
Predictable Computation and Time-Aware
Semantics for Time-Coordinate Computation
Applications in Cyber-Physical Systems (CPS)

Intel, Oregon, December 3, 2015
David Broman
Associate Professor, KTH Royal Institute of Technology

Assistant Research Engineer, University of California, Berkeley

Part I
Time-aware systems design –
research challenges

Part II
Programming with time –
a research initiative

David Broman
dbro@kth.se

2

Agenda

Part I

Time-aware systems design –
research challenges

Part II

Programming with time –
a research initiative

Part I
Time-aware systems design –
research challenges

Part II
Programming with time –
a research initiative

David Broman
dbro@kth.se

3

Part I

Time-aware systems design –
research challenges

Part I
Time-aware systems design –
research challenges

Part II
Programming with time –
a research initiative

David Broman
dbro@kth.se

4 Time-Aware Systems that need
Time-Coordinated Computation - Examples

Aircraft
(traditional or
autonomous)

Automotive
(systems of systems)

Industrial
Automation

Cyber-Physical Systems (CPS)

Time-Aware Development Systems

Physical simulations
(Simulink, Modelica, etc.)

Time-Aware Distributed Systems
Time-stamped

distributed systems
(E.g. Google Spanner)

Measurement equipment

Satellites Medical
Equipment

Telecommunication

Part I
Time-aware systems design –
research challenges

Part II
Programming with time –
a research initiative

David Broman
dbro@kth.se

5

Model-Based Correct-by-Construction

Physical system (the plant) Cyber system: Computation (embedded) + Networking

Sensors

Actuators

System

Model

Modeling

Equation-based models

Platform 1

Physical Plant 2

Physical Plant 2

Physical
Interface

Physical Plant 1

Network
Platform 2

Platform 3

Physical
Interface

Sensor

Sensor

Physical
InterfaceActuator

Physical
Interface Actuator

Computation 3

Delay 1Computation 1

Computation 4
Computation 2

Delay 2

Various models of computation (MoC)

Virtual Testing:
Time-aware simulation

Modeling

Hardware
 in-the-loop
 simulation

Physical
prototyping

Compiling/
synthesizing

Part I
Time-aware systems design –
research challenges

Part II
Programming with time –
a research initiative

David Broman
dbro@kth.se

6

Model-Based Correct-by-Construction

Physical system (the plant) Cyber system: Computation (embedded) + Networking

Sensors

Actuators

System

Model

Modeling

Equation-based models

Platform 1

Physical Plant 2

Physical Plant 2

Physical
Interface

Physical Plant 1

Network
Platform 2

Platform 3

Physical
Interface

Sensor

Sensor

Physical
InterfaceActuator

Physical
Interface Actuator

Computation 3

Delay 1Computation 1

Computation 4
Computation 2

Delay 2

Various models of computation (MoC)

Virtual Testing:
Time-aware simulation

Modeling

Hardware
 in-the-loop
 simulation

Physical
prototyping

Compiling/
synthesizing

Model fidelity problem

“Ensuring that the model accurately
represents the real system”

Research Challenge:
Compile/synthesize the model’s cyber part, such that the simulated
model and the behavior of the real system coincide.
 The main challenge concerns guaranteeing correct timing behavior.

Part I
Time-aware systems design –
research challenges

Part II
Programming with time –
a research initiative

David Broman
dbro@kth.se

7

Modern Systems with Many Processor Platforms

Modern aircraft have many computer controlled systems
•  Engine control
•  Electric power control
•  Radar system
•  Navigation system
•  Flight control
•  Environmental control system
etc…
Modern cars have many ECU (Electronic Control Units)
•  Airbag control
•  Door control
•  Electric power steering control
•  Power train control
•  Speed control
•  Battery management.
etc.. Over 80 ECUs in a high-end model (Albert and Jones, 2010)

Automotive

Aerospace

Part I
Time-aware systems design –
research challenges

Part II
Programming with time –
a research initiative

David Broman
dbro@kth.se

8

Mixed-Criticality Systems

Issues with too many processors
•  High cost
•  Space and weight
•  Energy consumption

Federated Approach
Each processor has its own task

Consolidate into fewer processors

Task Processor
Platform

Required for Safety
•  Spatial isolation between tasks
•  Temporal isolation between tasks

(necessary to meet deadlines)

Part I
Time-aware systems design –
research challenges

Part II
Programming with time –
a research initiative

David Broman
dbro@kth.se

9

Mixed-Criticality Systems

Issues with too many processors
•  High cost
•  Space and weight
•  Energy consumption

