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ABSTRACT
In this paper, we explain how to achieve deterministic exe-
cution of FMUs (Functional Mockup Units) under the FMI
(Functional Mockup Interface) standard. In particular, we
focus on co-simulation, where an FMU either contains its
own internal simulation algorithm or serves as a gateway
to a simulation tool. We give conditions on the design of
FMUs and master algorithms (which orchestrate the execu-
tion of FMUs) to achieve deterministic co-simulation. We
show that with the current version of the standard, these
conditions demand capabilities from FMUs that are optional
in the standard and rarely provided by an FMU in prac-
tice. When FMUs lacking these required capabilities are
used to compose a model, many basic modeling capabil-
ities become unachievable, including simple discrete-event
simulation and variable-step-size numerical integration al-
gorithms. We propose a small extension to the standard
and a policy for designing FMUs that enables deterministic
execution for a much broader class of models. The extension
enables a master algorithm to query an FMU for the time
of events that are expected in the future. We show that a
model can be executed deterministically if all FMUs in the
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model are either memoryless or implement one of rollback or
step-size prediction. We show further that such a model can
contain at most one “legacy” FMU that is not memoryless
and provides neither rollback nor step-size prediction.

Categories and Subject Descriptors
C.3 [Computer Systems Organization]: Special-Purpose
and Application-Based Systems—real-time and embedded sys-
tems

1. INTRODUCTION
FMI (Functional Mockup Interface) is an evolving standard
for composing model components designed using distinct
modeling tools [3, 4, 16, 17]. Initially developed within
the MODELISAR project, and currently supported by a
number of industrial partners and tools (see https://www.

fmi-standard.org/), FMI shows enormous promise for en-
abling the exchange and interoperation of model compo-
nents. FMI is particularly suitable for cyber-physical sys-
tems (CPSs), where model components may represent dis-
tinct subsystems that are best designed with distinct mod-
eling tools. The FMI standard supports both co-simulation
(where a component, called an FMU (Functional Mock-up
Unit), implements its own simulation algorithm) and model
exchange (where an FMU describes the model su�ciently
for an external simulation algorithm to execute simulation).
In this paper we focus the discussion on co-simulation in the
current version of the standard (version 2.0, Beta 4 [16]).

A model is a collection of interconnected FMUs, as shown
in Figure 1. These FMU slaves are to be executed by some
master algorithm (MA), which orchestrates the execution of
the FMUs, according to its own semantics. The MA orches-
trates the communication of the FMUs through their inputs

Figure 1: A model consisting of FMUs connected in
a block diagram.
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and outputs, shown in the figure as black triangles. The
MA may be the execution engine of an established simula-
tion tool such as Simulink, in which case the model may also
include native Simulink blocks interacting with the FMUs.
The semantics implemented by the MA is that of the host
tool. Each FMU may have been exported by some other
tool, such as Dymola. The goal of FMI is to enable an FMU
exported by one tool to interoperate with a variety of host
tools, and for host tools to orchestrate interactions between
FMUs exported by a variety of other tools.

In principle, FMI is capable of composing components rep-
resenting timed behavior, including physical dynamics and
discrete events. However, there are significant subtleties and
limitations. In particular, it is possible to design FMUs and
MAs that are compliant with the standard, and yet exhibit
nondeterministic and unexpected behavior. In this paper,
we explain how to achieve deterministic execution of FMUs.
Specifically, the contributions of this paper are the following:

• We give conditions on the design of FMUs and MAs. With
the current version of the standard, these conditions de-
mand capabilities from FMUs that are optional in the
standard and rarely provided by an FMU in practice (Sec-
tion 3).

• We clarify and formalize a subset of the FMI standard
and give constraints (contracts) on the expected behavior
of FMUs and MAs, so that interoperation has consistent
and predictable results (Sections 4).

• We propose a master algorithm for the co-simulation step
that only requires capabilities of the current standard. We
prove that the algorithm is convergent, determinate, and
ensures maximal progress (Section 5.1).

• We propose a small extension to the standard that en-
ables deterministic execution for a much broader class of
models than possible with the current standard. Specifi-
cally, we present a new MA where all FMUs either imple-
ment rollback (which is expected to be rarely supported
by FMUs) or implement our proposed extension to the
standard (which is easier to support). We show further
that such a model can contain at most one FMU (which
we call a “legacy FMU”) that provides neither capability.
We prove that this new algorithm is convergent, determi-
nate, and ensures maximal progress (Section 5.2).

2. FMI FOR CO-SIMULATION
In this section, we explain capabilities and limitations of the
FMI 1.0 and 2.0 beta 4 standards.

2.1 FMI 1.0
The method provided by FMI for advancing time in co-
simulation is called fmiDoStep. It is implemented as a C
procedure by the slave FMU. The fmiDoStep method is called
by the MA, which coordinates data exchange between the
slaves to control the entire co-simulation. In FMI 1.0, fmi-
DoStep has the following signature [17]:

fmiStatus fmiDoStep(
fmiComponent c,
fmiReal currentCommunicationPoint,
fmiReal communicationStepSize,
fmiBoolean newStep);

The currentCommunicationPoint argument is the current sim-
ulation time of the master, whereas communicationStepSize

is the time step that the master proposes to the slave. If, for
example, the slave encompasses a model with an ordinary
di↵erential equation (ODE), then its numerical integration
algorithm should attempt to advance time by this proposed
step. The slave may accept or reject the step. For instance,
it may reject it if the step size is too large and hence causes
a discrete event, such as a zero crossing, within the step.

The MA generally interacts with more than one slave,
and uses the boolean flag newStep to indicate whether the
proposed step is a new step, or whether the previously at-
tempted step was rejected by some slave, and therefore is
being repeated.

Although our paper is restricted to co-simulation, we point
out an important class of problems in which a MA not only
controls FMUs for co-simulation, but also integrates in time
FMUs for model exchange or ODEs that are implemented in
the simulation environment that provides the MA. In this
situation, the MA needs to provide a time integration al-
gorithm. For reasons of computational e�ciency, one may
want to use an adaptive step-size, multi-step time integra-
tion algorithm. Unfortunately, FMI 1.0 does not support
this, as we will now show. Consider a MA that contains an
adaptive (variable) step-size Runge-Kutta 2-3 solver. Let
the communication point be 0 and the Runge-Kutta step
size be 1.0. Then, the MA needs to obtain outputs from the
FMU at times 0, 0.5, 0.75, and 1. Thus, there need to be
three calls to fmiDoStep, e.g.,

fmiDoStep(component, 0.0, 0.5, true);
fmiDoStep(component, 0.5, 0.25, ?);
fmiDoStep(component, 0.75, 0.25, ?);

The newStep argument is true in the first call, but what
should it be in the next two calls? They cannot specify
newStep = false, because then the slave would interpret this
as restarting the previous computation, which has an ear-
lier communication point. But they cannot specify newStep

= true either, because if the last fmiDoStep is rejected by a
slave, then all three steps have to be redone. “Rolling back”
more than just to the previous time point (multistep roll-
back) is not possible, however, with the API of FMI 1.0.

