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What is mixed criticality? 

Mixed Time-Critical Systems 

Mixed-Criticality Systems (MCS) Challenge 
Reconcile the conflicting requirements of:  
•  Partitioning (for safety assurance) 
•  Sharing (for efficient resource usage) 
(Burns & Davis, 2013) 

This talk focuses on the time and timing 
aspects of the problem 

Other aspects are equally important (hardware failures, network 
aspects etc.), but are not considered here. 
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Viewpoints on the MCS timing aspect 

Viewpoint I 
 

The Implementation View 
Viewpoint II 

 

The Specification View 

•  Software Scheduling 
Vestal’s model (and variants 
thereof) with different WCET num-
bers for different criticality levels.  

•  Hardware Scheduling 
For instance, the FlexPRET 
approach (Zimmer et. al 2014) with 
predictable and less predictable 
hardware threads. 

•  A Task Model with Bounded 
Frequencies  
Yip et al. (2014) on relaxed the 
synchronous approach for MSC.  

•  Programming with Time 
Express timing constraints and 
fault handling explicitly in a 
programming language.  
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Hardware Scheduling with FlexPRET 

Fine-grained Multithreaded Processor Platform 
(thread interleaved) implemented on an FPGA 

Flexible schedule (1 to 8 active threads) and 
scheduling frequency (1, 1/2, 2/3, 1/4, 1/8 etc.) 

Hard real-time threads (HRTT) with predictable timing 
behavior 
•  Thread-interleaved pipeline (no pipeline hazards) 
•  Scratchpad memory instead of cache 

Soft real-time threads (SRTT) with cycle stealing 
from HRTT 

FlexPRET Softcore 

Open Source: 
https://github.com/pretis/flexpret 

Note: Not limited to 8 tasks. Can schedule several tasks 
on the same hardware thread using software scheduling. 

Zimmer, Broman, Shaver, and Lee. “FlexPRET: A Processor 
Platform for Mixed-Criticality Systems” (RTAS 2014) 
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A Task Model With Bounded Frequencies 

task model and an Early-Release EDF scheduling algorithm
for uni-processors to guarantee minimum service levels for
low criticality tasks. Every low criticality task has a maximum
period and a set of shorter desired periods. At runtime, the
low criticality tasks are released according to their maximum
period. If there is enough slack in the system, then the tasks are
released at one of their earliest desired periods. This approach
was later extended to multi-processors [11].

Contributions. We propose a novel extension to multi-rate
synchronous languages that allows the modeling of mixed-
criticality systems. The synchrony hypothesis is relaxed to
allow the specification of tasks with soft real-time deadlines.
Instead of requiring tasks to execute at constant frequencies,
low criticality tasks can execute within a specified range
of frequencies. We also propose a multi-processor schedul-
ing method for the proposed multi-rate, mixed criticality,
synchronous task model. Tasks are statically scheduled on
processors such that their minimum execution frequencies are
met. Slack in the static schedule is consumed by increasing the
scheduled time of the low criticality tasks, thereby increasing
their execution frequency. Additional slack can develop at
runtime when tasks execute for less than their WCET. The
additional slack is used to reschedule low criticality tasks
to further increase their execution frequency. We claim that
this is the first multi-rate, mixed criticality framework for
synchronous languages on multi-processors. In summary, our
main contributions are:

• Relaxing the synchrony hypothesis to capture the tim-
ing requirements of mixed-criticality tasks. We offer
frequency-based parameters for specifying different
levels of criticality. The parameters are tightly coupled
to embedded multi-rate applications by relating task
frequency bounds to task criticality. (Section II).

• The relaxation of the synchrony hypothesis to support
mixed-criticality violates the synchronous model of
communication. To address this, we use a simple
lossless buffering approach with bounded queue sizes.
In contrast to closely related formalisms, such as
Synchronous Data Flow [20], tasks in our approach
can produce dynamically varying number data items,
but only within statically known bounds. (Section III).

• We devise a multi-processor (static and dynamic)
scheduling method that tries to maximize system
utilization by distributing slack time proportionally
across all tasks. (Section IV).