Federated Approach
Each processor has its own task

Consolidate into fewer processors

Required for Safety
•  Spatial isolation between tasks
•  Temporal isolation between tasks

(necessary to meet deadlines)

Mixed-Criticality Challenge
Reconcile the conflicting requirements of:
•  Partitioning (for safety)
•  Sharing (for efficient resource usage)
(Burns & Davis, 2013)

…but such safety requirements are only needed for highly critical tasks

Part I
Time-aware systems design –
research challenges

Part II
Programming with time –
a research initiative

David Broman
dbro@kth.se

10

Overview of Research Areas

Research Objective: Develop model-based methodologies, algorithms, and
time-aware software tools based on a correct-by-construction approach.

Area 1: Modeling Language Research
-  Embedding Domain-Specific Languages, Modelyze

[PADL’12, EECS report’12]
-  Hybrid Co-Simulation [EMSOFT’13, HSCC’15]
-  EOO Modeling Semantics [Modlica’06,GPCE’06, SNE’09]
-  Model-based machine learning (new direction) [ESE’15]

Modeling Languages
Expressive, Analyzable, and

Extensible

Time-Aware Programming
Languages and Compilers

Area 3: Predictable Systems Research
-  Precision Timed (PRET) machines [ICCD’13, RTAS’13]
-  Predictable Memory Systems [RTAS’14]
-  Clock Synchronization [ISPCS’14]

Clock
sync

Area 2: Time-aware Programming Language Research
-  Time-Aware Programming Constructs [RTAS’13, NIST’15]
-  Timing Analysis [RTAS’13, CAV’15]

Clock
sync

Part I
Time-aware systems design –
research challenges

Part II
Programming with time –
a research initiative

David Broman
dbro@kth.se

11

Part II

Programming with time –
a research initiative

Part I
Time-aware systems design –
research challenges

Part II
Programming with time –
a research initiative

David Broman
dbro@kth.se

12

Programming Model and Time

Timing is not part of the software semantics
 Correct execution of programs (e.g., in C, C++, C#, Java, Scala, Haskell,
OCaml) has nothing to do with how long time things takes to execute.

Programming
Model

Timing Dependent on the
Hardware Platform

Make time an abstraction within the
programming model

Traditional Approach

Programming
Model

Our Objective

Enable timing portability, where timing
requirements are verified by the compiler.

Part I
Time-aware systems design –
research challenges

Part II
Programming with time –
a research initiative

David Broman
dbro@kth.se

13

Some Previous Work

Low-level Language Support
•  Real-Time Concurrent C

(Gehani & Ramamritham, 1991)
•  Real-time Euclid

(Kligerman & Stoyenko, 1986)
•  Ada real-time support, see e.g. (Burns & Wellings

2009)

Modeling Languages and Tools
•  Modelica (Modelica Association, 2014)
•  Simulink (Mathworks)
•  Modelyze (Broman & Siek, 2012)
•  Ptolemy II (Eker, 2003)
•  Labview (National Instruments)

High-level Language Support
•  Giotto (Henzinger, Horowitz, and Kirsch, 2003)

and the embedded machine (Henzinger &
Kirsch, 2007)

•  PTIDES (Zhao et al., 2007), (Eidson et al., 2011)

•  POSIX.1b real-time extensions
•  Synchronous languages, ESTEREL (Berry &

Gonthier), LUSTRE (Caspi et al., 1987),
SIGNAL (Benveniste & Guernic, 1991)

•  Real-time Java (RTJS)
•  Modula for real-time (Wirth, 1977)
•  PRET programming, (Lickly et al., 2008)
•  PRET-C (Andlam et al., 2010)

Verification and Formalizations
•  Process Algebras with time (Hennesy & Regan

1995)
•  Timed automata (Alur & Dill, 1994),

UPPAAL (Larsen, Pettersson, Yi, 1997)

Part I
Time-aware systems design –
research challenges

Part II
Programming with time –
a research initiative

David Broman
dbro@kth.se

14

What is our goal?

“Everything should be made as simple as possible,
but not simpler“

Execution time should be as short as possible, but not shorter

attributed to Albert Einstein

Task

Deadline

Slack

No point in making the
execution time shorter, as
long as the deadline is met.

Minimize the slack
Objective:
Minimize area, memory,
energy.

Challenge:
Still guarantee to meet
all timing constraints.