2.2 Extensions in FMI 2.0
The FMI 2.0 beta 4 [16] standard adds more methods

to the API. We will focus on two important additions,
fmiGetFMUstate and fmiSetFMUstate, which allow the mas-
ter to copy and later restore the complete state of an FMU
slave. These procedures provide a general mechanism for
rollback, but they are optional for practical reasons. In
practice, an FMU may wrap a large piece of legacy software,
enabling the use of that software with other modeling and
simulation tools, and it may not be practical to retrieve and
restore the state of such a legacy system. We will show, how-
ever, that if these procedures are not provided by an FMU,
then that FMU will not be usable in some models, as the
results of executing the FMU will not match the intended
semantics of the FMU. We give precise conditions under
which correct and deterministic execution of such FMUs is
possible. In FMI 2.0 beta 4, doStep has a slightly modified
signature [16]:

fmiStatus fmiDoStep(
fmiComponent c,
fmiReal currentCommunicationPoint,
fmiReal communicationStepSize,
fmiBoolean noSetFMUStatePriorToCurrentPoint);



The types of the arguments are the same as in version 1.0,
but the name and semantics of the boolean argument are
now di↵erent: by setting noSetFMUStatePriorToCurrentPoint

to true, the master “promises” that it will not call fmiSetF-
MUState for time instants prior to currentCommunicationPoint.

Even though the API of FMI 2.0 is richer, and being able
to read and write the state of an FMU provides the master
with considerable power, the situation is still not entirely
satisfactory, for a number of reasons. First, implementa-
tion of the rollback procedures by an FMU is optional and
may be di�cult to achieve in practice. Second, saving and
restoring the state may incur a large overhead at run time.
The API is not rich enough in general, as we will show, to
prevent preventable rollbacks. Third, the interface does not
quite bridge the gap between purely continuous-time mod-
els, and other modeling formalisms, such as discrete-event,
synchronous-reactive, dataflow, and state-machines.

2.3 Extrapolation of Input Values
For co-simulation, time advances from a communication
point t to a communication point t + h when the MA calls
fmiDoStep with step size h. When this call occurs, the FMU
has been provided with input values at time t. But many in-
tegration algorithms require input values during the interval
[t, t+ h]. For example, if an implicit solver is used, then the
input value at t+h will also be needed in order to determine
the value of the state and output at time t+ h. To support
this, the FMI standard allows for the MA to provide deriva-
tives of the inputs at time t. The FMU will presumably
then use these derivatives to extrapolate the input signals
to calculate suitable approximations during the interval.

3. REQUIREMENTS OF FMUS
In this section we identify properties of FMUs that are re-
quired for those FMUs to be executed deterministically by
a MA in an arbitrary model. Specifically, we illustrate the
need for I/O dependency information and the need for roll-
back. Currently, both of these are optional in the standard.
An FMU may or may not provide them.

3.1 I/O Dependency Information
A MA provides input data to an FMU by calling a proce-
dure called fmiSetXXX provided by the FMU, where “XXX”
is replaced by the data type of the input. For example, for
a real-valued input, the MA will call fmiSetReal. An argu-
ment to this procedure specifies which input is being set, and
another argument provides the value. To retrieve an output
value from an FMU, the MA calls fmiGetXXX, providing as
an argument the identity of the output and a pointer to a
location into which to store the output. A key question in
the design of an MA becomes, in which order should these
procedures be called? The question is particularly subtle in
models with feedback.1

To answer this question, it is helpful to know which out-
puts of an FMU depend immediately on which inputs. FMI
makes it possible (although not mandatory) to provide such

1Figure 10 on page 82 of [16] shows a statechart called the
“State Machine of Calling Sequence from Master to Slave”
which specifies the calling sequences of the API methods
which must be supported by an FMU. Methods fmiGetXXX
and fmiSetXXX appear unordered in a self-loop of the state
machine, however, therefore this state machine does not help
in answering the question above.

information. In FMI 1.0 this is done via the DirectDepen-
dency element in the XML-description of an FMU [3, 17].
In FMI 2.0 this information can be provided using the ele-
ment ModelStructure [4, 16]. In this section we explain by
example why such information is often essential.

Suppose we want to create an FMU with the functional-
ity shown in Figure 2. The figure shows a continuous-time
model modeling a trivial ODE, where the input u is the
derivative of the output y1, and the output y2 is the input
u multiplied by �5. The interesting feature of the model is
that output y2 has a direct dependency on input u, whereas
the output y1 does not. Specifically, at any time t in a sim-
ulation, the output y2 depends on the value of the input at
that same time t, whereas the output y1 depends only on
previous inputs. The equations realized by this FMU are

u =
dy1

dt

y2 = �5u.

In general, a MA may need to know that y1 can be pro-
duced by the FMU even before u is known. Suppose for
example, that we want to use the FMU of Figure 2 to sim-
ulate the following system of equations,

u = f(y1) u =
dy1

dt

y2 = �5u.

This is shown in the model to the left of Figure 3. How
should a MA execute this model? One brute force approach
is to assume that the feedback loop represents an algebraic
loop. The MA could guess the value of u at a time, call
fmiSetReal to set the input u equal to this guess, then call
fmiGetReal to retrieve the output values for y1 and y2. It
could then evaluate the function f and update the value for
u. It could repeat this process until the value for u no longer
changes. And in this example, indeed, the solution would
converge quickly because y1 does not directly depend on u.

In general, however, such an iterative technique for solv-
ing algebraic loops may not converge, and when it converges,
the value it converges to may depend on the initial guess.
Suppose for example that with the same FMU of Figure 2
we connect it as shown to the right of Figure 3. In this case,
there is a genuine algebraic loop. Suppose the function f is
the identity function. Then in this case, if the initial guess
for u is zero, then the execution converges immediately. If
the initial guess is anything other than zero, then the exe-
cution diverges. Suppose instead that f is given by

f(x) = (0.2x)2.

In this case, the feedback loop asserts that u = u

2, and there

Figure 2: A continuous-time FMU where output y1
does not have a direct dependency on input u and
output y2 does.



Figure 3: FMU of Figure 2 connected in feedback
(left) and in an algebraic loop (right).

are two possible solutions, u = 0 and u = 1. The solution
that a brute-force MA converges to will depend on the initial
guess.

Since we are interested in non-diverging and determinis-
tic composition of FMUs, we need to distinguish these two
cases and we need to reject the case with the algebraic loop.
That model is not deterministic. A MA that ensures de-
terminacy needs to know that y1 does not directly depend
on u, and that y2 does. Once it knows this, it can also
execute the correct case (without the algebraic loop) more
e�ciently, so we get an additional benefit. In particular, the
direct dependency information can be used by a MA to call
the fmiGetReal and fmiSetReal functions for outputs and
inputs in a well-defined order. For the leftmost model of
Figure 3, the MA can execute the following sequence:

1. Use fmiGetReal to read the current value of y1. This
value is available without knowing the current input u.

2. Evaluate f (which may itself be an FMU or it may be
a native component), and use fmiSetReal to set the
current value of u.

