

The Company Approach to Software
Engineer ing Project Courses

David Broman, Kristian Sandahl and Mohamed Abu Baker

L inköping University Pre-Print

N.B.: When citing this work, cite the original article.

©2011 IEEE. Personal use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional purposes or for creating new
collective works for resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE.

David Broman, Kristian Sandahl and Mohamed Abu Baker, The Company Approach to
Software Engineering Project Courses, 2011, Submitted to IEEE Transactions on Education.

Preprint available at: Linköping University Electronic Press

http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-69483

http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-69483

PREPRINT c� 2011 IEEE 1

The Company Approach to
Software Engineering Project Courses

David Broman, Member, IEEE, Kristian Sandahl, Member, IEEE-CS, and Mohamed Abu Baker
Department of Computer and Information Science, Linköping University

david.broman@liu.se, kristian.sandahl@liu.se, mohamed.abubaker@liu.se

Abstract—Teaching larger software engineering project courses

at the end of a computing curriculum is a way for students

to learn some aspects of real-world jobs in industry. Such

courses, often referred to as capstone courses, are effective for

learning how to apply e.g., design, testing, and configuration

management. However, these courses are typically performed

in small teams, giving only a limited realistic perspective of

problems faced when working in real companies. This paper

describes an alternative approach to classic capstone projects

with the aim of being realistic from an organizational, process,

and communication perspective. This methodology, called the

company approach, is described concerning intended learning

outcomes, teaching/learning activities, and assessment tasks. The

approach is implemented and evaluated in a larger master

student course.

Index Terms—Software Engineering, Capstone Projects, Con-

structive Alignment, Company Approach

I. INTRODUCTION

P
REPARING computer science (CS) and software engi-
neering (SE) students for real-world jobs in industry is

a challenging task. Feedback from industry has shown that
software engineering topics such as testing, code reviews,
release management, and team work are particular important
from a real-world perspective [1]. To meet such demands,
the ACM/IEEE-CS joint task force on computing curricula
recommends to include software engineering projects in a
curriculum [2]. In such a project course, students are typically
working in teams and developing a larger software system for a
particular customer. These project based courses that typically
span over the entire last year of a curricula are often referred to
as capstone courses. Capstone project courses have existed for
many years [3] and several success stories have been reported
in the literature [4], [5], [6].

However, these projects are typically performed in small
development teams (three to eight students) where information
is shared among the team members informally. These kind of
projects can be successful when learning how to apply e.g.,
design, testing, and configuration management in a project
setting, but give a very limited realistic perspective of the
problems faced when working in a real company. For example,
a small team can informally communicate the design of a
system, but if there are more than 20 developers, a more

c� 2011 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

systematic approach is needed. Hence, the overall pedagogic
problem discussed in this paper is how a project course
could be designed to enable student learning that gives an
industrially realistic view from an organizational, process, and
communication perspective.

This paper describes an alternative approach to classic
capstone projects. The key components of this approach are:

• Instead of having small project teams, students are orga-
nized in simulated companies, each consisting of approx-
imately 30 students/employees.

• The organization of the simulated companies faces a
transition from a traditional line organization with several
departments to an agile organization containing self-
organized cross-functional teams.

• The student are working with constrained time budgets,
i.e., project members need to time report and prioritize
working tasks.

Working in large project teams [7] or organizing as virtual
enterprises [8] are not new ideas. However, the main contri-
bution of the new educational methodology presented in this
article is the unique combination of larger simulated com-
panies, organizational transformations, and constrained time
budgets. This methodology is called the company approach to
software engineering projects. More specifically, the detailed
contributions of this work are as follows:

• The central ideas and concepts of the company approach
are outlined based on the theory of constructive align-
ment [9] (Section II).

• The design and implementation are described for a course
that is based on this methodology. The course was given
two times during the years 2009 and 2010 (Section III).

• An evaluation of the company approach is performed by
conducting a quantitative study during the course as well
as performing a qualitative survey on the students one
and a half year after the course was given (Section IV).
The results are discussed in Section V.

