying number data items,
but only within statically known bounds. (Section III).

• We devise a multi-processor (static and dynamic)
scheduling method that tries to maximize system
utilization by distributing slack time proportionally
across all tasks. (Section IV).

• We evaluate our proposed scheduling approach ex-
tensively against the ER-EDF approach [11]. Bench-
marking results show that our proposed approach can
schedule up to 15% more task sets and achieve con-
sistently higher system utilization (up to 98.5%) than
ER-EDF. Moreover, tasks achieve higher execution
frequencies and share the slack more fairly than ER-
EDF. (Section V).

II. MULTI-RATE, MIXED-CRITICALITY, SYNCHRONOUS
TASK MODEL

We contend that the proposed task model is applicable to
a wide range of cyber-physical systems, such as Unmanned

Nav
(Life-critical)

4Hz

Stability
(Life-critical)

20Hz

Logging
(Non-critical)

10Hz

Sharing
(Non-critical)

10Hz

Avoid
(Mission-critical)

10Hz – 20Hz

Video
(Mission-critical)

10Hz – 25Hz

Input from
camera

Input from
proximity

sensor

Input from
position &
orientation

sensors

Output to
comms

Output
to flight
surfacesInput from

comms

Fig. 1. Functional block diagram of a UAV with criticality levels and
frequency bounds.

Aerial Vehicles (UAVs) [21], biomedical devices [22], and au-
tomotive systems [23]. As a motivating example, we describe
the design of a UAV inspired by the Paparazzi project [24]. A
UAV is a remotely controlled aerial vehicle commonly used
in surveillance operations. Figure 1 illustrates the functionality
of a UAV as a block diagram of tasks. The Nav task localizes
the UAV using onboard sensors, updates the flight path, and
sends the desired position to the Stability task. The Stability
task controls the flight surfaces to ensure stable flight to the
desired position. Extremely low jitter is required for stable
flight. The UAV has the following useful but less critical
features. The Video task streams a video of the UAV’s flight
from an onboard camera to allow users to fly the UAV from
the UAV’s point of view. The higher the frame rate, the better
the flying experience. The Avoid task uses onboard sensors to
detect obstacles around the UAV and sends collision avoidance
data to the Nav task. Thus, the more frequent obstacles are
checked for, the faster the UAV can safely travel at. Less
critical features that a UAV can have include a data logging
facility to log important flight events (Logging) and to share
obstacle and localization data with nearby UAVs (Sharing).
Because the UAV combines tasks of different criticalities, it is
an excellent example of a mixed-criticality system.

In our task model, a synchronous program is a set of
tasks ⌧ 2 � that are released together when the program
starts executing. Without loss of generality, we assume tasks
that do not create new tasks at runtime. The programmer
assigns a criticality ⇣

⌧

to each task as either life , mission ,
or non-critical . That is, ⇣

⌧

2 {life, mission, non-critical}.
Life critical tasks are released periodically and adhere to the
synchrony hypothesis. Thus, life critical tasks must complete
their computation before their next release time (a hard real-
time deadline). For example, if a life critical task with period
p
⌧

is released at time r
⌧

, then its deadline (and next release) is
at time r

⌧

+p
⌧

. We relax the synchrony hypothesis for mission
critical tasks in that bounded deadline misses are tolerated. For
example, if a mission critical task misses its deadline of time
r
⌧

+ pmin

⌧

, then it cannot miss a relaxed deadline of time
r
⌧

+ pmax

⌧

, where pmin

⌧

< pmax

⌧

. We relax the synchrony
hypothesis completely for non-critical tasks by removing the
notion of deadlines. For example, if a non-critical task with
period p is released at time r

⌧

and completes its computation

2

•  Life Critical Tasks
fmax = fmin.

Each periodic task has
two frequency parameters:
fmax and fmin.

•  Mission Critical Tasks
fmax > fmin.

•  Non-Critical Tasks
fmax is the goal. fmin= 0

Example: Unmanned Aerial Vehicle (UAV)

Note:
The task model does not say anything
about the implementation technique or
WCETs for specific platforms.