3. Use fmiGetReal to read the current value of y2. No-
tice that since the value of y2 depends directly on the
current value of u, fmiGetReal needs to perform a cal-
culation in the case of y2.2 Concretely, it needs to
return y2 = �5u.

Notice that in the sequence, fmiGetReal and fmiSetReal

are called exactly once, the minimum possible number of
times for any MA.

For the rightmost example of Figure 3, if the MA has
direct dependency information, then it can identify the al-
gebraic loop and either reject the model or alert the user to
the potential nondeterminacy.

3.1.1 Static Analysis for Dependency Cycles
For the leftmost example of Figure 3, we were able to use

I/O dependency information to identify the order in which
the fmiSetReal and fmiGetReal procedures should be called
at a communication point. Moreover, in this ordering, as
long as there is no algebraic loop, these procedures are called
exactly once, leading to e�cient execution.

We can generalize this idea to models with arbitrarily
complicated structure, constructing a topological sort of the
ports in a model. Consider the model shown in Figure 1. It
consists of four blocks, A,B,C,D.

Suppose that the following is known about the I/O de-
pendencies of the blocks of Figure 1:

b1 ! b4 b3 ! b2 c3 ! c2 d1 ! d2

2With some care to not do so prematurely, the calculation
could alternatively be performed in the call to fmiSetReal.

where x ! y means that output port y depends directly on
input port x. In addition, assume that these are the only
I/O dependencies. This means, in particular, that output
b2 of block B does not depend on input b1, that the output
of C does not depend on its input c1, and so on.

In addition to the input-output dependencies induced by
each block, output-input dependencies are induced by the
connections in the diagram. Together all these dependencies
define a directed graph whose nodes represent ports. Each
edge x ! y in the graph represents the fact that y depends
on x. The port dependency graph for this example is shown
in Figure 4.

Figure 4: The port dependency graph generated
from the model of Figure 1. The graph is acyclic.

As can be observed, the port dependency graph of Fig-
ure 4 is acyclic. If the port dependency graph of a given
model does not contain cycles, then this graph can be used
to derive a correct evaluation order of all ports in the model.
From the port dependency graph shown in that figure, and
the knowledge about which ports are inputs and which are
outputs, a sequence of calls to fmiSetXXX and fmiGetXXX can
be easily constructed. In general, the dependency graph re-
sulting from such analysis gives a partial order on the calls
to fmiGetXXX and fmiSetXXX, although for the example in
Figure 4 the order is total.

3.1.2 If I/O Dependency Information is Missing
The FMI standard makes provision of I/O dependency in-
formation optional, presumably under the assumption that
execution is still possible without this information, albeit
less e�ciently. Indeed, this is true if all fmiSetXXX and
fmiGetXXX procedures are free of side e↵ects (they make no
changes to the state of the FMU), and that the correspond-
ing mechanisms for setting inputs and retrieving outputs for
native simulation components are also free of side e↵ects. A
MA can just execute the model in the same manner that it
would solve algebraic loops, repeatedly invoking fmiSetXXX

and fmiGetXXX until it gets convergence or gives up and de-
clares a failure to converge.

However, these are rather strong assumptions. Even if a
designer of simulation components intends to follow these
guidelines, it is easy to make mistakes. Such mistakes lead
to very subtle bugs that are di�cult to track down. They
could also result in nondeterministic models, and the non-
determinism might go unnoticed because it fails to manifest
as variable behavior during testing.



3.2 The Need for Rollback
A main di↵erence between FMI 1.0 and 2.0 is that FMI 2.0
includes functions to save and restore the state of an FMU.
However, implementation of these functions by an FMU is
optional, not mandatory [4, 16]. Saving and restoring the
state of an FMU can be used to implement a rollback mech-
anism, which is often needed as we now explain.

Consider the example shown in Figure 5. The figure shows
two FMUs connected in series. Consider a MA that co-
simulates these two FMUs. To advance time in the simu-
lation, the master needs to call fmiDoStep on both FMUs.
The MA needs to pick an order to do so; it must either call
fmiDoStep first on FMU1 and then FMU2, or vice-versa. In
both cases, there is the possibility that the FMU on which
fmiDoStep is called first accepts the proposed communica-
tion step size whereas the FMU on which fmiDoStep is called
last rejects it. This is problematic as it requires to roll back
the FMU which accepted the step.

Figure 5: Two FMUs connected in series.

To make the scenario more concrete, suppose that the MA
calls first fmiDoStep on FMU1, passing a communication
step size h. It means that the MA “asks” whether the FMU
can advance its local time (and correspondingly also evolve
its state) from the current time t to t+h. If the FMU accepts
the step, the implied semantics is that the state of FMU1
has now evolved to a state at future time t+ h. If the FMU
rejects the step, the implied semantics is that the state of
FMU1 is still the one at time t (it remains unchanged). A
third possibility is that the FMU manages to make partial
progress and advance to some time t+ h

0 with h

0
< h.

Suppose for the sake of this example that FMU1 accepts
h. Next, the MA calls fmiDoStep on FMU2, with the same
communication step size, h. Suppose that FMU2 rejects the
step. We are now at a situation where the state of FMU1
is at time t + h, while the state of FMU2 is at time t. To
proceed with the simulation, the master needs to choose a
new (smaller) communication step size, reset the state of
FMU1 back to time t, and repeat with the new step size.

If FMU2 makes partial progress to time t+ h

0, then time
has advanced to t+h for FMU1 and to t+h

0 for FMU2. If the
MA chooses t+h

0 as the next communication point, and then
calls fmiGetXXX to retrieve the output of FMU1, FMU1 will
likely respond with the wrong output value, corresponding
to a future time point. Again, resetting the state (“rolling
back”) to time t is necessary. Note that this is true even in
models without feedback, as the one shown in Figure 5.

Rolling back to time t can be achieved as follows. Before
calling fmiDoStep, the MA uses fmiGetFMUstate to copy the
state3 of both FMU1 and FMU2 at time t. It then attempts
to advance time by h. If this is accepted by both FMUs,
the MA has succeeded. Otherwise, if say FMU2 rejects the
step, then the MA can call fmiSetFMUstate on FMU2 to
reset it back to its (copied) state at time t. However, the
implementation of fmiGetFMUstate and fmiSetFMUstate is
left optional in the FMI standard.

3In fact, the copying is done by the FMU itself which returns
a pointer to the new copy of its state.

Moreover, it may appear that if any FMU in a model
can reject a step size, then all FMUs in the model need to
support rollback. Indeed, a first algorithm that we present
in Section 5 (Algorithm 2), operates like this. We will also
show, however, that with careful design and with a small
extension to the standard, a model can contain some FMUs
that do not support rollback (Algorithm 3).

4. FMI FORMALIZATION
In this section we formalize a core subset of FMI and propose
an explicit contract between FMUs and MAs.

4.1 Function Interface
The FMI standard describes the signatures of the C func-
tions together with informal descriptions of their meaning.
In this paper, we propose a formalization of FMI, which al-
lows to prove properties of MAs, in particular determinacy
and maximal progress (see Section 5). Towards this goal,
we formalize the core subset of the FMI 2.0 specification,
leaving out parts that are not relevant for the discussion.

