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Abstract—Software Managed Multicore (SMM) architectures
have advantageous scalability, power efficiency, and predictability
characteristics, making SMM particularly promising for real-time
systems. In SMM architectures, each core can only access its
scratchpad memory (SPM); any access to main memory is done
explicitly by DMA instructions. As a consequence, dynamic code
management techniques are essential for loading program code
from the main memory to SPM. Current state-of-the-art dynamic
code management techniques for SMM architectures are, how-
ever, optimized for average-case execution time, not worst-case
execution time (WCET), which is vital for hard real-time systems.
In this paper, we present two novel WCET-aware dynamic SPM
code management techniques for SMM architectures. The first
technique is optimal and based on integer linear programming
(ILP), whereas the second technique is a heuristic that is sub-
optimal, but scalable. Experimental results with benchmarks from
Mälardalen WCET suite and MiBench suite show that our ILP
solution can reduce the WCET estimates up to 80% compared
to previous techniques. Furthermore, our heuristic can, for most
benchmarks, find the same optimal mappings within one second
on a 2GHz dual core machine.

I. INTRODUCTION

In real-time [1] and cyber-physical [2] systems, timing is a
correctness criterion, not just a performance factor. Execution
of program tasks must be completed within certain timing
constraints, often referred to as deadlines. When real-time
systems are used in safety-critical applications, such as auto-
mobiles or aircraft, missing a deadline can cause devastating,
life-threatening consequences. Computing safe upper bounds
of a task’s worst-case execution time (WCET) is essential to
guarantee the absence of missed deadlines.

Real-time systems are becoming more and more complex
with increasing performance demands. Performance improve-
ments in recent processor designs have mainly been driven
by the multicore paradigm because of power and temperature
limitations with single-core designs [3]. Some recent real-
time systems architectures are moving towards multicore [4]
or multithreaded [5], [6] designs. However, coherent caches,
which are popular in traditional multicore platforms, are not a
good fit for real-time systems. Coherent caches make WCET
analysis difficult and result in pessimistic WCET estimates [7].

This work was supported in part by the iCyPhy Research Center (Industrial
Cyber-Physical Systems, supported by IBM and United Technologies), the
Swedish Research Council (#623-2011-955), and the Center for Hybrid and
Embedded Software Systems (CHESS) at UC Berkeley (supported by the
National Science Foundation, NSF awards #0720882 (CSR-EHS: PRET),
#1035672 (CPS: Medium: Timing Centric Software), and #0931843 (Action-
Webs), the Naval Research Laboratory (NRL #N0013-12-1-G015), and the
following companies: Bosch, National Instruments, and Toyota).
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Fig. 1. (a) SMM architecture vs. (b) traditional architecture with SPM. Cores
cannot access main memory directly in SMM architecture. All code and data
must be present in SPM at the time of execution.

SMM (Software Managed Multicore) architectures [8], [9]
are a promising alternative for real-time systems. In SMM,
each core has a scratchpad memory (SPM), so-called local
memory, as shown in Fig. 1(a). A core can only access its
SPM in an SMM architecture, as opposed to the traditional
architecture in Fig. 1(b) where a core can access both main
memory and SPM with different latencies. Accesses to the
main memory must be done explicitly through the use of direct
memory access (DMA) instructions. The absence of coherency
makes such architectures scalable and simpler to design and
verify compared to traditional multicore architectures [3]. An
example of an SMM architecture is the Cell processor that is
used in Playstation 3 [10].

If all code and data of a task can fit in the SPM, the
timing model of memory accesses is trivial: each load and
store always take a constant number of clock cycles. However,
if all code or data does not fit in the SPM, it must be
dynamically managed by executing DMA instructions during
runtime. Dynamic code management strongly affects timing
and must consequently be an integral part of WCET analysis.

In traditional architectures that have SPMs, cores can
directly access main memory, though it takes a longer time
to access main memory than the SPM. In such architectures,
the question is what to bring in the SPM to reduce the WCET
of a task. This approach is not, however, feasible in SMM
architectures because all relevant code must be present in the
SPM at the time of execution. For this reason, existing WCET-
aware dynamic code management techniques for SPMs [11],
[12]—which select part of the code to be loaded in the SPM
and keep the rest in the main memory—are not applicable in
SMM architecture.

There exists previous work on developing dynamic code
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Cyber-Physical Systems (CPS) 

Automotive Process Industry and 
Industrial Automation 

Aerospace 

Physical system (the plant) Cyber system: Computation (embedded) + Networking 

Sensors 

Actuators 
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Modern Systems with Many Processor Platforms 

Modern aircraft have many computer controlled systems 
•  Engine control 
•  Electric power control 
•  Radar system 
•  Navigation system 
•  Flight control 
•  Environmental control system 
etc… 

Modern cars have many ECU (Electronic Control Units)   
•  Airbag control 
•  Door control 
•  Electric power steering control 
•  Power train control 
•  Speed control 
•  Battery management. 
etc.. Over 80 ECUs in a high-end model (Albert and Jones, 2010) 

Automotive 

Aerospace 
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Mixed-Criticality Systems 

Issues with too many processors 
•  High cost  
•  Space and weight  
•  Energy consumption 

Federated Approach 
Each processor has its own task 

Consolidate into fewer processors 

Task Processor 
Platform 

Required for Safety 
•  Spatial isolation between tasks  
•  Temporal isolation between tasks 

(necessary to meet deadlines) 
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Mixed-Criticality Systems 

Issues with too many processors 
•  High cost  
•  Space and weight  
•  Energy consumption 

Federated Approach 
Each processor has its own task 

Consolidate into fewer processors 

Required for Safety 
•  Spatial isolation between tasks  
•  Temporal isolation between tasks 

(necessary to meet deadlines) 

Mixed-Criticality Challenge 
Reconcile the conflicting requirements of:  
•  Partitioning (for safety) 
•  Sharing (for efficient resource usage) 
(Burns & Davis, 2013) 

…but such safety requirements are only needed for highly critical tasks 
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Possible Approaches… 

Real-time Operating System (RTOS) Using Software Scheduling 

Multi-core with Task Partitioning 

- Requires verification and certification of the RTOS 
- Hard to do timing analysis (caches, pipeline, preemption of tasks) 

+ Efficient resource usage  
+ Standard hardware 

+ Temporal and spatial isolation if no resource sharing 
+ Standard hardware 

- Resources are typically shared (cache coherence problem) 
- WCET analysis for multi-core is very difficult 
- Low resource utilization (cores do nothing after tasks finished computations) 
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Our solution 

FlexPRET 
Softcore 

Fine-grained Multithreaded Processor Platform 
(thread interleaved) implemented on an FPGA 

Flexible schedule (1 to 8 active threads) and 
scheduling frequency (1, 1/2, 2/3, 1/4, 1/8 etc.) 