• We evaluate our proposed scheduling approach ex-
tensively against the ER-EDF approach [11]. Bench-
marking results show that our proposed approach can
schedule up to 15% more task sets and achieve con-
sistently higher system utilization (up to 98.5%) than
ER-EDF. Moreover, tasks achieve higher execution
frequencies and share the slack more fairly than ER-
EDF. (Section V).

II. MULTI-RATE, MIXED-CRITICALITY, SYNCHRONOUS
TASK MODEL

We contend that the proposed task model is applicable to
a wide range of cyber-physical systems, such as Unmanned
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Fig. 1. Functional block diagram of a UAV with criticality levels and
frequency bounds.

Aerial Vehicles (UAVs) [21], biomedical devices [22], and au-
tomotive systems [23]. As a motivating example, we describe
the design of a UAV inspired by the Paparazzi project [24]. A
UAV is a remotely controlled aerial vehicle commonly used
in surveillance operations. Figure 1 illustrates the functionality
of a UAV as a block diagram of tasks. The Nav task localizes
the UAV using onboard sensors, updates the flight path, and
sends the desired position to the Stability task. The Stability
task controls the flight surfaces to ensure stable flight to the
desired position. Extremely low jitter is required for stable
flight. The UAV has the following useful but less critical
features. The Video task streams a video of the UAV’s flight
from an onboard camera to allow users to fly the UAV from
the UAV’s point of view. The higher the frame rate, the better
the flying experience. The Avoid task uses onboard sensors to
detect obstacles around the UAV and sends collision avoidance
data to the Nav task. Thus, the more frequent obstacles are
checked for, the faster the UAV can safely travel at. Less
critical features that a UAV can have include a data logging
facility to log important flight events (Logging) and to share
obstacle and localization data with nearby UAVs (Sharing).
Because the UAV combines tasks of different criticalities, it is
an excellent example of a mixed-criticality system.

In our task model, a synchronous program is a set of
tasks ⌧ 2 � that are released together when the program
starts executing. Without loss of generality, we assume tasks
that do not create new tasks at runtime. The programmer
assigns a criticality ⇣

⌧

to each task as either life , mission ,
or non-critical . That is, ⇣

⌧

2 {life, mission, non-critical}.
Life critical tasks are released periodically and adhere to the
synchrony hypothesis. Thus, life critical tasks must complete
their computation before their next release time (a hard real-
time deadline). For example, if a life critical task with period
p
⌧

is released at time r
⌧

, then its deadline (and next release) is
at time r

⌧

+p
⌧

. We relax the synchrony hypothesis for mission
critical tasks in that bounded deadline misses are tolerated. For
example, if a mission critical task misses its deadline of time
r
⌧

+ pmin

⌧

, then it cannot miss a relaxed deadline of time
r
⌧

+ pmax

⌧

, where pmin

⌧

< pmax

⌧

. We relax the synchrony
hypothesis completely for non-critical tasks by removing the
notion of deadlines. For example, if a non-critical task with
period p is released at time r

⌧

and completes its computation

2

•  Life Critical Tasks 
fmax = fmin.  

Each periodic task has  
two frequency parameters:  
fmax and fmin.   

•  Mission Critical Tasks 
fmax > fmin.  

•  Non-Critical Tasks 
fmax is the goal. fmin= 0 

Example: Unmanned Aerial Vehicle (UAV)  

Note:  
The task model does not say anything 
about the implementation technique or 
WCETs for specific platforms. 

Eugene, Kuo, Roop, and Broman. “Relaxing the Synchron- 
ous Approach for Mixed-Criticality Systems” (RTAS 2014) 
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Programming with Time 

Motivation 

•  Timing Specification: Be able to 
describe different task models 
within one framework 

•  Formal: To have an unambiguous 
formal semantics with precise meaning 

•  Fault handling: Be able to express 
precise run-time behaviors when e.g. 
deadlines are missed. 