The formalization is summarized in Figure 6. It consists of
a set of notations and the signatures of four (mathematical)
functions, each of which corresponds directly to a C pro-
cedure defined in the FMI standard. For instance, doStep
corresponds to fmiDoStep, get corresponds to fmiGetXXX,
and so on. For simplicity, we do not include all parameters
provided in the C functions and limit the signatures to only
essential parameters. Before giving an overview of the func-
tions, let us explain further the notation used in Figure 6.

Set of FMU instances in a model C

FMU instance identifier c 2 C

Set of state valuations for instance c S

c

Set of input port variables for instance c U

c

Set of output port variables for instance c Y

c

Set of values that a variable may take on V
I/O dependency for instance c D

c

✓ U

c

⇥ Y

c

Set of all input variables in a model U =
S

c2C

U

c

Set of all output variables in a model Y =
S

c2C

Y

c

Set of all I/O dependencies D =
S

c2C

D

c

Port mapping P : U ! Y

Functions:

init
c

: R�0 ! S

c

set
c

: S
c

⇥ U

c

⇥ V ! S

c

get
c

: S
c

⇥ Y

c

! V
doStep

c

: S
c

⇥ R�0 ! S

c

⇥ R�0

Figure 6: Formalized model of FMI and connections
between FMU instances.

C denotes the set of all FMU instances that are coordinated
by (the same) MA.4 One such instance is an element c 2 C.
Given an instance c, S

c

denotes the set of all possible states
that c may be in, U

c

denotes the set of input port variables
of c, and Y

c

denotes the set of output port variables of c.
At this point we ignore typing issues, and assume a single
universe of values for all variables, denoted V.
4Note that an FMU may be instantiated more than once in a
co-simulation environment, meaning that di↵erent instances
of the same FMU have separate internal state variables, but
share the implementation of the FMI functions and solver.



The XML file in an FMU can (optionally) express the de-
pendencies between input and output variables of an FMU.
We model the set of all such input/output (I/O) depen-
dencies of a given FMU instance c as a binary relation
D

c

✓ U

c

⇥Y

c

. Therefore, (u, y) 2 D

c

means that output y of
c is directly dependent on input u of c. Directly dependent
means that at a given instant in time, the value of u needs
to be known to enable computation of y.

It is convenient at this point to also formalize the connec-
tions between FMU instances in a model. We do this using
a port mapping function P : U ! Y , where U and Y are
the sets of all input and output variables of all instances,
respectively. P is a total function that maps every input
variable to a unique output variable. This means that we
assume that the model is closed; that is, every input is con-
nected to some output. Note that two or more inputs may
be connected to the same output. However an input is not
allowed to be connected to more than one output. This is
achieved by definition, since P is a function.

We now explain the functions in Figure 6. Function init
c

corresponds to fmiInitializeSlave. It initializes FMU in-
stance c with given start time t, corresponding to the ar-
gument tStart of fmiInitializeSlave.5 The function re-
turns the initial state of the FMU instance.

Function set
c

corresponds to fmiSetXXX. Note that
FMI has not one, but several such functions, including
fmiSetReal, fmiSetInteger, and so on. Since we are ignor-
ing data types, we formalize these using a single function
that, for given FMU instance c, given current state s 2 S

c

,
input variable u 2 U

c

, and value v 2 V, returns the new
state of c obtained by setting u to v and keeping the rest of
the state unchanged. Similarly, get

c

(s, y) returns the value
of output variable y of FMU instance c at state s. Function
get

c

corresponds to fmiGetXXX.
Note that both set

c

and get
c

are by definition free of ob-
servable side-e↵ects. This means that, since set

c

and get
c

are (total) mathematical functions, given the same input
arguments, they always return the same result.6 This for-
malization does not imply that an FMU cannot use mech-
anisms such as value caching to improve e�ciency of the
implementation. This can still be done in an imperative im-
plementation in C, provided these mechanisms do not alter
the semantics. In particular, they must guarantee that the
result of calling, say, get

c

multiple times without having
called set

c

or doStep
c

in between, is deterministic; that is,
the same value will always be returned.

Function doStep
c

takes as input the current state s of
FMU instance c, and a non-negative real value h 2 R�0,
corresponding to the communicationStepSize argument of
fmiDoStep. Expression doStep

c

(s, h) returns a pair (s0, h0),
where s

0 models the new state of c at the end of the integra-
tion step, and h

0 models the amount by which c managed
to advance time. doStep

c

must guarantee that 0  h

0  h

(more about this in Section 4.2 below). Note that we allow
h = 0, as well as h

0 = 0, enabling FMI to support a super-
dense model of time, which is widely acknowledged to be
essential for proper modeling of hybrid systems [15, 12, 13,

5Time is expressed here as a non-negative real value t 2 R�0.
In FMI it is implemented as a floating-point number.
6Actually, the requirement on get

c

could be relaxed to allow
modification of the FMU state in such a way that consec-
utive get

c

calls will return the same output values and the
final FMU state does not depend on the order of get

c

calls.

2]. When h

0 = h, this indicates to a MA that the FMU is
accepting the time step proposed by the MA. When h

0
< h,

the FMU rejects the time step.7 8

The formalization does not include explicit functions cor-
responding to fmiGetFMUstate and fmiSetFMUstate, which
allow the MA to save and restore the state of an FMU in-
stance. This is not a problem, as these functions can eas-
ily be modeled in our formalization. Saving a state simply
means saving a particular element s 2 S

c

of a particular
instance c. Restoring the state simply means passing that
saved s to subsequent calls of get

c

, doStep
c

, etc. This is
precisely how the algorithm presented in Section 5 works.

4.2 FMU Contract
In this section we make explicit the utilization constraints
of the FMI interface presented in Section 4.1. We point out
that these constraints are not always explicit in the FMI
standard. In fact, some of these constraints are probably
not even implicitly assumed by the authors of the standard.
The reason we introduce these constraints here is because
they are crucial in proving the determinacy properties of
the MAs presented in Section 5.

We call these utilization constraints the FMU contract.
They consist of a set of guarantees that every FMU instance
must provide to the caller of the functions of that instance,
plus a set of assumptions that every FMU instance makes,
that is, conditions that the caller must respect when calling
these functions.

Part of the FMU contract is already given by the signa-
ture of the functions listed in Figure 6. For instance, the
signature of doStep

c

implies that a caller is not allowed to
call doStep

c

(s, h) with h < 0. A similar set of constraints
includes sanity conditions, such as the fact that get

c

(s, y)
can only be called when y 2 Y

c

(i.e., variable y is indeed an
output variable of c). We will not elaborate further on these
and other similar constraints.

In addition to the above, we will assume that the following
constraints are also part of the FMU contract:

(A0) If doStep
c

(s, h) = (s0, h0) then 0  h

0  h.

(A1) If doStep
c

(s, h) = (s0, h0), then for any h

00 where 0 
h

00  h

0, doStep
c

(s, h00) = (s00, h00) for some s

00.