Hard real-time threads (HRTT) with predictable 
timing behavior 
•  Thread-interleaved pipleine (no pipeline hazards) 
•  Scratchpad memory instead of cache Soft real-time threads 

(SRTT) with cycle stealing 
from HRTT 

WCET-Aware  
Scratchpad  

Memory (SPM)  
Management 

Automatic DMA transfer 
of code to SPM 

Optimal 
mapping for 
minimizing 
WCET 
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Related Work 

Software Scheduling for Mixed Criticality 
•  Reservation-based partitioning, ARNIC 653 
•  First priority-based MC (Vestal, 2007) 
•  Sporadic task scheduling (Baruha and 

Vestal, 2008) 
•  Slack scheduling (Niz et al. 2009) 
•  Review of MC area, 168 references (Burns & 

David, 2013) 

WCET Analysis 

Predictable and Multithreaded Processors 

•  WCET-aware compiler (Falk & Lukuciejewski, 
2010) 

•  Detection of loop and infeasible paths 
(Gustafsson et al., 2006)  

•  Cache analysis (Ferdinand & Wilhelm, 1999) 
•  WCET Survey (Wilhelm et al., 2008) 

•  PRET idea (Edwards and Lee, 2007) 
•  PTARM (Liu et al.,  2012) 
•  Patmos (Schoeberl et al., 2011) 
•  JOP (Schoeberl, 2008) 
•  XMOS X1 (May, 2009) 
•  MERASA, MC on multicore (Ungerer, 2010) 

Scratchpad Memory Management 
•  Average case SPM methods for SMM 

(Bai et al, 2013; Jung et al., 2010; 
Pabalkar et al. 2008; Baker et al., 2010) 

•  Static SPM WCET methods (Keinaorge 
2008, Platzar 2012) 

•  SPM management at basic block level 
(Puaut & Pais, 2007) 

Several EU projects related to Mixed-Criticality:  
MultiPARTES, Recomp, CERTAINTY, Proxima,… 
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Single threaded processor  

previous instruction has progressed further through the pipeline
when the next instruction from that thread is fetched, reducing
or eliminating cycles that are wasted to prevent hazards by
increasing the spacing between dependent instructions. Such
interleaving increases overall processor throughput (total num-
ber of instructions processed on all threads), but increases the
latency (total processor cycles between start and finish) of
computing a task, compared to if the tasks were executed on
a single-threaded processor.

Example 1: Consider a single-threaded processor execut-
ing a branch instruction that should be taken. This particular
processor does not calculate the branch decision and target
address until the end of the execute stage, so two fetch cycles
(2 and 3) are wasted (flushed) if a branch is taken.

TID Addr. Inst. Cycle
1 2 3 4 5 6 7 8

0 0x00 BR 0x0C F D E M W
0 0x04 I F D - - -
0 0x08 I F - - - -
0 0x0C I F D E M W

The thread ID (TID) column shows that each cycle an
instruction is fetched from the same thread (0). The instruction
and address columns show example instructions and their
address in memory, where BR 0x0C means branch to address
0x0C, and I is an arbitrary instruction. Dashes indicate an
instruction was flushed (instructions at 0x04 and 0x08).

Example 2: Now consider the same program running on a
fine-grained multithreaded processor sharing the pipeline with
three other threads in a round-robin fashion. The thread (0) is
not scheduled again until after the branch decision and target
address are calculated, so no cycles are wasted, but the thread
has a larger latency.

TID Addr. Inst. Cycle
1 2 3 4 5 6 7 8

0 0x00 BR 0x0C F D E M W
1 0x30 I F D E M W
2 0x60 I F D E M W
3 0x90 I F D E M W
0 0x0C I F D E M

In single-threaded processors, switching to a different task
involves a context switch, saving the state of one task and
restoring the state of another, a time-consuming operation
performed entirely by software unless the processor provides
hardware support. If each task is assigned to a different thread,
a fine-grained multithreaded processor is capable of context
switching every clock cycle. In addition to reduced overhead
when switching between tasks, this also allows low-latency
reactions to external IO; a task can start reacting within a few
cycles instead of waiting for a RTOS to context switch.

B. Pipeline

FlexPRET allows an arbitrary interleaving of threads1 in
the pipeline (i.e. no restrictions on the schedule) to enable
flexible thread scheduling. Unfortunately, this also means the
pipeline is more susceptible to data and control hazards, which
can occur when the spacing between two instructions from the
same thread is too close. For example, the thread scheduler

1The physical number is a hardware decision; we support 1-8 threads.

could schedule only one thread to be executed in the pipeline,
and two instructions would need to be flushed when a branch
is taken (as occurred in Example 1).

As in a typical single-threaded RISC pipeline, FlexPRET
avoids most data hazards with forwarding paths, which supply
required data from later pipeline stages to avoid waiting until it
is written back to the register file. The only difference is that
thread IDs must also be compared so that forwarding only
occurs between instructions from the same thread. There are
still hazards that cannot always be avoided with forwarding
because the required data is not yet computed, such as a data
hazard with memory load or a control hazard with a jump or
branch taken. Unlike a typical single-threaded RISC pipeline,
stalling and flushing must be carefully performed as to not
disrupt the schedule, which would reduce temporal isolation.
Stalling is done by replaying the instruction in the thread’s
next scheduled slot, and flushing (decision made by execute
stage) is only done on instructions in the fetch or decode stage
with the same thread ID.

The spacing required between two particular instructions
from the same thread to prevent hazards depends on both the
ISA and how it is implemented. For FlexPRET, if a jump or
branch occurs, the subsequent two processor cycles must not
execute an instruction from that thread, which could require
the flush operation just described. Memory loads and stores
occur in a single processor cycle, but in the pipeline stage
after the execute stage; if the execute stage needs the result of
a memory read (e.g. to perform an arithmetic operation), these
instructions must not be scheduled next to each other. Even
though the number of scheduled processor cycles required to
execute a sequence of instructions varies with scheduling, this
number is still predictable—it can be exactly computed for
any sequence of instructions if the scheduling is known.