II. THE COMPANY APPROACH

This section describes the general ideas and concepts of the
company approach methodology in the form of a course
template, i.e., a generic description from which a specific
software engineering course can be designed. The course
template is based on the framework of constructive alignment;
originally invented by Biggs [9] and further developed by
Biggs and Tang [10].

PREPRINT c� 2011 IEEE 2

Constructive alignment consists of two separate aspects.
The constructive aspect concerns the learner’s view and is
based on the theory of constructivism [11]. The main idea
of constructivism is that the student (the learner) construct
their own knowledge based on what they already know and
by performing activities by them selves. Hence, from this point
of view, teaching is not about transferring knowledge to the
student by lecturing, but instead to empowering the student
for active learning.

The alignment aspect relates to the teacher’s performance
and how a course can be designed to align the following parts:

• Intended Learning Outcomes (ILOs) - specific learning
outcomes that a student should master after passing the
course.

• Teaching/Learning Activities (TLAs) - different activities
that should result in the intended learning outcomes.

• Assessment Tasks (ATs) - tasks for assessing the stu-
dent’s performance in relation to the intended learning
outcomes.

The rest of this section presents the company approach
methodology based on these three parts.

A. Intended learning outcomes

The overall goal of the company approach is that the student
should gain a fundamental understanding of problems and
challenges that occur in a real-world software engineering
project. However, to be more concrete, the ILOs are cate-
gorized within three specific learning perspectives: organi-
zational (O1), process (P1 and P2), and communication (C1
and C2). The intended learning outcomes include, but are not
limited to, that the student at the end of the course should be
able to:

• (O1) explain the meaning of different roles and organi-
zational structures in a software engineering project.

• (P1) analyze the pros and cons of processes in general,
and the difference between classic project management
and agile methodologies in particular.

• (P2) analyze the basic fundamental constrains that are
inherent in software engineering project.

• (C1) reflect on communication challenges when working
in a larger heterogeneous software project.

• (C2) explain the rationales of artifacts, such as architec-
ture document, requirements specifications, and backlogs.

The organizational learning outcome (O1) means that the
student should on the one hand be able to explain the
underlying meaning of classic SE roles, such as analysts,
project managers, product managers, configuration managers,
architects, developers, and testers. On the other hand, he/she
should also be able to explain the difference of roles in an agile
methodology, such as self organized teams, product owners,
and scrum masters in the Scrum framework [12].

From the process perspective, learning outcome (P1) means
that the student should be acquainted with different process
frameworks so that he/she can analyze and draw his/her
own conclusions regarding leadership and management of
projects. Fundamental constraints in (P2) include e.g., calendar

time (time to deadline), budget time (man hours), product
functionality, and measurable quality factors.

Communication challenges (C1) aims to capture today’s
real-world heterogeneous aspect of engineering projects, in-
cluding the diversity of cultural backgrounds, languages, and
technical skills among employees/students. Learning outcome
(C2) emphasizes the communication aspect of artifacts typ-
ically created in a SE project. The aim is that the student
should use and create e.g., an architecture document, because
they need it for precise communication between different
stakeholders, not that they create it just because the teacher
told them to do so.

B. Teaching/learning activities

In this course template, the aim is that the students run the
whole project by them selves. The teachers should not lead
the project but only guide and coach the students by asking
the right questions. One of the main challenges of this kind of
course design is to define this framework, so that the students
have a high level of freedom to be innovative and at the same
time to avoid being too loose so that the intended learning
outcomes are missed.

The rest of this section outlines the ten most important
teaching/learning activities of the methodology.

1) Role selection: At the beginning of the project, the
students apply for a job and a role in the company by
formulating a curriculum vitae (CV) and an application letter.
If more than one student apply for a position (e.g., department
manager), a closed election is performed by the students.
Besides the chief executive officer (CEO), that is played by
one of the teachers, the students elect their own leaders and
key staff. Addresses (O1).