Assumption (A0) has been already stated above while de-
scribing the intuition of doStep

c

and is repeated here for
completeness. Assumption (A1) states that if an FMU ac-
cepts a certain time step h (i.e., returns h0 = h), or at least
makes partial progress until h0

< h, then it must accept any
time step h

00 smaller than or equal to h

0, provided the FMU
is started from the same original state.

7This reject is often caused by zero-crossing or another dis-
crete change that the FMU detects. But zero-crossings or
other overlooked events are sometimes detected only after
an input is provided by set, e.g., when that input violates
the validity range of the extrapolated input values in the
previous doStep. This possibility can be handled in FMI
2.0 using the fmiDiscard callback which may be returned
by fmiSetXXX. In this paper we assume doStep to be the
only place where an FMU can reject the proposed time step.
We plan to lift this assumption in the future.
8In this formalization we assume that FMUs can have both
zero and variable communication step size. (The XML
elements canHandleVariableCommunicationStepSize and
canHandleEvents are both enabled.)



The following assumptions formalize the expected behav-
ior of get and set. Let us first introduce some notation.
Given state s 2 S

c

of some instance c 2 C, and given input
variable u 2 U

c

, and value v 2 V, we denote by s

0 = s[u := v]
the state that is identical to s, except that s

0 assigns value
v to variable u, whereas s may assign to u a di↵erent value.

(A2) Let s0 = set
c

(s, u, v). Then s

0 = s[u := v].

(A3) Let v = get
c

(s, y) and v

0 = get
c

(s0, y). If s0 = s[u1 :=
v1, ..., uk

:= v

k

], and output variable y does not di-
rectly depend on any input u1, ..., uk

, then v

0 = v.

The latter simply formalizes I/O dependencies.

5. DETERMINATE EXECUTION
This section presents two MAs that are formally proven to
have the desirable properties of termination (of an integra-
tion step) and determinacy (di↵erent runs of the algorithm
produce the same result). First, we present a MA requiring
all FMUs to support rollback. This is followed by a second
MA that relaxes this constraint. The latter algorithm uses a
proposed extension to the FMI standard, which enables the
MA to query the FMU for expected future time events.

5.1 Algorithm Requiring Rollback
We first give a preprocessing algorithm that creates a
list of variables, describing the order that the variables
may be accessed. Recall that P denotes the mapping of
input ports to output ports and D the global input-output
dependency relation (see Figure 6). Let X = U [ Y , that
is, X is the set of all input and output variables in the model.

Algorithm 1: Order-Variables.

Input: Port mapping P , global dependency relation D,
and global set of variables X.
Output: An ordered list x̄ of variables, or error.

1. Let G be a directed graph, where the vertices are rep-
resented by port variables X and an edge e 2 X⇥X is
a variable dependency. The set of all edges E is then
constructed by E = D [ {(y, u) | u 2 U ^ P (u) = y}.

2. Perform a topological sort on G. If a cycle in G is
found, terminate and return error. If no cycles are
found, the resulting list of variables is x̄.

In the following we assume that algorithm Order-Variables
returns no error (i.e., G is acyclic). In that case, based
on the variable list x̄ returned by this algorithm, the
MA executes, for each communication step, the algorithm
Master-Step given below. We use the following notation:
given variable x 2 X, c

x

denotes the (unique) FMU instance
c 2 C to which x belongs. That is, if x 2 U then c

x

is
the unique c such that x 2 U

c

, and if x 2 Y then c

x

is
the unique c such that x 2 Y

c

. We represent the states of
all FMU instances as a mutable mapping m, mapping a
FMU instance identifier c 2 C to a state valuation s 2 S.
Expression m[c] is the current state valuation for FMU
instance identifier c. We use statement m[c] := s to denote
that the state for c is updated to be s. Note that at each
stage in the execution of the algorithm, the state mapping
may formally be viewed as a function m : C ! S. Because
the domain C is a set, the elements of m are unordered.

Algorithm 2: Master-Step.

Input: Set of instances C, ordered variable list x̄, port
mapping P , the maximal step size h

max

, and a mutable
state mapping m of size |C|.
Output: Updated state mapping m and the performed
step size h.

1. Set values for all input variables:
For each u 2 x̄ (in order) where u 2 U do

(a) y := P (u)
(b) v := get

cy
(m[c

y

], y)

(c) m[c
u

] := set
cu(m[c

u

], u, v)

2. Save the states of all FMUs to enable rollback:
r := m

3. Set communication step size to an initial default value:
h := h

max

4. Find h acceptable by all FMUs:
For each c 2 C do

(a) (s0, h0) := doStep
c

(m[c], h
max

)
(b) h := min(h, h0)
(c) m[c] := s

0

5. Assert 0  h  h

max

// follows from Assumption (A0)
6. If h < h

max

then // roll back and perform step h

For each c 2 C do

(a) (s0, h0) := doStep(r[c], h)
(b) Assert h0 = h // follows from Assumption (A1)
(c) m[c] := s

0

7. Return m and h.

Intuitively, in Step 4 the algorithm “sweeps” over all
FMUs, attempting to perform step h

max

on each of them.
At the same time the algorithm records the smallest actually
achieved step, h. At the end of Step 4, if h = h

max

, then
h

max

was accepted by all FMUs, and the step is complete.
Otherwise, by Assumption (A0), it must be that h < h

max

.
In that case the algorithm makes a second pass, performing
step h on all FMUs. Thanks to Assumption (A1), this is
bound to be accepted by all FMUs.

Clearly, both Algorithms 1 (Order-Variables) and 2
(Master-Step) terminate, as our models (set of FMU in-
stances, ports, connections, etc.) are finite.

A useful notion, used in particular to prove Theorem 1
that follows, is the notion of acceptable time step. Let c 2 C,
s 2 S

c

and h 2 R�0. We say that h is acceptable by c at
state s if doStep

c

(s, h) = (s0, h) for some s

0. If m is a global
state mapping, then we say that h is acceptable at m if for
all c 2 C, h is acceptable by c at m[c].

Theorem 1 (Determinacy). Algorithm 2 (Master-
Step) is determinate in the sense that, for given inputs C,
P , h

max

, and m, the returned updated output state mapping
m and h are the same no matter what the ordered list x̄

produced by Algorithm 1 (Order-Variables) is and no matter
which order the instances c 2 C are selected in Algorithm 2.

As can be seen from the proof of Theorem 1 (in the ap-
pendix), Algorithm 2 is not only determinate, but is also
correct in the following sense. If m2 is the state mapping af-
ter executing Step 1, and m,h are the values returned by Al-
gorithm 2, then for all c 2 C, doStep

c

(m2[c], h) = (m[c], h).



This means that Algorithm 2 returns an acceptable time
step h and the state mapping which would result as if all
FMUs performed this step just once.

It is also desirable to show that a master algorithm
achieves maximal progress, i.e., it achieves the maximal ac-
ceptable step h. We would thus like to state the following.

Theorem 2 (Maximal progress). Let m2 be the
state mapping after executing Step 1 of Algorithm 2 and let
h be the step returned by Algorithm 2. There is no h

0 such
that h < h

0  h

max

and h

0 is acceptable at m2.