Example 3: Consider FlexPRET executing a schedule that
alternates between two threads. Only one instruction (at 0x04)
needs to be flushed when thread 0 branches, and in thread 1,
forwarding allows the ADD instruction to use the result of the
LD instruction without stalling.

TID Addr. Inst. Cycle
1 2 3 4 5 6 7 8 9

0 0x00 BR 0x0C F D E M W
1 0x30 LD F D E M W
0 0x04 I F - - - -
1 0x34 ADD F D E M W
0 0x0C I F D E M W

Some fine-grained multithreaded processors, such as the
XMOS XS1 [15] and PTARM [14], do not support an arbi-
trary interleaving of threads. They require a sufficient spacing
between instructions from the same thread as to not require
forwarding, stalling, or flushing, saving the area cost of these
mechanisms. This is overly restrictive for some applications—
there must be at least four threads active (for instance) to fully
utilize the pipeline and a single thread cannot be scheduled
more frequently than once every four cycles. By allowing an
arbitrary interleaving, FlexPRET allows a trade-off between
overall throughput and single thread latency. If a deadline
needs to be met, a thread can be scheduled more frequently,
but could waste more cycles preventing hazards.

3

•  FlexPRET can execute 1 to 8 hardware threads concurrently 
•  5-stage pipeline implemented in Chisel (HDL embedded in Scala) 
•  Synthesized on a Xilinx Virtex-5 FPGA (for prototyping) 
•  RISCV ISA 

This 
example: 
one thread  
(thread ID 0) 

Branches to 
address 0x0C 

5-stage pipeline. We do not 
compute the branch address 
until the end of the execution 
cycle. 

Pipeline is flushed - 2 cycles 
are wasted 

Unpredictability: 1 cycle if branch-not-
taken and 3 cycles if taken 
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Thread-Interleaving for Predictability 

previous instruction has progressed further through the pipeline
when the next instruction from that thread is fetched, reducing
or eliminating cycles that are wasted to prevent hazards by
increasing the spacing between dependent instructions. Such
interleaving increases overall processor throughput (total num-
ber of instructions processed on all threads), but increases the
latency (total processor cycles between start and finish) of
computing a task, compared to if the tasks were executed on
a single-threaded processor.

Example 1: Consider a single-threaded processor execut-
ing a branch instruction that should be taken. This particular
processor does not calculate the branch decision and target
address until the end of the execute stage, so two fetch cycles
(2 and 3) are wasted (flushed) if a branch is taken.

TID Addr. Inst. Cycle
1 2 3 4 5 6 7 8

0 0x00 BR 0x0C F D E M W
0 0x04 I F D - - -
0 0x08 I F - - - -
0 0x0C I F D E M W

The thread ID (TID) column shows that each cycle an
instruction is fetched from the same thread (0). The instruction
and address columns show example instructions and their
address in memory, where BR 0x0C means branch to address
0x0C, and I is an arbitrary instruction. Dashes indicate an
instruction was flushed (instructions at 0x04 and 0x08).

Example 2: Now consider the same program running on a
fine-grained multithreaded processor sharing the pipeline with
three other threads in a round-robin fashion. The thread (0) is
not scheduled again until after the branch decision and target
address are calculated, so no cycles are wasted, but the thread
has a larger latency.

TID Addr. Inst. Cycle
1 2 3 4 5 6 7 8

0 0x00 BR 0x0C F D E M W
1 0x30 I F D E M W
2 0x60 I F D E M W
3 0x90 I F D E M W
0 0x0C I F D E M

In single-threaded processors, switching to a different task
involves a context switch, saving the state of one task and
restoring the state of another, a time-consuming operation
performed entirely by software unless the processor provides
hardware support. If each task is assigned to a different thread,
a fine-grained multithreaded processor is capable of context
switching every clock cycle. In addition to reduced overhead
when switching between tasks, this also allows low-latency
reactions to external IO; a task can start reacting within a few
cycles instead of waiting for a RTOS to context switch.

B. Pipeline

FlexPRET allows an arbitrary interleaving of threads1 in
the pipeline (i.e. no restrictions on the schedule) to enable
flexible thread scheduling. Unfortunately, this also means the
pipeline is more susceptible to data and control hazards, which
can occur when the spacing between two instructions from the
same thread is too close. For example, the thread scheduler

1The physical number is a hardware decision; we support 1-8 threads.

could schedule only one thread to be executed in the pipeline,
and two instructions would need to be flushed when a branch
is taken (as occurred in Example 1).

As in a typical single-threaded RISC pipeline, FlexPRET
avoids most data hazards with forwarding paths, which supply
required data from later pipeline stages to avoid waiting until it
is written back to the register file. The only difference is that
thread IDs must also be compared so that forwarding only
occurs between instructions from the same thread. There are
still hazards that cannot always be avoided with forwarding
because the required data is not yet computed, such as a data
hazard with memory load or a control hazard with a jump or
branch taken. Unlike a typical single-threaded RISC pipeline,
stalling and flushing must be carefully performed as to not
disrupt the schedule, which would reduce temporal isolation.
Stalling is done by replaying the instruction in the thread’s
next scheduled slot, and flushing (decision made by execute
stage) is only done on instructions in the fetch or decode stage
with the same thread ID.

The spacing required between two particular instructions
from the same thread to prevent hazards depends on both the
ISA and how it is implemented. For FlexPRET, if a jump or
branch occurs, the subsequent two processor cycles must not
execute an instruction from that thread, which could require
the flush operation just described. Memory loads and stores
occur in a single processor cycle, but in the pipeline stage
after the execute stage; if the execute stage needs the result of
a memory read (e.g. to perform an arithmetic operation), these
instructions must not be scheduled next to each other. Even
though the number of scheduled processor cycles required to
execute a sequence of instructions varies with scheduling, this
number is still predictable—it can be exactly computed for
any sequence of instructions if the scheduling is known.