Eugene, Kuo, Roop, and Broman. “Relaxing the Synchron-
ous Approach for Mixed-Criticality Systems” (RTAS 2014)

Part I
The Implementation
View

Part II
The Specification
View

David Broman
dbro@kth.se

7

Viewpoints on the MCS timing aspect

Viewpoint I

The Implementation View
Viewpoint II

The Specification View

•  Software Scheduling
Vestal’s model (and variants
thereof) with different WCET num-
bers for different criticality levels.

•  Hardware Scheduling
For instance, the FlexPRET
approach (Zimmer et. al 2014) with
predictable and less predictable
hardware threads.

•  A Task Model with Bounded
Frequencies
Yip et al. (2014) on relaxed the
synchronous approach for MSC.

•  Programming with Time
Express timing constraints and
fault handling explicitly in a
programming language.

Part I
The Implementation
View

Part II
The Specification
View

David Broman
dbro@kth.se

8

Programming with Time

Motivation

•  Timing Specification: Be able to
describe different task models
within one framework

•  Formal: To have an unambiguous
formal semantics with precise meaning

•  Fault handling: Be able to express
precise run-time behaviors when e.g.
deadlines are missed.

Some related work
•  Giotto by Henzinger et al. (2001)
•  Ptides by Eidson et al. (2012)
•  Timing constraint logic by Lisper and Nordlander (2012)
•  Synchronous approach for MSC by Cohen et al. (2015)

Part I
The Implementation
View

Part II
The Specification
View

David Broman
dbro@kth.se

9

A Timed Lambda Calculus (unpublished work)

Timed Semantics (early draft)

David Broman
KTH Royal Institute of Technology and UC Berkeley

dbro@kth.se

Syntax

Variables x, y 2 X
Constants c 2 C
Time t 2 N [1
Expressions e ::= x | �x.e | e e | c | overrun | time | within t to t do e else e

Values v ::= �x.e | c
Frames F ::= 2 e | v 2 | within t1 to t2 do overrun else 2

Dynamic Semantics

�(c, v, s, t) = (v0, s0, t0) @d 2 D. t

0
> d

c v | s, t,D �! v

0 | s0, t0
(E-DELTA) (�x.e)v | s, t,D �! [x 7! v]e | s, t (E-BETA)

�(c, v, s, t) = (v0, s0, t0) 9d 2 D. t

0
> d

c v | s, t,D �! overrun | s0, t0
(E-OVERRUN) time | s, t,D �! t | s, t (E-TIME)

within t1 to t2 do v else e | s, t,D �! v | s0,max ({t, t+ t1}) (E-WITHIN)

within t1 to t2 do overrun else v | s, t,D �! v | s, t (E-OVERRUN-HANDLING)

e1 | s, t,D [{t+ t2} �! e

0
1 | s0, t0

within t1 to t2 do e1 else e2 | s, t,D �! within t1�t

0+t to t2�t

0+t do e

0
1 else e2 | s0, t0

(E-CONG-WITHIN)

e | s, t,D �! e

0 | s0, t0

F [e] | s, t,D �! F [e0] | s0, t0
(E-CONG) F [overrun] | s, t,D �! overrun | s, t (E-OVERRUN-PROP)

References

1

Part I
The Implementation
View

Part II
The Specification
View

David Broman
dbro@kth.se

10

The within construct

This talk will not demonstrate a new system model that is useful from a schedul-
ing point of view. Instead, it will illustrate the challenges and potential solutions of
defining formal semantics of languages that can be used to program mixed-criticality
systems. Particular attention is given to properties that are usually not part of mixed
criticality definitions, such as relaxed bounds on deadlines [7], precision of time, and
clock synchronization.