We can prove Theorem 2 provided all FMUs satisfy an
additional assumption:

(P1) If doStep
c

(s, h) = (s0, h0) and h

0
< h, then for all

h

00
> h

0, doStep
c

(s, h00) = (s00, h0) for some s

00.

Assumption (P1) says that every FMU makes maximal
progress at the individual level. Note that (P1) is not im-
plied by (A1). For instance, let doStep

c

(s, h) = (s, h0) where

h

0 =

⇢
h if h  1
1
2 otherwise.

Then c violates (P1) whereas it satisfies (A1). This exam-
ple also shows why (P1) is necessary for maximal progress.
If (P1) does not hold, then we can easily construct a
counter-example where Algorithm 2 does not ensure max-
imal progress. Consider a model with a single FMU, c,
and initial state s, as above. Then, starting with step size
h

max

= 2, Algorithm 2 will make progress only up to 1
2 ,

whereas progress up to 1 can also be made.
We end this section with a remark. Algorithm 2 may ap-

pear wasteful in the sense that Step 4 continues attempting
to perform step h

max

on the rest of the FMUs even after
it encounters an FMU which rejects h

max

. An alternative
would be to call doStep in Step 4(a) with h instead of h

max

.
In addition, the algorithm can keep track of which FMUs
have already been executed with the right h, so that it does
not re-run them. This modification can be shown to termi-
nate (due to Assumption (A1)). It can also be shown to be
determinate, provided Assumption (P1) holds. Note that
Assumption (P1) is not needed for Theorem 1.

5.2 Predictable Step Sizes
The algorithm given above requires all FMUs to implement
rollback. In many cases, this is impractical, particularly
when an FMU wraps legacy code or serves as a wrapper for
a simulation tool. Fortunately, with a small addition to the
FMI standard, such FMUs can be handled in certain cases.
Specifically, we propose the addition of a procedure

fmiStatus fmiGetMaxStepSize(
fmiComponent c,
fmiReal *maxStepSize);

where the argument returns an upper bound on the step
size that the FMU can accept (or infinity if there is none).
This bound could be zero to indicate the need for a zero-
step-size step. We use the function

getMaxStepSize
c

: S
c

! R�0 [ {1} (1)

to model the fmiGetMaxStepSize procedure. Let C
P

be the
set of FMU instances that implement this function. We
require of these instances that

(A4) If c 2 C

P

and s 2 S

c

and getMaxStepSize
c

(s) = h

then for all h

0 where 0  h

0  h, doStep
c

(s, h0) =
(s0, h0) for some s

0.

This means that an instance in C

p

will accept any time
step smaller than or equal to the time step returned by
getMaxStepSize. Whether an FMU is in C

p

should be in-
dicated as a capability in the FMU XML file. Let C

R

be
the set of FMU instances with rollback capability, i.e., every
c 2 C

R

supports setting and getting states. Furthermore,
let C

L

be the set of FMU instances in a model that are
not in C

R

and not in C

P

. We will call these FMUs “legacy
FMUs”. Then, we can give a MA that is determinate under
the following assumption.

(A5) (a) |C
L

|  1.
(b) C

L

[ C

R

[ C

P

= C.
(c) C

L

\ C

R

= ; and C

R

\ C

P

= ; and C

P

\ C

L

= ;.

That is, a model that composes FMUs has at most
one legacy FMU instance, and the remaining instances
all either provide predictable step sizes or support rollback.9

Algorithm 3: Master-Step With Predictable Step Sizes.

Input: Set of instances C, ordered variable list x̄, port
mapping P , the maximal step size h

max

, and a mutable
state mapping m of size |C|.
Output: Updated state mapping m and the performed
step size h.

1. Set values for all input variables:
For each u 2 x̄ (in order) where u 2 U do

(a) y := P (u)
(b) v := get

cy
(m[c

y

], y)

(c) m[c
u

] := set
cu(m[c

u

], u, v)

2. Find the minimal predictable communication size:
h := min({getMaxStepSize

c

(m[c]) | c 2 C

P

} [ {h
max

})
3. Save the states for all instances that can perform rollback:

(a) For each c 2 C

R

do r[c] := m[c]
(b) doStepOnLegacy := true

(c) Goto step 5.

4. Restore states for rollback instances.
For each c 2 C

R

do m[c] := r[c]
5. Perform doStep on all instances with rollback:

h

min

:= h

For each c 2 C

R

do

(a) (s0, h0) := doStep
c

(m[c], h)
(b) h

min

:= min(h0
, h

min

)
(c) m[c] := s

0

6. If h
min

< h then h := h

min

and goto step 4.
7. Perform doStep on the legacy FMU (if it exists)

If c 2 C

L

and doStepOnLegacy then

(a) (s0, h0) := doStep
c

(m[c], h)
(b) m[c] := s

0

(c) doStepOnLegacy := false

(d) If h0
< h then h := h

0 and goto step 4.

8. Perform doStep on all FMUs with predictable step size:
For each c 2 C

P

do
9If an FMU supports both predictable step sizes and roll-
back, our algorithm only uses its predictable step sizes ca-
pability, so we put it in set C

P

and not in C

R

.



(a) (s0, h0) := doStep
c

(m[c], h)
(b) Assert h0 = h // follows from Assumption (A4)
(c) m[c] := s

0

9. Return m and h.

With such a MA, a collection of FMUs can always be exe-
cuted deterministically if there is at most one“legacy FMU”.
Note that Algorithm 2 can be extended easily to also sup-
port at most one FMU that does not implement rollback.

Theorem 3 (Termination). Algorithm 3 (Master-
Step With Predictable Step Sizes) terminates.

Theorem 4 (Determinacy). Algorithm 3 (Master-
Step With Predictable Step Sizes) is determinate in the sense
that, for given inputs C, P , h

max

, and m, the updated out-
put state mapping m and the output step size h are the same
no matter what the ordered list x̄ produced by Algorithm 1
(Order-Variables) is and no matter the order of how c 2 C

are selected in Algorithm 3.

Analogously to the discussion of correctness for Algorithm 2,
we can see in Theorem 4 (in the Appendix) that Algorithm 3
is not only determinate, but is also correct in the following
sense: if m2 is the state mapping after executing Step 2, and
m9, h9 are the values returned by Algorithm 3, then for all
c 2 C, doStep

c

(m2[c], h9) = (m9[c], h9).
We next prove maximal progress for Algorithm 3. Again

we assume (P1) on all FMUs. In addition, we need the
following assumption for FMUs with predictable step sizes:

(P2) If c 2 C

P

and s 2 S

c

and getMaxStepSize
c

(s) = h

then for all h0
> h, doStep

c

(s, h0) = (s0, h) for some s0.

Theorem 5. Let m2 be the state mapping after execut-
ing Step 1 of Algorithm 3 and let h be the step returned by
Algorithm 3. There is no h

0 such that h < h

0  h

max

and h

0

is acceptable at m2.