2) Company meetings: Each week the students arrange a
company meeting where all employees, including the CEO, are
attending. This is the main coordination and communication
meeting between employees and is the only formal meeting
required by the framework. Addresses (P1), (P2), (C1), and
(C2).

3) Requirements elicitation: The students are not given
any requirements for the project. Instead, they are told that
the CEO has closed an agreement with a potential reference
customer to pay for a prestudy of the product. Hence, one
of the learning activities is to schedule meetings with the
customer and elicit requirements. However, during the project,
at least one more customer is introduced with the meaning
of learning about changing requirements and development of
products targeted for many customers with different priorities.
Addresses (P1), (C1) and (C2).

4) Prestudy and business meetings: The prestudy is ended
with a simulated business meeting where the customer decides
if he/she should purchase the whole project. The students are
learning about the challenges of prioritization, convincing a
customer, and making commitments with regards to a limited
budget and time frame. Addresses (P1), (P2), and (C1).

5) Iteration planning and reviews: At the reset of the
project time after the business meeting, the students are
directed to use an iterative planning style with fixed iteration

PREPRINT c� 2011 IEEE 3

lengths. Both the requirement of having iteration planning
(what tasks that should be solved in the next iteration) and
iteration review (what was accomplished in the last iteration)
are forced in the course framework. The rationale for this
approach is to gradually improve the understanding of iterative
development and regular customer feedback. Addresses (P1),
(C1), and (C2).

6) Time reporting and project planning: During the whole
project, all students need to perform time reporting for each
hour that they work in the project. There should be a defined
number of hours that each student should work, plus/minus
some percentage. The overall project should be planned and
followed up regarding major milestones, deliverables, and
activities. The purpose is to learn about planing and working
under risk with limited resources, i.e., to learn about doing
“good enough”. Addresses (P2).

7) Transformation of organizational structure: The stu-
dents are originally introduced to a classic organizational
structure, consisting of several departments, with roles such
as department managers, project managers, testers, and de-
velopers. However, they are also encouraged to form cross
functional teams, i.e., teams that cut across the departments
and include both customer knowledge and technical expertise.
The rationale for this gradual transformation of the organiza-
tion is to make the students learn and reflect upon different
organizational and process styles. Addresses (O1) and (P1).

8) Retrospectives and process improvements: Each iteration
is followed by a retrospective meeting where the students
discuss “what was good”, “what went wrong”, and “how can
we improve it” in the next iteration. Addresses (P1) and (C1).

9) Release planning and expo: At the end of the project,
the students present the product on a simulated expo, i.e., they
should be given the ability to orally present the benefits with
their product in a convincing and user oriented way. Addresses
(P1) and (P2).

10) Self reflection and experience documentation: Finally,
the students should write down self reflections on their way
of working. Both positive and negative findings should be
documented and analyzed from both a process and product
perspective. Addresses (O1), (P1), (P2), (C1), and (C2).

C. Assessment tasks

The assessment tasks used for evaluating the performance of
the intended learning outcomes are divided into two categories:
the process perspective and the product perspective.

The processes perspective, which is the main focus of eval-
uation, concerns evaluating how students discover problems
and how they solve them. Assessments are inherently mostly
performed by observation (e.g., at company meetings) and
by interaction (with the CEO and the customer). Another
important instrument is the time report, i.e., when and how
much a student has been working with different parts and their
self reflection on their performance. Besides observations are
also the documents of self reflection and experience report
important basis for evaluation of the process perspective.
Assessed learning outcomes for the processes perspective are
(O1), (P1), (P2), and (C1).

The product perspective concerns both quality and function-
ality of the actually delivered product from a customer point
of view. Moreover, internal artifacts should be evaluated from
a clarity and communication perspective. Addressed learning
outcomes for the product perspective are (P2) and (C2).

III. COURSE DESIGN AND IMPLEMENTATION

In 2009 and 2010 a concrete course was designed and im-
plemented according to the company approach at Linköping
University in Sweden. This section gives a short overview of
the essential design decisions that were made compared to the
course template presented in previous section.