5 Timed Lambda Calculus

Syntax

Variables x, y 2 X
Constants c 2 C
Time t 2 N [1
Expressions e ::= x | �x.e | e e | c | overrun | time | within t to t do e else e

Values v ::= �x.e | c
Frames F ::= 2 e | v 2 | within t1 to t2 do overrun else 2

Dynamic Semantics

�(c, v, s, t) = (v0, s0, t0) @d 2 D. t

0
> d

c v | s, t,D �! v

0 | s0, t0
(E-DELTA) (�x.e)v | s, t,D �! [x 7! v]e | s, t (E-BETA)

�(c, v, s, t) = (v0, s0, t0) 9d 2 D. t

0
> d

c v | s, t,D �! overrun | s0, t0
(E-OVERRUN) time | s, t,D �! t | s, t (E-TIME)

within t1 to t2 do v else e | s, t,D �! v | s0,min({t+ t1} [D) (E-WITHIN)

within t1 to t2 do overrun else v | s, t,D �! v | s, t (E-OVERRUN-HANDLING)

e1 | s, t,D [{t+ t2} �! e

0
1 | s0, t0

within t1 to t2 do e1 else e2 | s, t,D �! within t1 to t2 do e

0
1 else e2 | s0, t0

(E-CONG-WITHIN)

e | s, t,D �! e

0 | s0, t0

F [e] | s, t,D �! F [e0] | s0, t0
(E-CONG) F [overrun] | s, t,D �! overrun | s, t (E-OVERRUN-PROP)

5.1 Examples

Can take between 5 and 10 ms. e1 must start directly.

within 5 to 10 do e1 else e2

Allows to wait until code executes

3

Lower timing bound for a specific
resolution (e.g., microseconds)

Upper timing bound (to be verified
statically and checked at runtime)

Computation to be done
within the bound.

Fault handling if a
deadline is missed

within 5 to 10 do
within 0 to 3 do () else ();
computation()

else

errorHandling()

References

[1] Alan Burns and Sanjoy Baruah. Towards A More Practical Model for Mixed Criticality
Systems. In Proceedings of the 1st International Workshop on Mixed Criticality Systems

(WMC), pages 1–6, 2013.

[2] Alan Burns and Robert Davis. Mixed Criticality Systems – A Review. Department of

Computer Science, University of York, Report. Fourth edition, July 31, 2014.

[3] Patrick Graydon and Iain Bate. Safety Assurance Driven Problem Formulation for Mixed-
Criticality Scheduling. In Proceedings of the 1st International Workshop on Mixed Critical-

ity Systems (WMC), pages 19–24, 2013.

[4] Jonathan L Herman, Christopher J Kenna, Malcolm S Mollison, James H Anderson, and
Daniel M Johnson. RTOS support for multicore mixed-criticality systems. In Proceedings

of the Real-Time and Embedded Technology and Applications Symposium (RTAS), pages
197–208. IEEE, 2012.

[5] Benjamin C. Pierce. Types and Programming Languages. The MIT Press, 2002.

[6] Steve Vestal. Preemptive scheduling of multi-criticality systems with varying degrees of
execution time assurance. In Proceedings of the 28th IEEE International Real-Time Systems

Symposium (RTSS), pages 239–243. IEEE, 2007.

[7] Eugene Yip, Matthew Kuo, David Broman, and Partha S. Roop. Relaxing the Synchronous
Approach for Mixed-Criticality Systems. In Proceedings of the 20th IEEE Real-Time and

Embedded Technology and Application Symposium (RTAS), pages 89–100. IEEE, 2014.

[8] Michael Zimmer, David Broman, Chris Shaver, and Edward A. Lee. FlexPRET: A Processor
Platform for Mixed-Criticality Systems. In Proceedings of the 20th IEEE Real-Time and

Embedded Technology and Application Symposium (RTAS), pages 101–110. IEEE, 2014.

4

Constructs can be
nested

In this case, specifies
the timing bounds for
releases.

Construction can
be put within loops
or have conditions.

Part I
The Implementation
View

Part II
The Specification
View

David Broman
dbro@kth.se

11

Conclusions

Thanks for listening!

Some key take away points:

•  Implementation view of MCS
•  Software Scheduling
•  Hardware Scheduling

•  Specification view of MCS
•  Bounded Frequencies Task Model
•  Programming with Time