Example 3: Consider FlexPRET executing a schedule that
alternates between two threads. Only one instruction (at 0x04)
needs to be flushed when thread 0 branches, and in thread 1,
forwarding allows the ADD instruction to use the result of the
LD instruction without stalling.

TID Addr. Inst. Cycle
1 2 3 4 5 6 7 8 9

0 0x00 BR 0x0C F D E M W
1 0x30 LD F D E M W
0 0x04 I F - - - -
1 0x34 ADD F D E M W
0 0x0C I F D E M W

Some fine-grained multithreaded processors, such as the
XMOS XS1 [15] and PTARM [14], do not support an arbi-
trary interleaving of threads. They require a sufficient spacing
between instructions from the same thread as to not require
forwarding, stalling, or flushing, saving the area cost of these
mechanisms. This is overly restrictive for some applications—
there must be at least four threads active (for instance) to fully
utilize the pipeline and a single thread cannot be scheduled
more frequently than once every four cycles. By allowing an
arbitrary interleaving, FlexPRET allows a trade-off between
overall throughput and single thread latency. If a deadline
needs to be met, a thread can be scheduled more frequently,
but could waste more cycles preventing hazards.

3

In this example, 
we have 4 
interleaved 
threads. 

Thread 0 is not scheduled until 
after the branch address is 
calculated. No wasted cycles. 

No pipeline hazards (no wasted cycles) if 
3 or more scheduled treads in a row. 
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Flexible Scheduling with Cycle Stealing 

•  FlexPRET allow arbitrary interleaving 
•  Soft real-time threads (SRTT) can steal  

cycles from hard real-time threads(HRTT) 

HRTT 

SRTT 

Example execution  
(read from up to down, left to right) 

Task A (hard) frequency 2/4 = 1/2  
Task B (hard) frequency 1/4 
Task C (soft) frequency 1/4 + cycle stealing 

Task B finish, cycles are used by task C (soft thread) 

Task A and B are temporally isolated 
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C level programming using real-time 

D. Timing Instructions

New timing instructions augment the RISC-V ISA for
expressing real-time semantics. In contrast to previous PRET
architectures supporting timing instructions [14], [18], [21],
our design is targeted for mixed-critical systems.

The FlexPRET processor contains an internal clock that
counts the number of elapsed nanoseconds since the processor
was booted. The current time is stored in a 64-bit register,
meaning that the processor can be active for 584 years without
the clock counter wrapping around. Two new instructions can
be used to get the current time: get time high GTH r1 and
get time low GTL r2 store the higher and lower 32 bits in
register r1 and r2, respectively. When GTL is executed, the
processor stores internally the higher 32 bits of the clock
and then returns this stored value when executing GTH. As
a consequence, executing GTL followed by GTH is atomic, as
long as the instruction order is preserved.

To provide a lower bound on the execution time for a
code fragment, the RISC-V ISA is extended with a delay until
instruction DU r1,r2, where r1 is the higher 32 bits and r2
is the lower 32 bits of an absolute time value. Semantically,
the thread is delayed (replays this instruction) until the current
time becomes larger or equal to the time value specified by r1
and r2. However, in contrast to previous processors supporting
timing instructions (e.g., PTARM [14], [18]), the clock cycles
are not wasted, but can instead be utilized for other SRTTs.

To provide an upper bound on execution time without
constantly polling, a task needs to be interrupted. Instruction
exception on expire EE r1,r2 enables a timer exception that
is executed when the current time exceeds r1,r2. The jump
address is specified by setting a control register with MTPCR
(move to program control register). Only one exception per
thread can be active at any point in time; nested exceptions
must be implemented in software. The instruction deactivate
exception on expire DE deactivates the timer exception.

Exception on expire can be used for many purposes, such
as detecting and handling a deadline miss, implementing a
preemptive scheduler, or performing timed I/O. By first issuing
an exception on expire and then executing a new thread sleep
TS instruction, the clock cycles for the sleeping thread can be
utilized by other active SRTTs. Another use of exception on
expire is for anytime algorithms, that is, algorithms that can
be interrupted at any point in time and returns a better solution
the longer time it is executed.

E. Memory Hierarchy

For spatial isolation between threads, FlexPRET allows
threads to read anywhere in memory, but only write to certain
regions. The regions are specified by control registers that can
only be set by a thread in supervisory mode with MTPCR.
Virtual memory is a standard and suitable approach, but Flex-
PRET currently uses a different scheme for simplicity. There
is one control register for the upper address of a shared region
(which starts at the bottom of data memory) and two control
registers per thread for the lower and upper addresses of a
thread-specific region. Memory is divided into 1kB regions,
and a write only succeeds if the address is within the shared or
thread-specific region. By specifying all thread-specific regions

and the shared region to be disjoint, each thread will have both
private memory and access to shared memory.

For timing predictability, FlexPRET uses scratchpad mem-
ories [22]. These are local memories that have a separate
address space than main memory and are explicitly controlled
by software; all valid memory accesses always succeed and are
single cycle, unlike caches where execution time depends on
cache state. There is active research in scratchpad memory
management techniques to reduce WCET [23]. Instructions
are stored in instruction scratchpad memory (I-SPM) and
data is stored separately in data scratchpad memory (D-
SPM). Scratchpad memories are not required; caches could
be used instead if the reduction in fine-grained predictability is
acceptable. We envision a hybrid approach where HRTTs tasks
use scratchpads and SRTTs use caches for future versions of
FlexPRET.

F. Programming, Compilation, and Timing Analysis

FlexPRET can be programmed using low level program-
ming languages, such as C, that are augmented with con-
structs for expressing temporal semantics. FlexPRET can be
an integral part of a precision timed infrastructure [24] that
includes languages and compilers with an ubiquitous notion
of time. Such a complete infrastructure with timing-aware
compilers is outside the scope of this paper; instead, we use
a RISC-V port of the gcc compiler and implement the new
timing instructions using inline assembly. The following code
fragment illustrates how a simple periodic control loop can be
implemented.
1 int h,l; // High and low 32-bit values
2 get_time(h,l); // Current time in nanoseconds
3 while(1){ // Repeat control loop forever
4 add_ms(h,l,10); // Add 10 milliseconds
5 exception_on_expire(h,l,missed_deadline_handler);
6 compute_task(); // Sense, compute, and actuate
7 deactivate_exception(); // Deadline met
8 delay_until(h,l); // Delay until next period
9 }

Before the control loop is executed, the current time
(in nanoseconds) is stored in variables h and l (line
2). The time is incremented by 10ms (line 4) and a
timer exception is enabled (line 5), followed by task
execution (line 6). If a deadline is missed, an excep-
tion handler missed_deadline_handler is called. To
force a lower bound on the timing loop, the execution
is delayed until the time period has elapsed (line 8);
the cycles during the delay can be used by an active
SRTT. Functions get_time, exception_on_expire,
deactivate_exception, and delay_until implement
the new RISC-V timing instructions using inline assembly.

