Programming with Time for
Mixed Criticality Systems

Dagstuhl Seminar, March 16-20, 2015
Mixed Criticality on Multicore/Manycore Platforms

David Broman
Associate Professor, KTH Royal Institute of Technology
Assistant Research Engineer, University of California, Berkeley

Slide 9 was updated July 8, 2015.

What is mixed criticality?

Mixed-Criticality Systems (MCS) Challenge

Reconcile the conflicting requirements of:
» Partitioning (for safety assurance)

+ Sharing (for efficient resource usage)
(Burns & Davis, 2013)

This talk focuses on the time and timing
aspects of the problem

Mixed Time-Critical Systems

Other aspects are equally important (hardware failures, network
aspects etc.), but are not considered here.

Part | Part Il
The Implementation The Specification

David Broman
dbro@kth.se View View

Viewpoints on the MCS timing aspect

Viewpoint |

Software Scheduling
Vestal’'s model (and variants
thereof)

Hardware Scheduling
For instance, the FlexPRET

ardware threads.

The Implementation View

with different WCET num-
fffere frealify levels.

approach (Zimmer et. al 2014) with
predictable and less predictable

Viewpoint Il
The Specification View

—

A Task Model with Bounded
Frequencies

Yip et al. (2014) on relaxed the
synchronous approach for MSC.
* Programming with Time
Express timing constraints and
fault handling explicitly in a
programming language.

Part |

David Broman

dbro@kth.se View

The Implementation

Part Il
The Specification
View

Hardware Scheduling with FlexPRET

|

v
FlexPRET Softcore

2

Fine-grained Multithreaded Processor Platform
(thread interleaved) implemented on an FPGA

Flexible schedule (1 to 8 active threads) and
scheduling frequency (1, 1/2, 2/3, 1/4, 1/8 etc.)

Hard real-time threads (HRTT) with predictable timing
behavior

» Thread-interleaved pipeline (no pipeline hazards)
+ Scratchpad memory instead of cache

Soft real-time threads (SRTT) with cycle stealing
from HRTT

Note: Not limited to 8 tasks. Can schedule several tasks
on the same hardware thread using software scheduling.

Open Source:
https://github.com/pretis/flexpret

Zimmer, Broman, Shaver, and Lee. “FlexPRET: A Processor
Platform for Mixed-Criticality Systems” (RTAS 2014)

@ Partl

David Broman

dbro@kth.se View

The Implementation

Part Il
The Specification

View

Viewpoints on the MCS timing aspect

Viewpoint | Viewpoint Il
The Implementation View The Specification View

+ Software Scheduling
Vestal’'s model (and variants
thereof) with different WCET num-
bers for different criticality levels.

A Task Model with Bounded
Frequencies

Yip et al. (2014) on relaxed the
synchronous approach for MSC.

* Hardware Scheduling ming with T
For instance, the FIexPRET Express timing constraints and
approach (Zimmer et. al 2014) with fault handling explicitly in a
predictable and less predictable programming language.

hardware threads.

Part |

David Broman The Implementation ™ The Specification
dbro@kth.se View View

A Task Model With Bounded Frequencies

Lo Example: Unmanned Aerial Vehicle (UAV)
Each periodic task has

Input from |
two frequency parameters: position & | I
fmax and fmin' orsl:::i?:n I Nav) Stability : Output
| (Life-critical) (Life-critical) to flight
put from I 4Hz) 20Hz : surfaces
« Life Critical Tasks comms y |
fmax =, min* : ™\ :
Input from | Avoid Logging |
.. ies roximi Mission-critical on-critical |
° MISSIon Crltlcal TaSkS psensorL>: (10Hz — 20Hz)) ™ 10Hz)) :
fmax >, min //
: I I
I
A
g I I
. Non_-CrltlcaI Tasks P it sharing) |
f,.isthegoal. f ;=0 c"amm 4> (Mission-critical) (Non-crifical) | |
| 10Hz — 25Hz 10Hz)
| v | _ Output to
Note: L _______1 comms
The task model does not say anything
about the implementation technique or Eugene, Kuo, Roop, and Broman. “Relaxing the Synchron-
[¢] g Yy
WCETs for specific platforms. ous Approach for Mixed-Criticality Systems” (RTAS 2014)