A. Course overview
Each year and course had approximately 110-120 students,
divided into four different companies. Each company was
in turn divided into one research & development (R&D)
department and one products & sales (P&S) department. The
former included roles such as developers and architects, and
the latter e.g., analysts, configuration manager, and testers.

The course was given during one semester, approximately
15 weeks part time, in parallel with other courses. Each student
was requested to perform 160h of full time work, +/- 10
percent.

B. Students
The students formed a heterogeneous group. 81% of the
students were male and 19% female. 57% of the students were
Swedish students studying their fourth year of an engineer-
ing program combining computer science with management
and/or media technology. The other 43% of the students were
exchange or master students studying master of science in
software engineering or in computer science.

C. Teachers
During the two years, different teachers and teaching assistants
(TAs) were teaching the course. In the first year the first
author of this paper and designer of this course played the
role of CEO and supervised about planning and processes.
Two TAs were supervisors, coaching students with aspects
such as architecture, requirements elicitation, and testing. In
the second year, four TAs were responsible for all aspects,
including planning and processes. The CEO had in this year
a more passive role. One TA was teaching both years and the
acting customer was the same for both years.

D. Customers
This course uses a played but realistic customer. The product
that all companies were developing was a simple and mini-
malistic enterprise resource planning (ERP) system, especially
tailored for universities. Hence, one of the professors at the
department played the customer role, but he was in fact playing
himself and his usage and need for a new ERP system. After
the tollgate business meeting, another customer from another
department was introduced, with slightly different needs. The
main rationale for choosing a played customer instead of a
real company from industry was the benefit of having control
of the whole framework, including requirements.

PREPRINT c� 2011 IEEE 4

IV. EVALUATION

The course has been evaluated with a quantitative study during
the course, and a qualitative survey after the course.

For the quantitative study anonymous questionnaires were
used to collect the data from the students. The answers were
collected per company in a closed envelope, and the company
IDs were randomly coded afterwards. The questionnaires were
collected in December 2009, and December 2010. Each round
had 4 companies, and a total number of 187 questionnaires
were collected (83 % response rate). The data collected from
2009 and 2010, were analyzed together to compare two
instances of the course.

For the qualitative survey we contacted the students from
2009 that have kept contact with the examiner in LinkedIn.
In April 2011 a survey was made with 3 questions to the 62
students and 19 answers were received (31%). Of these, 11
were working in industry.

A. Statistical analysis of the quantitative study
The data was entered in SPSS (Originally: Statistical Pack-
age for the Social Sciences), with 7 independent variables
(round, age, sex, industrial experience, software development
experience, curriculum, and result from theory exam), and 18
dependent variables (the questions). For each of the questions,
the students answered using one of six options (e.g., Strongly
Disagree, Disagree, Neutral, Agree, Strongly Agree, and N/A).
Hence, the data was analyzed as ordinal scale measurements.

To measure the overall impression the students aswered:
“I believe that the company approach in this course - i.e.,
that we are organized as a simulated company - makes our
experience industry relevant”, showed the strongest agreement
in the study, See Fig. 1. This dependent variable was then
examined with all independent variables, but no difference
in the strong agreement was found, not even among people
with their own industrial experience. This was verified by
converting the categories of support to a Likert scale and
running Kruskal-Wallis one-way analysis of variance [13].

N/AStrongly
Agree

AgreeNeutralDisagreeStrongly
Disagree

P
e
r
c
e
n
t

100

80

60

40

20

0

Fig. 1. The agreement of the relevance of the Company Approach.

The students in the course strongly agreed that they were
working harder with numerical grading, on a 4-level scale
(e.g. F/C/B/A) compared to a 2-level fail/pass grading. See
statement 1 in Table 1.

The course has specified detailed criteria for the grading
levels, and there was a strong agreement from the students
that this influenced their way of working. See statement 2
in Table 1. Taken together, in this context grading is a key
concern in project course design.

In the project the students got experience both from a line-
organization as well as cross-functional teams. When asked
about their preferences, students were strongly agreeing that
working in cross-functional teams was more motivating. See
statement 3 in Table 1.