To have full control over timing, real-time applications can
be implemented as bare-metal software, using only lightweight
libraries for hardware interaction. As a scheduling design
methodology, we propose that tasks with the highest criticality
level (e.g. A in DO-178C [4]) are assigned individual HRTTs,
thus providing both temporal and spatial isolation. The next-
highest criticality level tasks (e.g. B in DO-178C) also use
HRTTs, but several tasks can share the same thread, thus
reducing the hardware enforced isolation. Lower criticality
tasks (e.g. C, D, E in DO-178C) can then share SRTTs

5

•  Currently using a GCC port for RISC-V when compiling programs 
with C inline assembly macros. See period loop example below: 

•  Work-in-progress of a LLVM based WCET-aware compiler 

1-2: Get time in  
nano seconds (64 bits) 

5: Add en exception handler (immediate 
detection of missed deadline) 

6: Compute 

7-8: Deactivate and delay 
(force lower bound) 

NOTE: The delay until (DU) instruction 
is used for cycle stealing 
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Task Thread
ID

Thread
Mode

Ti, Di
(ms)

Ei,1
(⇤105)

Ei,1/2

(⇤105)
Ei,1/3+

(⇤105)
⌧A1 0 HA 25 1.10 1.00 0.95
⌧A2 1 HA 50 1.80 1.64 1.55
⌧A3 2 HA 100 2.00 1.82 1.72
⌧A4 3 HA 200 5.30 4.83 4.56
⌧B1 4 HA 25 1.40 1.27 1.20
⌧B2 4 HA 50 3.90 3.54 3.34
⌧B3 4 HA 50 2.80 2.54 2.40
⌧B4 5 HA 50 1.40 1.28 1.21
⌧B5 5 HA 50 3.70 3.37 3.19
⌧B6 5 HA 100 1.80 1.64 1.55
⌧B7 5 HA 200 8.50 7.75 7.32
⌧C1 6 SA 50 1.90 1.77 1.63
⌧D1 6 SA 50 5.40 5.03 4.65
⌧D2 6 SA 200 2.40 2.33 2.28
⌧D3 6 SA 50 1.30 1.26 1.23
⌧D4 6 SA 200 1.50 1.45 1.42
⌧D5 7 SA 25 2.30 2.14 1.98
⌧D6 7 SA 100 4.80 4.65 4.30
⌧D7 7 SA 200 13.00 12.70 12.44
⌧D8 7 SA 100 0.60 0.57 0.56
⌧D9 7 SA 50 2.40 2.33 2.28

(a) The task set

5 3 4 2 5 1 4 0

(b) The slots control register

TABLE III: A mixed-criticality avionics case study

PTARM [14] by Liu et al. and XMOS X1 [15] are
architecturally similar to FlexPRET. Both are fine-grained
multithreaded 5-stage RISC processors that require at least
four threads (exactly four threads for PTARM) to be round-
robin interleaved in the pipeline; cycles are wasted if there
are fewer than four active threads, and a single thread can
only be executed at most once every four cycles. PTARM is
better suited for hard real-time tasks because all threads have
a constant scheduling frequency. Conversely, XMOS is better
suited for soft real-time tasks because inactive tasks can be
left out of round-robin scheduling, but scheduling frequency
depends on the maximum number of simultaneously active
threads. The Merasa project [35] is the most closely related
work on hardware for mixed-criticality systems and uses simi-
lar approaches, but is focused more at the multicore level. Like
FlexPRET, it provides isolation and timing predictability to
hard real-time threads by using predictable thread scheduling
and scratchpad memories instead of caches, but is limited to
one hard real-time thread per core.

B. Software-based Scheduling

Software based scheduling for mixed-criticality software is
typically either reservation-based or priority-based [2]. Rese-
rvation-based is best demonstrated by the ARINC 653 standard
used in integrated modular avionic (IMA) systems [36]. Crit-
ical tasks are guaranteed segments of time, and most RTOSs
will steal cycles for other tasks if a task finishes early, as done
by Wind River’s VxWorks 653 RTOS [28].

Using priority-based preemptive scheduling for mixed-
criticality systems was first proposed by Vestal [1]. Since

T0⌧A1

T1⌧A2
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T3⌧A4

T4
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⌧B2
⌧B3

T5
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t (ms)
0 25 50 75 100 125 150 175 200

Fig. 4: FlexPRET-8T executing a mixed-criticality avionics
case study.

then, there has been much work addressing scheduling the-
ory of mixed-criticality systems, as recently summarized by
Burns [10]. Scheduling sporadic tasks was first addressed
by Baruah and Vestal [7], and Niz et al. [8] presented a
scheduling algorithm that protects high-criticality tasks from
low-criticality tasks, even if a nominal WCET is overrun. More
recently, Mollison et al. [9] proposed an approach for multicore
platforms. Although FlexPRET does not implement priority-
based scheduling in hardware, it can still be used as a platform
for these algorithms: either scheduling tasks within a single
thread or changing the thread scheduling.

VI. CONCLUSIONS AND FUTURE WORK

Hardware-based isolation requires executing each task on
a separate computational component, which could be a pro-
cessor, core, or hardware thread, and typically results in
underutilization of hardware resources. FlexPRET uses fine-
grained multithreading and flexible thread scheduling to pro-
vide hardware-based isolation and predictability to HRTTs, but
also allows SRTTs to use any cycle not needed by an HRTT.
If there are more tasks than hardware threads available, either
software-based scheduling can be used on some threads or
additional FlexPRET cores can be added to the system.