Part | @ Part i

David Broman The Implementation ™ The Specification
dbro@kth.se View View

Viewpoints on the MCS timing aspect

Viewpoint | Viewpoint Il
The Implementation View The Specification View
» Software Scheduling « A Task Model with Bounded

Vestal's model (and variants Frequencies
thereof) with different WCET num- Yip et al. (2014) on relaxed
bers for different criticality levels. .

the

* Hardware Scheduling
For instance, the FlexPRET
approach (Zimmer et. al 2014) with
predictable and less predictable
hardware threads.

Programming with Time
Express timing constraints and
fault handling explicitly in a
programming language.

Part | @ Part il

David Broman The Implementation The Specification
dbro@kth.se View View

Programming with Time

Motivation

+ Timing Specification: Be able to
describe different task models
within one framework

* Formal: To have an unambiguous
formal semantics with precise meaning

* Fault handling: Be able to express
precise run-time behaviors when e.g.
deadlines are missed.

Some related work
+ Giotto by Henzinger et al. (2001)
+ Ptides by Eidson et al. (2012)
+ Timing constraint logic by Lisper and Nordlander (2012)
* Synchronous approach for MSC by Cohen et al. (2015)

Part | @ Part i

David Broman The Implementation The Specification
dbro@kth.se View View

A Timed Lambda Calculus (unpublished work)

David Broman
dbro@kth.se

Syntax

Variables z,yeX
Constants ceC

Time teNUoo

Expressions e =z |Az.e|ee|c|overrun|time|withinttotdoecelsee
Values vu=Aze|c

Frames F:=0e€|vO|withint; tot; dooverrunelse O

Dynamic Semantics

5(e,v,s,t) = (v, 8, 1) ddeD.t' >d
cvl|s, t,D— |t

(E-DELTA) (Az.e)v|s,t,D — [z v]e|s,t (E-BETA)

§(c,v,8,t) = (v, s, 1) ddeD.t' >d

cv|s,t,D —s overrun|s’,t’

(E-OVERRUN) time|s,t,D —t|s,t (E-TIME)

withint; tot; dovelsee|s,t,D — v|s',maz({t,t +t1}) (E-WITHIN)
withint; tot; dooverrunelsev|s,t,D — v|s,t (E-OVERRUN-HANDLING)

e1|s,t, DU{t+t2} — ey |5t
withint; tot; does elsees |s,t,D — withint;—t'+ttoto—t'+tdoe) elsees | st

(E-CONG-WITHIN)

els,t,D—¢€|s,t
Fle] | s,t,D — Fle'] | s',t

(E-CONG) Floverrun]|s,t,D — overrun|s,t (E-OVERRUN-PROP)

Part | @ Partli

The Implementation The Specification
View View

The within construct

Lower timing bound for a specific Upper timing bound (to be verified

Computation to be done
within the bound.

within5tol0doejelsees «—— Fault handling if a
deadline is missed

Constructs can be

within 5 to 10 do the timing bounds for
nested within(Oto 3 do () else (); releases.
computation|)
else
Construction can errorHandling()

be put within loops
or have conditions.

David Broman
dbro@kth.se

Part | @ Partli

The Implementation The Specification
View View

In this case, specifies

1"

Conclusions

Some key take away points:

Implementation view of MCS
+ Software Scheduling
* Hardware Scheduling

Specification view of MCS
* Bounded Frequencies Task Model
* Programming with Time

Thanks for listening!

Part | Part Il
David Broman The Implementation The Specification
dbro@kth.se View View