An agreement was also observed in the preference for agile
methods and that the cross-functional teams actually were
self-managed, which means that the company leaders only
told what they expected from the teams, not how they should
work. When asked if the department manager was a coaching
leader, students generally agreed but there was an observable
difference in the pattern between the different companies in
all 3 rounds. See statement 4 in Table 1.

B. Findings in the qualitative survey
One of the questions in the survey was about which parts of the
course that are of value in professional work. The 19 answers
were analyzed and we found 5 frequently occurring answers:

1) Collaborating with other people in the company and the
teams was a good experience (63 % of the answers).

2) The importance of planning and managing time was
practiced (53 % of the answers).

3) The setting of the course gives industry relevant experi-
ence (53 % of the answers).

4) Agile methods, such as SCRUM, were practiced. (47 %
of the answers).

5) The course gave a good overview of the entire life-cycle
of a software project (26 % of the answers).

C. Threats of Validity
One of the main problems with the quantitative study is
that most students do not have any industry experience and
might therefore not be capable of answering how realistic the
approach is.

Regarding the qualitative study, the students are self-
selected and the answers give only details about which parts
that were appreciated by positive students.

V. DISCUSSION

This section discusses different aspects of the company ap-
proach in relation to the results of the performed study.

A. Aligning teaching/learning activities
The proposed approach advocate a student-centered model of
learning. In doing so, the teaching/learning activities must be
aligned to the intended learning outcomes, by focusing on the

PREPRINT c� 2011 IEEE 5

TABLE I
ANSWERS TO SELECTED QUESTIONS. EACH COLUMN INDICATE THE PERCENTAGE OF INDIVIDUAL ANSWERS FROM THE COLLECTED ANSWERS OF

DECEMBER 2009 AND DECEMBER 2010. NOTATION: INVALID (I), STRONGLY DISAGREE (SD), DISAGREE (D), NEUTRAL (N), AGREE (A), STRONGLY
AGREE (SA)

Statements I SD D N A SA N/A

1. Numerical grading compared to two grades makes me work harder. 0 2.1 8.0 13.0 22.5 53.5 0
2. Grading criteria influences our ways of working. 3.2 0.5 4.3 11.8 38.5 41.2 0.5
3. Cross functional teams make me more motivated to do a good job. 2.7 0.5 4.8 15.5 42.2 26.2 8.0
4. Department managers have a coaching leadership style. 0.5 2.1 10.2 14.4 39.0 29.9 3.7

activities that the student performs. Hence, to quote Shuell
[14, p. 429]

“Without taking away from the important role played
by the teacher, it is helpful to remember that what
the student does is actually more important in deter-
mining what is learned than what the teacher does.”

The IOLs stressing the organizational (O1) and process (P1
and P2) perspectives are addressed in ten different learn-
ing activities. Central to all these activities are that they
are performed by the students, i.e., the teacher has only a
coaching and observing role. Most notable, a deep learning
approach is suggested for learning about the differences of
agile processes compared to traditional project planning. Using
a surface approach [15], central agile concepts such as time-
boxing, cross-functional teams, and self-organization would
be described and practiced without the student understanding
the deeper meaning of the concepts. Using the organizational
transformation approach where the students start using a line
organization with two departments and fixed roles and then
gradually transit to cross-functional teams with time-boxed
iterations, the hypothesis is that students can deeper analyze
pros and cons with the two approaches. For example, from
the qualitative study (Table I) clear agreement can be seen
that cross functional teams tend to make the students more
motivated. Without having a line organization to compare with,
the students would not gain such an insight.

In the survey (performed one and a half year after finishing
the course) the students were asked what they learned in the
course. The main answers concerned the need of processes and
management of time. Several of our learning activities, such
as time reporting, iteration planning, review, and changing
requirements directly relate to both this observation and IOLs
(P1) and (P2). Direct feedback from students shows that
time reporting is not always appreciated during the course.
However, a tendency is shown in the survey result that it is
still a very effective way of emphasizing the problem of getting
good professional results within a limited time budget.