Part I
Time-aware systems design –
research challenges

Part II
Programming with time –
a research initiative

David Broman
dbro@kth.se

15

Detecting and handling of missed deadlines

Task
(clock cycles)

Time
(measured in e.g., ns)

Deadline

Hard task Firm task Soft task
Missed
deadline

Catastrophic
consequence

Result is useless, but
causes no damage

Result has still
some utility

Processor
frequency

Late miss
detection

Immediate miss
detection

Early miss
detection

Predictable timing
è Guarantee

correctness
(WCET)

Part I
Time-aware systems design –
research challenges

Part II
Programming with time –
a research initiative

David Broman
dbro@kth.se

16

Worst-Case Execution Time (WCET)

Worst-case execution
time (WCET) Static program analysis approach

•  Upper bound of WCET
•  Cannot handle any task

(conservative)

Challenges
•  To make it safe: upper_bound ≥ WCET
•  To make it tight: minimize (upper_bound – WCET)
•  Scalability: to handle large and complex programs

Average-case
Execution time (ACET)

Measurement-based approach
•  Cannot guarantee to find WCET
•  Applicable for any task

Part I
Time-aware systems design –
research challenges

Part II
Programming with time –
a research initiative

David Broman
dbro@kth.se

17

Time-Coordinated Computing

Platform #1

Platform #3

Platform #2

Timeliness within a platform
(soft, firm, and hard deadline
management)

Sensor

Sensor

Accurate time stamping
requires time synchronization

Clock
sync

Accurate timeliness over
networks requires deadline
handling, bounded network
latencies, WCET of
computations, and accurate
time stamping.
 Actuator

Part I
Time-aware systems design –
research challenges

Part II
Programming with time –
a research initiative

David Broman
dbro@kth.se

18

Programming Problems and Quality Factors

Distributed embedded microcontrollers
(bare metal implementations)

Mobile devices

 Programs

Photo
by Kyro

Retargeting heterogeneous
target platforms (processors and
OS:s.)

Error prone to construct
correctly timed programs.
A safety and security problem

Unclear timing semantics
Accuracy, resolution, and
meaning of time.

Simplicity

Portability

Unambiguity

Distributed real-time high
performance platforms (RTOS,
POSIX API, Linux, Windows)

Part I
Time-aware systems design –
research challenges

Part II
Programming with time –
a research initiative

David Broman
dbro@kth.se

19

Overview and Research Goal

Source-to-
source

compilation

Distributed embedded microcontrollers
(bare metal implementations)

Distributed real-time high
performance platforms (RTOS,
POSIX API, Linux, Windows)

Timed C
programs

Timed and/or synchronous
modeling languages

(Simulink, Modelica, Ptides,
SCADE etc.)

C Compiler

C Compiler

Timing
Analysis

May act as an intermediate
language.

Part I
Time-aware systems design –
research challenges

Part II
Programming with time –
a research initiative

David Broman
dbro@kth.se

20

Overview and Research Goal

Source-to-
source

compilation

Distributed embedded microcontrollers
(bare metal implementations)

Distributed real-time high
performance platforms (RTOS,
POSIX API, Linux, Windows)

Timed C
programs

C Compiler

C Compiler

Timing
Analysis

Research goal:
To develop a formally defined programming model
together with a compiler tool chain where time is
first class citizen, thus enabling:
•  Simple and correct programming with time
•  Portability across processers and OS:s.
•  Unambiguous meaning of a timed program.

Timed and/or synchronous
modeling languages

(Simulink, Modelica, Ptides,
SCADE etc.)

Part I
Time-aware systems design –
research challenges

Part II
Programming with time –
a research initiative

David Broman
dbro@kth.se

21

Requirements of the program model

Variable resolution
Express time in ms, us, or ns. Type system should give
compile time errors for incorrect usage.

Timed Concurrency
Declarative concurrency for expressing concurrent tasks.

Time stamping
Get accuracy and error bounds, depending on
underlaying technology (PTP, NTP etc.)

Timeliness and Missed Deadline handling
Express how to handle soft, firm, and hard deadlines, and
how to react on misses.

Timeliness and Communication
Sending and receiving data with timing guarantees

Part I
Time-aware systems design –
research challenges

Part II
Programming with time –
a research initiative

David Broman
dbro@kth.se

22

Conclusions

Some take away points:

Thanks for listening!

•  Time and timeliness are inherently important in
systems that interact with the physical reality.

•  The initiative of programming with time aims at
making it simpler to write unambiguous timed
programs that are portable.

•  Two important overall design challenges for time-
aware systems are high model fidelity and the
construction of mixed-criticality systems.