6. RELATED WORK
This paper focuses on co-simulation rather than model ex-
change because it more loosely couples simulation tools. Co-
simulation enables the principle of hierarchical heterogene-
ity, pioneered in the Ptolemy Project [9], where multiple
models of computation (MoCs) are combined hierarchically.
Since an FMU for co-simulation includes its own simulation
engine, there is no requirement that its simulation engine
match precisely the semantics of the host simulator. It only
has to be capable of providing the semantics of the FMI
interface (a semantics that this paper clarifies). In model
exchange, the host simulator semantics prevail, and any dif-
ferences in semantics intended by the author of the FMU
will be subjugated. In e↵ect, this means that the author of
the FMU and the author of the host simulator have to agree
on the semantics. Such agreement has been shown to rarely
exist even within communities working on closely related
modeling techniques, as evidenced, for example, by the fail-
ure of the Hybrid Systems Interchange Format, HSIF [21, 22,
25]. Such agreement has also proven impossible to achieve
in communities with broader interests, such as the UML
community, where a plethora of semantic variants exist for
nearly every UML notation. Co-simulation enables interop-
eration even in the absence of agreement about semantics.

Despite these benefits, state-of-the-art co-simulation is
still quite limited. To quote from the FMI standard [17]:

“In contrast to classical (mono-disciplinary) simula-
tion techniques in system dynamics, state-of-the-art
master algorithms in co-simulation are even today
based on constant communication step sizes and do
not provide any automatic error control. Constant
communication step sizes may restrict strongly the ef-
ficiency of co-simulation algorithms if the solution be-
havior changes considerably during time integration.”

A constant time step size co-simulation interface has for
example been implemented in Ptolemy II as part of the
Building Controls Virtual Test Bed [27]. The TISC [11]
co-simulation environment uses a variable synchronization
step size. In TISC, a simulation module can propose the
length of the next time step.

An API that has been available for some time is Simulink’s
S-Functions. S-Functions are proprietary and not standard-
ized, therefore not a true alternative to FMI which aims to
be an open standard. S-Functions are also quite limited.
For instance, being able to discard a time step, which is es-
sential in a number of numerical simulation methods, is not
possible with S-Functions [3].

S-Functions use a split-phase API with two distinct func-
tions per block, as in Moore/Mealy state machines; an Out-
put function computing the output of the block and a sepa-
rate Update function that updates the state of the block. A
split-phase API is also used in Ptolemy II [9], where Output
and Update are called Fire and Postfire. The FMI standard,
as interpreted in this paper, supports indirectly split-phase
by using fmiGetXXX as the output function and fmiDoStep as
the state update function. The split-phase API is interesting
as it allows to decouple the computation of outputs for up-
dating the states. This in turn enables delaying to commit
a step, which can be useful in handling models where roll-
back is required, as in several examples presented above. A
split-phase API can also be useful in dealing with algebraic
loops or other model characteristics that require some type
of fixpoint calculation. For instance, split-phase is essential
in handling the semantics of synchronous block diagrams in
a general way [8]. The split-phase API can be generalized to
include more than one Output function, which is useful in
dealing with hierarchical models [14]. Lublinerman et al. [14]
also deal with the problem of modular code generation, re-
lated to the problem of automatically synthesizing FMUs
from models. This synthesis problem is, however, beyond
the scope of this paper.

The abstract semantics of Ptolemy include, in addition to
the Fire and Postfire functions, the FireAt function which
enables handling timed actors (both continuous-time and
discrete-event). FireAt is di↵erent in nature than Fire and
Postfire, in the sense that while the latter two are imple-
mented by the slave and called by the master, FireAt is
implemented by the master and called by the slave.10 Tri-
pakis et al. [26] formalize the semantics of Ptolemy using a
deadline function, from which the getMaxStepSize function
has been inspired.

The above can be seen as attempts to come up with
the “right” API for modeling heterogeneous systems, and in

10In Ptolemy, slaves (e.g. FMUs) are called actors and a
master algorithm is called a director.



particular, continuous as well as (timed) discrete-event sys-
tems. Very relevant to this problem is the work reported by
Denckla and Mosterman [7] and Mosterman et al. [18], who
present stream- and state-based functional interfaces for a
Simulink-type of language. Also, Sander and Jantsch [24]
present the ForSyDe modeling framework, which provides a
set of libraries for capturing heterogeneous MoCs based on
the functional programming language Haskell. Broman and
Siek [5] address the heterogeneous modeling problem using
an embedded domain specific language (EDSL) approach.

Other approaches to tool integration apart include coor-
dination languages [20] and tool buses [6, 10, 19, 23]. These
focus on managing workflows, general-purpose distributed
computation, and data exchange between concurrent tasks.

Bastian et al. [1] propose a MA implementation for FMI
co-simulation that is designed to be platform independent.
Their MA uses fixed communication step size and it assumes
that FMUs are not dependent on the current output of other
FMUs. By contrast, our MAs have variable communication
step size and supports direct dependencies.

7. CONCLUSIONS
FMI shows enormous promise for enabling interoperability
of simulation tools for CPS. We have identified some sub-
tleties presented by the design of the API in the standard,
and have o↵ered constraints on the design of FMUs and MAs
such that determinate execution of many models is ensured.
We have defined a class of MAs that correctly handles mod-
els containing a mix of FMUs that support rollback, FMUs
that do not support rollback but implement a proposed small
extension to FMI for predictable step sizes, and at most one
FMU that supports neither. Even in the case where rollback
is needed, only 1-step rollback is enough for determinacy, as
our master algorithms show. This is essential for e�cient
implementation, as multi-step rollback is very expensive.

As of this writing, the FMI 2.0 standard is still in flux. We
base our analysis on the Beta 4.0 version, but the final ver-
sion may introduce additional subtleties and/or problems.

An interesting direction of future work is the composition
of both co-simulation and model exchange FMUs. Such het-
erogeneous composition is both practically important and
requires new kinds of MAs.
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APPENDIX
A. PROOFS

A.1 Proof of Theorem 1
Denote m1 to be the state mapping at start of Step 1 and

m2 to be the state mapping at the start of Step 2. We first
show that m2 is uniquely defined (Lemma 1).

Lemma 1. State mapping m2 is uniquely defined, inde-
pendently of what the ordered list x̄ produced by algorithm
Order-Variables is.