When focusing on what the student does, the teacher uses
a guide on the side pedagogy instead of a traditional sage
on the stage approach [16]. One interesting question is then
how dependent the course is on specific teachers? An inter-
esting observation is that the course changed most teachers
between the years 2009 and 2010, but kept very good course
evaluations. On a scale 1-5 (where 5 is the best) the official
anonymous student course evaluation gave an overall rating
of 4.44 (year 2009) and 4.16 (year 2010), with an answer
frequency of 30% and 25% respectively.

This clearly indicates that the course template is not entirely
dependent on one specific teacher to be successful.

B. Aligning assessment tasks and grading
Aligning assessment tasks and grading strategies to intended
learning outcomes tend to be much more difficult compared
to aligning learning activities. Two of the main challenges are
how to make the learning outcomes measurable and how to
grade teams.

In the design and implementation of the company approach,
the students were assessed by observing meetings, assessing
artifacts, experience documents, as well as reflected on their
interaction with the CEO and the customers. In the current
implementation assessment and grading are mainly at a team
level, where the individual evaluation only concerns the di-
vergence of top students or underperforming students. Even
though there are many ways to combine team and individual
assessment [17], the main rationale for focusing on the team
level is the importance that students work together towards a
common goal. Individual assessment has a risk of reducing
the incentive for collaboration.

C. Constructivism and iterative learning
Central to our approach and to the idea of constructive
alignment is constructivism. The idea that students construct
new knowledge by performing activities and building it on
their previous knowledge, requires an existing model of the
underlying concepts. According to Ben-Ari [11], such a model
is typically absent for students learning computer science
and must be explicitly taught. A similar problem seems to
exist when teaching real-world software engineering projects.
Unsurprisingly, the students do not have a mental model
of what a project is before they have actual being part of
one. Such mental models are currently taught using classic
theoretical lectures, i.e., about different life-cycle models and
process frameworks. However, is this enough for a student to
get a deep understanding of a real SE process?

In the current implementation of the company approach
a pedagogic concept called iterative learning is used. The
approach of using iterative learning goes hand in hand with
well established software engineering principles of iterative
software development and has a strong connection to for-
mative assessment method, i.e., assessments that are fruitful
for continued student learning [18]. The concept of iterative
learning described here concerns learning during a course, but
can also be generalized for a curriculum [19]. This approach is

PREPRINT c� 2011 IEEE 6

particular important when learning functional knowledge, i.e.,
knowledge that is based on understanding and performance,
compared to declarativ knowledge, i.e., pure knowledge of
“knowing about things” [10].

The former kind of deeper knowledge of SE projects, i.e.,
to be able to do “good enough” to meet customer expectations
with a constrained budget is what here is meant by being
“professional”. The approach of iterative learning aims at
taking the students a first step in that direction.

D. Industry relevance
How well does the company approach solve the problem of
designing a software engineering project course that gives an
industrially realistic view from an organizational, process, and
communication perspective?

To enable student learning of functional knowledge related
to company organization and processes, it is necessary to have
a strong educational culture that focus on learning how to
learn from experience. A coaching style of teaching is vital
where teachers act as supervisors and teach by asking ques-
tions, not giving the answers. This coaching style of leadership
ought to be implemented in the whole organizational structure,
even for student elected managers. This fact is confirmed in
the quantitative study (Statement 4, Table I).

Both the academic teaching environment at universities as
well as real companies in industry need to fulfill their tasks
within economic constraints. Limited teaching resources are
one of the main challenges within higher education; especially
regarding assessment and giving student feedback. In the
proposed methodology, the aim of meeting these challenges
has been to empower the students to run the project, where the
teachers are coaches focusing on being present and available
as much as possible. Empowering the students and at the same
time stating clear demands on deliverables and time reporting
give also a positive effect of understanding real economic
constraints within companies.