Some related work 
•  Giotto by Henzinger et al. (2001)  
•  Ptides by Eidson et al. (2012) 
•  Timing constraint logic by Lisper and Nordlander (2012) 
•  Synchronous approach for MSC by Cohen et al. (2015) 
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A Timed Lambda Calculus (unpublished work) 

Timed Semantics (early draft)

David Broman
KTH Royal Institute of Technology and UC Berkeley

dbro@kth.se

Syntax

Variables x, y 2 X
Constants c 2 C
Time t 2 N [1
Expressions e ::= x | �x.e | e e | c | overrun | time | within t to t do e else e

Values v ::= �x.e | c
Frames F ::= 2 e | v 2 | within t1 to t2 do overrun else 2

Dynamic Semantics

�(c, v, s, t) = (v0, s0, t0) @d 2 D. t

0
> d

c v | s, t,D �! v

0 | s0, t0
(E-DELTA) (�x.e)v | s, t,D �! [x 7! v]e | s, t (E-BETA)

�(c, v, s, t) = (v0, s0, t0) 9d 2 D. t

0
> d

c v | s, t,D �! overrun | s0, t0
(E-OVERRUN) time | s, t,D �! t | s, t (E-TIME)

within t1 to t2 do v else e | s, t,D �! v | s0,max ({t, t+ t1}) (E-WITHIN)

within t1 to t2 do overrun else v | s, t,D �! v | s, t (E-OVERRUN-HANDLING)

e1 | s, t,D [ {t+ t2} �! e

0
1 | s0, t0

within t1 to t2 do e1 else e2 | s, t,D �! within t1�t

0+t to t2�t

0+t do e

0
1 else e2 | s0, t0

(E-CONG-WITHIN)

e | s, t,D �! e

0 | s0, t0

F [e] | s, t,D �! F [e0] | s0, t0
(E-CONG) F [overrun] | s, t,D �! overrun | s, t (E-OVERRUN-PROP)

References
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The within construct 

This talk will not demonstrate a new system model that is useful from a schedul-
ing point of view. Instead, it will illustrate the challenges and potential solutions of
defining formal semantics of languages that can be used to program mixed-criticality
systems. Particular attention is given to properties that are usually not part of mixed
criticality definitions, such as relaxed bounds on deadlines [7], precision of time, and
clock synchronization.

5 Timed Lambda Calculus

Syntax

Variables x, y 2 X
Constants c 2 C
Time t 2 N [1
Expressions e ::= x | �x.e | e e | c | overrun | time | within t to t do e else e

Values v ::= �x.e | c
Frames F ::= 2 e | v 2 | within t1 to t2 do overrun else 2

Dynamic Semantics

�(c, v, s, t) = (v0, s0, t0) @d 2 D. t

0
> d

c v | s, t,D �! v

0 | s0, t0
(E-DELTA) (�x.e)v | s, t,D �! [x 7! v]e | s, t (E-BETA)

�(c, v, s, t) = (v0, s0, t0) 9d 2 D. t

0
> d

c v | s, t,D �! overrun | s0, t0
(E-OVERRUN) time | s, t,D �! t | s, t (E-TIME)

within t1 to t2 do v else e | s, t,D �! v | s0,min({t+ t1} [D) (E-WITHIN)

within t1 to t2 do overrun else v | s, t,D �! v | s, t (E-OVERRUN-HANDLING)

e1 | s, t,D [ {t+ t2} �! e

0
1 | s0, t0

within t1 to t2 do e1 else e2 | s, t,D �! within t1 to t2 do e

0
1 else e2 | s0, t0

(E-CONG-WITHIN)

e | s, t,D �! e

0 | s0, t0

F [e] | s, t,D �! F [e0] | s0, t0
(E-CONG) F [overrun] | s, t,D �! overrun | s, t (E-OVERRUN-PROP)

5.1 Examples

Can take between 5 and 10 ms. e1 must start directly.

within 5 to 10 do e1 else e2

Allows to wait until code executes

3

Lower timing bound for a specific 
resolution (e.g., microseconds) 

Upper timing bound (to be verified 
statically and checked at runtime) 

Computation to be done 
within the bound. 

Fault handling if a 
deadline is missed 

within 5 to 10 do
within 0 to 3 do () else ();
computation()

else

errorHandling()
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Constructs can be 
nested  

In this case, specifies 
the timing bounds for 
releases. 

Construction can 
be put within loops 
or have conditions. 
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Conclusions 

Thanks for listening! 

Some key take away points: 

•  Implementation view of MCS 
•  Software Scheduling  
•  Hardware Scheduling 

•  Specification view of MCS 
•  Bounded Frequencies Task Model 
•  Programming with Time 