We consider FlexPRET a key contribution to a precision
timed infrastructure [24], where languages, compilers, and
architectures allow the specification and preservation of timing
semantics. The next steps in that direction are tool support for
formal verification of hard real-time tasks and investigating
how languages can leverage FlexPRET’s properties. From the
hardware perspective, the presented architectural techniques

9

Task set structure derived from a  
avionics system at Honeywell  
(Vestal, 2007) 
•  Tasks from Malardalen 
•  21 tasks 
•  8 hardware threads.  
•  4 criticality levels A-D. 

A on separate HRTT 
 

B on one HRTT  
(with Rate monotonic) 

C and D SRTT with cycle  
stealing (EDF) 

WCET cycles for different 
scheduling frequences 
 

Periodic tasks 
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Abstract—Software Managed Multicore (SMM) architectures
have advantageous scalability, power efficiency, and predictability
characteristics, making SMM particularly promising for real-time
systems. In SMM architectures, each core can only access its
scratchpad memory (SPM); any access to main memory is done
explicitly by DMA instructions. As a consequence, dynamic code
management techniques are essential for loading program code
from the main memory to SPM. Current state-of-the-art dynamic
code management techniques for SMM architectures are, how-
ever, optimized for average-case execution time, not worst-case
execution time (WCET), which is vital for hard real-time systems.
In this paper, we present two novel WCET-aware dynamic SPM
code management techniques for SMM architectures. The first
technique is optimal and based on integer linear programming
(ILP), whereas the second technique is a heuristic that is sub-
optimal, but scalable. Experimental results with benchmarks from
Mälardalen WCET suite and MiBench suite show that our ILP
solution can reduce the WCET estimates up to 80% compared
to previous techniques. Furthermore, our heuristic can, for most
benchmarks, find the same optimal mappings within one second
on a 2GHz dual core machine.

I. INTRODUCTION

In real-time [1] and cyber-physical [2] systems, timing is a
correctness criterion, not just a performance factor. Execution
of program tasks must be completed within certain timing
constraints, often referred to as deadlines. When real-time
systems are used in safety-critical applications, such as auto-
mobiles or aircraft, missing a deadline can cause devastating,
life-threatening consequences. Computing safe upper bounds
of a task’s worst-case execution time (WCET) is essential to
guarantee the absence of missed deadlines.

Real-time systems are becoming more and more complex
with increasing performance demands. Performance improve-
ments in recent processor designs have mainly been driven
by the multicore paradigm because of power and temperature
limitations with single-core designs [3]. Some recent real-
time systems architectures are moving towards multicore [4]
or multithreaded [5], [6] designs. However, coherent caches,
which are popular in traditional multicore platforms, are not a
good fit for real-time systems. Coherent caches make WCET
analysis difficult and result in pessimistic WCET estimates [7].

This work was supported in part by the iCyPhy Research Center (Industrial
Cyber-Physical Systems, supported by IBM and United Technologies), the
Swedish Research Council (#623-2011-955), and the Center for Hybrid and
Embedded Software Systems (CHESS) at UC Berkeley (supported by the
National Science Foundation, NSF awards #0720882 (CSR-EHS: PRET),
#1035672 (CPS: Medium: Timing Centric Software), and #0931843 (Action-
Webs), the Naval Research Laboratory (NRL #N0013-12-1-G015), and the
following companies: Bosch, National Instruments, and Toyota).
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Fig. 1. (a) SMM architecture vs. (b) traditional architecture with SPM. Cores
cannot access main memory directly in SMM architecture. All code and data
must be present in SPM at the time of execution.

SMM (Software Managed Multicore) architectures [8], [9]
are a promising alternative for real-time systems. In SMM,
each core has a scratchpad memory (SPM), so-called local
memory, as shown in Fig. 1(a). A core can only access its
SPM in an SMM architecture, as opposed to the traditional
architecture in Fig. 1(b) where a core can access both main
memory and SPM with different latencies. Accesses to the
main memory must be done explicitly through the use of direct
memory access (DMA) instructions. The absence of coherency
makes such architectures scalable and simpler to design and
verify compared to traditional multicore architectures [3]. An
example of an SMM architecture is the Cell processor that is
used in Playstation 3 [10].

If all code and data of a task can fit in the SPM, the
timing model of memory accesses is trivial: each load and
store always take a constant number of clock cycles. However,
if all code or data does not fit in the SPM, it must be
dynamically managed by executing DMA instructions during
runtime. Dynamic code management strongly affects timing
and must consequently be an integral part of WCET analysis.

In traditional architectures that have SPMs, cores can
directly access main memory, though it takes a longer time
to access main memory than the SPM. In such architectures,
the question is what to bring in the SPM to reduce the WCET
of a task. This approach is not, however, feasible in SMM
architectures because all relevant code must be present in the
SPM at the time of execution. For this reason, existing WCET-
aware dynamic code management techniques for SPMs [11],
[12]—which select part of the code to be loaded in the SPM
and keep the rest in the main memory—are not applicable in
SMM architecture.

There exists previous work on developing dynamic code
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Abstract—Software Managed Multicore (SMM) architectures
have advantageous scalability, power efficiency, and predictability
characteristics, making SMM particularly promising for real-time
systems. In SMM architectures, each core can only access its
scratchpad memory (SPM); any access to main memory is done
explicitly by DMA instructions. As a consequence, dynamic code
management techniques are essential for loading program code
from the main memory to SPM. Current state-of-the-art dynamic
code management techniques for SMM architectures are, how-
ever, optimized for average-case execution time, not worst-case
execution time (WCET), which is vital for hard real-time systems.
In this paper, we present two novel WCET-aware dynamic SPM
code management techniques for SMM architectures. The first
technique is optimal and based on integer linear programming
(ILP), whereas the second technique is a heuristic that is sub-
optimal, but scalable. Experimental results with benchmarks from
Mälardalen WCET suite and MiBench suite show that our ILP
solution can reduce the WCET estimates up to 80% compared
to previous techniques. Furthermore, our heuristic can, for most
benchmarks, find the same optimal mappings within one second
on a 2GHz dual core machine.

I. INTRODUCTION

In real-time [1] and cyber-physical [2] systems, timing is a
correctness criterion, not just a performance factor. Execution
of program tasks must be completed within certain timing
constraints, often referred to as deadlines. When real-time
systems are used in safety-critical applications, such as auto-
mobiles or aircraft, missing a deadline can cause devastating,
life-threatening consequences. Computing safe upper bounds
of a task’s worst-case execution time (WCET) is essential to
guarantee the absence of missed deadlines.