VI. CONCLUSION

This paper describes a new methodology for running software
engineering project courses, called the company approach. The
main focus is to provide an industrially realistic setting from an
organizational, process, and communication perspective. The
quantitative survey indicated that the company approach gave
industrial relevant experience. This is also partially confirmed
in the qualitative survey performed on students one and a half
year after they finished the course.

ACKNOWLEDGMENT

This research was funded by the Department of Computer and
Information Science, Linköping University, Sweden.

REFERENCES

[1] Interim Review Task Force, “Computer Science Curriculum 2008 - An
Interim Revision of CS 2001,” 2008.

[2] Joint Task Force on Computing Curricula, “Software Engineering 2004 -
Curriculum Guidelines for Undergraduate Degree Programs in Software
Engineering,” 2004.

[3] R. H. Todd, S. P. Magleby, C. D. Sorensen, B. R. Swan, and D. K.
Anthony, “A survey of capstone engineering courses in north america,”
Journal of Engineering Education, vol. 84, pp. 165–174, 1995.

[4] A. Goold, “Providing process for projects in capstone courses,” in
Proceedings of the 8th annual conference on Innovation and technology
in computer science education, ser. ITiCSE ’03. New York, USA: ACM
Press, 2003, pp. 26–29.

[5] S. Karunasekera and K. Bedse, “Preparing Software Engineering Grad-
uates for an Industry Career,” in Proceedings of the 20th Conference on
Software Engineering Education and Training. IEEE Press, 2007, pp.
97–106.

[6] D. A. Umphress, D. Hendrix, and J. H. Cross, “Software process in the
classroom: the capstone project experience,” IEEE Software, vol. 19,
no. 5, pp. 78–85, 2002.

[7] D. Coppit and J. M. Haddox-Schatz, “Large team projects in software
engineering courses,” in Proceedings of the 36th SIGCSE technical
symposium on Computer science education, ser. SIGCSE ’05. New
York, USA: ACM Press, 2005, pp. 137–141.

[8] F. Meawad, “The Virtual Agile Enterprise: Making the Most of a Soft-
ware Engineering Course,” in Proceedings of the 24th IEEE Conference
on Software Engineering Education and Training, 2011, pp. 324–332.

[9] J. Biggs, “Enhancing teaching through constructive alignment,” Higher
Education, vol. 32, no. 3, pp. 347–364, 1996.

[10] J. Biggs and C. Tang, Teaching for Quality Learning at University,
3rd ed. Open University Press, 2007.

[11] M. Ben-Ari, “Constructivism in computer science education,” Journal
of Computers in Mathematics and Science Teaching, vol. 20, no. 1, pp.
45–71, 2001.

[12] K. Schwaber and M. Beedle, Agile Software Development with Scrum.
Prentice Hall, 2001.

[13] W. H. Kruskal and W. A. Wallis, “Use of Ranks in One-Criterion
Variance Analysis,” Journal of the American Statistical Association,
vol. 47, no. 260, pp. 583–621, 1952.

[14] T. J. Shuell, “Cognitive conceptions of learning,” Review of Educational
Research, vol. 56, no. 4, pp. 411–436, 1986.

[15] F. Marton and R. Säljö, “On qualitative differnces in learning: I -
outcome and process,” British Journal of Educational Psychology,
vol. 46, pp. 4–11, 1976.

[16] A. King, “From sage on the stage to guide on the side,” College
Teaching, vol. 41, no. 1, 1993.

[17] M. Lejk and M. Wyvill, “A survey of methods of deriving individual
grades from group assessments,” Assessment & Evaluation in Higher
Education, vol. 21, no. 3, 1996.

[18] S. M. Brookhart, “Assessment theory for college classrooms,” New
Directions for Teaching and Learning, vol. 2004, no. 100, pp. 5–14,
2004.

[19] D. Broman, “Should Software Engineering Projects be the Backbone
or the Tail of Computing Curricula?” in Proceedings of the 23th
IEEE Conference on Software Engineering Education and Training,
Pittsburgh, USA, 2010, pp. 153–156.

	The Company Approach to Software Engineering Project Courses-TitlePage.pdf
	broman-et-al-2011-preprint-company-approach