Proof of Lemma 1. Let u1 . . . uN

be the sequence of
topologically sorted input variables and n 2 N be the vari-
able index. We prove by strong mathematical induction over
n that m[c

un ] in step 1c is uniquely defined for n � 1. (i)
Basic step: Input variable u1 is defined by output variable
y = P (u1). Because the topological sort is assumed to suc-
ceed, y must be a start node in graph G (step 1 in Algo-
rithm 1). Consequently, get(m[c

y

], y) can only have one
value and therefore the value assigned for u1 is uniquely
defined. (ii) Inductive step: Assume that values in m for
variables u1 . . . un

are uniquely defined. We now show why
the value for u

n+1 is uniquely defined. Let y = P (u
n+1)

be the output variable that holds the value that variable
u

n+1 will be assigned to in Step 1(c). We will show that
the value assigned to u

n+1 in Step 1(c) is unique. In addi-
tion, from assumption (A2), set only a↵ects the value of the
variable being assigned, therefore, the values of previously
assigned variables do not change. To show that the value
assigned to u

n+1 is unique we consider two cases. Case 1:
It does not exist an x such that (x, y) 2 D, that is, y is
not directly dependent on any input variables. In this case,
according to assumption (A3), get(m[c

y

], y) is not a↵ected
by setting input values to instance c

y

. The value for out-
put variable y is unique and consequently is the value for
u

n+1 unique in Step 1(c). Case 2: There exist a set of di-
rectly dependent input variables X = {x | (x, y) 2 D}. By
the property of topological sort, we have that every x 2 X

must come before both y and u

n+1 in the sorted sequence
of variables. Because each x 2 X corresponds to a u

k

where
k  n, we have by the induction hypothesis that the values
for x 2 X are uniquely defined. Since the values for x is set
before the value get(m[c

y

], y) is retrieved, the value for y in
Step 1(b) is unique and therefore also the value for u

n+1 in
Step 1(c). Finally, we can conclude that the state mapping
m2 is uniquely defined because all elements set in Step 1(c)
are uniquely defined.

Since r is simply a copy of m2, Lemma 1 also proves that
the state mapping r computed at the end of Step 2 is unique,
independently of what the ordered list x̄ produced by algo-
rithm Order-Variables is.

We next prove that the h computed at the end of Step 4 is
uniquely defined, independently of the order in which FMU
instances are chosen in the loop iteration of Step 4. Indeed,
it can be easy to see that this h is equal to

min{h0 | c 2 C, ( , h

0) = doStep
c

(m[c], h
max

)}.

and therefore uniquely defined.
The assertion of Step 5 holds since, by Assumption (A0),

doStep
c

(m[c], h
max

) always returns 0  h  h

max

. At this
point, if h = h

max

, then the algorithm returns state map-
ping m4 and h

max

, where m4 is equal to the current state

mapping m. Then, m4 is uniquely defined by the equality
(m4[c], hmax

) = doStep
c

(m2[c], hmax

), for all c 2 C.
Otherwise, h < h

max

. In this case, Step 6 is executed,
which corresponds to rolling back to saved state mapping r,
and performing the computed step h. By Assumption (A1),
h is guaranteed to be acceptable by all FMUs. Therefore,
the assertion of Step 6(b) is satisfied for all c 2 C, and
at the end of Step 6 the algorithm returns state mapping
m6 and h, where m6 is uniquely defined by the equality
(m6[c], h) = doStep

c

(r[c], h), for all c 2 C.
This completes the proof of Theorem 1.

A.2 Proof of Theorem 2
Suppose the contrary, i.e., there is h

0 such that h < h

0 
h

max

and h

0 is acceptable at m2. This means that for all
c 2 C, h

0 is acceptable by c at m2[c], i.e., for all c 2 C,
there exists s, such that doStep

c

(m2[c], h
0) = (s, h0). Now,

since h is returned by Algorithm 2, and h < h

max

, there
must exist some FMU c

⇤ and some state s

⇤ of c⇤ such that
doStep

c

⇤(m2[c
⇤], h

max

) = (s⇤, h). It can now be seen that
this c⇤ contradicts Assumption (P1).

This completes the proof of Theorem 2.

A.3 Proof of Theorem 3
Step 1 terminates because x̄ is a finite list. Each of the

steps 2, 3, 4, and 5 terminate because C

P

and C

R

are finite
sets. The algorithm contains two goto statements: one at
step 6 and one at step 7. Each of these goto statements can
be executed at most once, which will show next. The first
time step 5 is executed, step 6 may go to step 4 if not all
doStep succeed. They will all, however, succeed the second
time step 5 is executed because of Assumption A1. Note
that doStep is performed on all instances with the same h

and that the smallest step size h

min

is used the second time
step 5 is executed (if any). If C

L

= ; or h

0 = h in step 7a,
step 7 terminates and goes to step 8. If C

L

is not empty
and h

0
< h, the algorithm goes to step 4. In this case,

step 6 cannot loop back to step 4, because Assumption A1
assures that all calls to doStep in Step 5 succeed (h updated
in step 7 is necessarily smaller than the h used in previous
round of step 5). Also, because doStepOnLegacy = false

the second time step 7 is executed, it will not loop back to
step 4. Finally, step 8 terminates because C

P

is finite.
This completes the proof of Theorem 3.

A.4 Proof of Theorem 4
Step 1 of Algorithm 3 is identical to step 1 in Algorithm
2; determinacy for step 1 is therefore proven analogously
to the proof of Algorithm 2 using Lemma 1. The step size
h in step 2 and the store mapping r in step 3 are clearly
uniquely defined. Variable h is only updated in step 6 and
7b, and only one time in each step. Consequently, h does
not depend on the order how c 2 C is selected an therefore
uniquely defined at the end of the algorithm.

We now consider how subsets of the mapping of m are
uniquely updated. By Assumption A5 we see that the sub-
sets C

L

, C
P

, and C

R

are distinct. We can also observe that
in each of the steps 4, 5, 7, and 8, only a distinct subset
of m is updated, and in each step each element is updated
only once. Finally, compared to m2 (end of step 2), each
element is updated at most once. For instances c 2 C

R

,
m can be updated in step 5, but this step is always pre-
ceded by either the original m2 state mapping or a rollback



of states (step 4) to the states in m2. An instance c 2 C

L

, is
only updated once because of the guarding boolean variable
doStepOnLegacy . Finally, for instances c 2 C

P

, updates in
m is only performed once in step 8. By Assumption A4, we
see that the assertion at 8b holds.

Consequently, we conclude that at the end of Step 9 the
algorithm returns state mapping m9 and h9, where m9

is uniquely defined by the equality doStep
c

(m2[c], h9) =
(m9[c], h9), for all c 2 C.

This completes the proof of Theorem 4.

A.5 Proof of Theorem 5
Suppose the contrary, i.e., there is h

0 such that h < h

0 
h

max

and h

0 is acceptable at m2. This means that for all
c 2 C, h0 is acceptable by c at m2[c], i.e., for all c 2 C, there
exists s, such that doStep

c

(m2[c], h
0) = (s, h0).

Let h
P

be the h computed at Step 2 of Algorithm 3, i.e.,

h

P

= min({getMaxStepSize
c

(m[c]) | c 2 C

P

} [ {h
max

}).

We claim that h

0  h

P

. Otherwise, there is some
c 2 C

P

such that doStep
c

(m2[c], h
0) = (s, h0), yet

getMaxStepSize
c

(m[c]) < h

0, which violates Assump-
tion (P2).

Now, since h is returned by Algorithm 3, there must exist
some FMU c

⇤ 2 C, some state s

⇤ of c⇤, and some h

⇤, such
that h < h

⇤  h

P

, and doStep
c

⇤(m2[c
⇤], h⇤) = (s⇤, h). It

can now be seen that this c⇤ contradicts Assumption (P1).
This completes the proof of Theorem 5.