Real-time systems are becoming more and more complex
with increasing performance demands. Performance improve-
ments in recent processor designs have mainly been driven
by the multicore paradigm because of power and temperature
limitations with single-core designs [3]. Some recent real-
time systems architectures are moving towards multicore [4]
or multithreaded [5], [6] designs. However, coherent caches,
which are popular in traditional multicore platforms, are not a
good fit for real-time systems. Coherent caches make WCET
analysis difficult and result in pessimistic WCET estimates [7].
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Fig. 1. (a) SMM architecture vs. (b) traditional architecture with SPM. Cores
cannot access main memory directly in SMM architecture. All code and data
must be present in SPM at the time of execution.

SMM (Software Managed Multicore) architectures [8], [9]
are a promising alternative for real-time systems. In SMM,
each core has a scratchpad memory (SPM), so-called local
memory, as shown in Fig. 1(a). A core can only access its
SPM in an SMM architecture, as opposed to the traditional
architecture in Fig. 1(b) where a core can access both main
memory and SPM with different latencies. Accesses to the
main memory must be done explicitly through the use of direct
memory access (DMA) instructions. The absence of coherency
makes such architectures scalable and simpler to design and
verify compared to traditional multicore architectures [3]. An
example of an SMM architecture is the Cell processor that is
used in Playstation 3 [10].

If all code and data of a task can fit in the SPM, the
timing model of memory accesses is trivial: each load and
store always take a constant number of clock cycles. However,
if all code or data does not fit in the SPM, it must be
dynamically managed by executing DMA instructions during
runtime. Dynamic code management strongly affects timing
and must consequently be an integral part of WCET analysis.

In traditional architectures that have SPMs, cores can
directly access main memory, though it takes a longer time
to access main memory than the SPM. In such architectures,
the question is what to bring in the SPM to reduce the WCET
of a task. This approach is not, however, feasible in SMM
architectures because all relevant code must be present in the
SPM at the time of execution. For this reason, existing WCET-
aware dynamic code management techniques for SPMs [11],
[12]—which select part of the code to be loaded in the SPM
and keep the rest in the main memory—are not applicable in
SMM architecture.

There exists previous work on developing dynamic code
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Abstract—Software Managed Multicore (SMM) architectures
have advantageous scalability, power efficiency, and predictability
characteristics, making SMM particularly promising for real-time
systems. In SMM architectures, each core can only access its
scratchpad memory (SPM); any access to main memory is done
explicitly by DMA instructions. As a consequence, dynamic code
management techniques are essential for loading program code
from the main memory to SPM. Current state-of-the-art dynamic
code management techniques for SMM architectures are, how-
ever, optimized for average-case execution time, not worst-case
execution time (WCET), which is vital for hard real-time systems.
In this paper, we present two novel WCET-aware dynamic SPM
code management techniques for SMM architectures. The first
technique is optimal and based on integer linear programming
(ILP), whereas the second technique is a heuristic that is sub-
optimal, but scalable. Experimental results with benchmarks from
Mälardalen WCET suite and MiBench suite show that our ILP
solution can reduce the WCET estimates up to 80% compared
to previous techniques. Furthermore, our heuristic can, for most
benchmarks, find the same optimal mappings within one second
on a 2GHz dual core machine.

I. INTRODUCTION

In real-time [1] and cyber-physical [2] systems, timing is a
correctness criterion, not just a performance factor. Execution
of program tasks must be completed within certain timing
constraints, often referred to as deadlines. When real-time
systems are used in safety-critical applications, such as auto-
mobiles or aircraft, missing a deadline can cause devastating,
life-threatening consequences. Computing safe upper bounds
of a task’s worst-case execution time (WCET) is essential to
guarantee the absence of missed deadlines.

Real-time systems are becoming more and more complex
with increasing performance demands. Performance improve-
ments in recent processor designs have mainly been driven
by the multicore paradigm because of power and temperature
limitations with single-core designs [3]. Some recent real-
time systems architectures are moving towards multicore [4]
or multithreaded [5], [6] designs. However, coherent caches,
which are popular in traditional multicore platforms, are not a
good fit for real-time systems. Coherent caches make WCET
analysis difficult and result in pessimistic WCET estimates [7].
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Fig. 1. (a) SMM architecture vs. (b) traditional architecture with SPM. Cores
cannot access main memory directly in SMM architecture. All code and data
must be present in SPM at the time of execution.

SMM (Software Managed Multicore) architectures [8], [9]
are a promising alternative for real-time systems. In SMM,
each core has a scratchpad memory (SPM), so-called local
memory, as shown in Fig. 1(a). A core can only access its
SPM in an SMM architecture, as opposed to the traditional
architecture in Fig. 1(b) where a core can access both main
memory and SPM with different latencies. Accesses to the
main memory must be done explicitly through the use of direct
memory access (DMA) instructions. The absence of coherency
makes such architectures scalable and simpler to design and
verify compared to traditional multicore architectures [3]. An
example of an SMM architecture is the Cell processor that is
used in Playstation 3 [10].

If all code and data of a task can fit in the SPM, the
timing model of memory accesses is trivial: each load and
store always take a constant number of clock cycles. However,
if all code or data does not fit in the SPM, it must be
dynamically managed by executing DMA instructions during
runtime. Dynamic code management strongly affects timing
and must consequently be an integral part of WCET analysis.

In traditional architectures that have SPMs, cores can
directly access main memory, though it takes a longer time
to access main memory than the SPM. In such architectures,
the question is what to bring in the SPM to reduce the WCET
of a task. This approach is not, however, feasible in SMM
architectures because all relevant code must be present in the
SPM at the time of execution. For this reason, existing WCET-
aware dynamic code management techniques for SPMs [11],
[12]—which select part of the code to be loaded in the SPM
and keep the rest in the main memory—are not applicable in
SMM architecture.

There exists previous work on developing dynamic code
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In FlexPRET, HRTT can only access Scratchpad memory (SPM) directly. 

Problem: How can we dynamically load code from the main memory 
to SPM such that WCET is minimized? 

Traditional use of SPM. 
Static allocation 
(partioning) and direct 
access to main 
memory.) 

Software Managed Multicore (SMM) 
Only access to SPM. Need DMA. 

Examples: 
•  Cell processor 
•  FlexPRET 
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(b) Normalized WCET Estimates when the SPM size is 75% of the code size

Fig. 5. WCET estimates are normalized to the WCET estimate obtained by the mapping found by the ILP. Under the name of each benchmark, we show the
number of functions and the size of SPM in bytes in parentheses. In most cases, our heuristic can find the optimal solution that are found by solving the ILP,
and reduce the WCET estimates significantly compared to previous mapping techniques.

We also need to solve the ILP from Section III to get a WCET
estimate for the given mapping. The total elapsed time for all
these three steps was less than one second for all benchmarks
on 2Ghz dual-core machine with 2GB of main memory.

Note that the ILP solver was also able to find the optimal
mapping in less than one minute for all benchmarks except
for ‘adpcm’ and ‘sha’ — it took 104 minutes for ‘sha’ when
the SPM size is 75% of the code size, but for ‘adpcm’ the
solver did not finish even after a week for both memory sizes.
Interestingly, even for these two, the best objective value that
the ILP solver can find did not get improved any more after
twenty minutes, and the solver kept iterating on the same
objective value. As it can be seen in Fig. 5(a) and Fig. 5(b),
even those suboptimal solutions are better than mappings found
by any other mapping techniques. This means that solving the
ILP with reasonable time limits (e.g. twenty minutes) can be
a good heuristic method itself.

VI. RELATED WORK

Previous code management techniques have been focusing
on reducing average-case execution time or energy consump-
tion [23]–[25]. These approaches are not suitable for hard real-
time systems because improving the ACET does not always
improve the WCET and can even increase the WCET, as
discussed in Section II.

There are approaches for reducing the WCET [26], [27],
but these are static. Thus, the contents in the SPM are
fixed before execution and no changes occur during runtime.
Static approaches cannot exploit the locality of large programs
because they cannot load all code with locality before execu-
tion. Dynamic approaches, on the other hand, can update the
contents in the SPM during runtime, thus better exploiting the
locality in different parts of a program. Puaut and Pais [11]
propose a dynamic management technique that selects basic

blocks to be loaded in the SPM and finds reload points where
such basic blocks are loaded at runtime. Wu et al. [12] propose
an optimal algorithm for non-nested loops and a heuristic for
loop nests.

All of the above techniques for reducing the WCET are for
traditional architectures with SPM where cores can directly
access main memory. They find a set of basic blocks to be
loaded in the SPM, and those basic blocks not loaded in the
SPM have to be accessed directly from main memory which
will be slower than the SPM. Note that such techniques are
not usable in SMM architecture where cores cannot directly
access main memory.

In SMM architecture, all code must be present in SPM at
the time of execution. Function-level dynamic code manage-
ment techniques [9], [13]–[15], originally proposed for Cell
processor [10] which is an example of SMM architectures, are
the only applicable here and thus our closest related work. All
previous approaches are, however, optimized for reducing the
ACET and do not consider the WCET. Our approaches can
not only reduce the WCET but also find the optimal mapping
for WCET. A point worth noting here is that function-level
dynamic code management techniques are not exclusively for
SMM architectures, which means that our technique can also
be used in traditional architectures with SPM.

SMM architectures were originally proposed for power-
efficiency [8], [9], not for predictability. Some recent processor
designs for real-time applications are, however, using an SMM
style of memory model, as a way to achieve fine-grained
timing predictability. For instance, FlexPRET [6] has both
hard and soft real-time hardware threads, where the hard real-
time threads can only access the SPM. As a consequence, our
approach is directly applicable for this kind of processor when
the hard real-time threads have code sizes that cannot fit in
the SPM. Our work may also be applicable in WCET-aware

9
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Abstract—Software Managed Multicore (SMM) architectures
have advantageous scalability, power efficiency, and predictability
characteristics, making SMM particularly promising for real-time
systems. In SMM architectures, each core can only access its
scratchpad memory (SPM); any access to main memory is done
explicitly by DMA instructions. As a consequence, dynamic code
management techniques are essential for loading program code
from the main memory to SPM. Current state-of-the-art dynamic
code management techniques for SMM architectures are, how-
ever, optimized for average-case execution time, not worst-case
execution time (WCET), which is vital for hard real-time systems.
In this paper, we present two novel WCET-aware dynamic SPM
code management techniques for SMM architectures. The first
technique is optimal and based on integer linear programming
(ILP), whereas the second technique is a heuristic that is sub-
optimal, but scalable. Experimental results with benchmarks from
Mälardalen WCET suite and MiBench suite show that our ILP
solution can reduce the WCET estimates up to 80% compared
to previous techniques. Furthermore, our heuristic can, for most
benchmarks, find the same optimal mappings within one second
on a 2GHz dual core machine.

I. INTRODUCTION

In real-time [1] and cyber-physical [2] systems, timing is a
correctness criterion, not just a performance factor. Execution
of program tasks must be completed within certain timing
constraints, often referred to as deadlines. When real-time
systems are used in safety-critical applications, such as auto-
mobiles or aircraft, missing a deadline can cause devastating,
life-threatening consequences. Computing safe upper bounds
of a task’s worst-case execution time (WCET) is essential to
guarantee the absence of missed deadlines.

Real-time systems are becoming more and more complex
with increasing performance demands. Performance improve-
ments in recent processor designs have mainly been driven
by the multicore paradigm because of power and temperature
limitations with single-core designs [3]. Some recent real-
time systems architectures are moving towards multicore [4]
or multithreaded [5], [6] designs. However, coherent caches,
which are popular in traditional multicore platforms, are not a
good fit for real-time systems. Coherent caches make WCET
analysis difficult and result in pessimistic WCET estimates [7].

This work was supported in part by the iCyPhy Research Center (Industrial
Cyber-Physical Systems, supported by IBM and United Technologies), the
Swedish Research Council (#623-2011-955), and the Center for Hybrid and
Embedded Software Systems (CHESS) at UC Berkeley (supported by the
National Science Foundation, NSF awards #0720882 (CSR-EHS: PRET),
#1035672 (CPS: Medium: Timing Centric Software), and #0931843 (Action-
Webs), the Naval Research Laboratory (NRL #N0013-12-1-G015), and the
following companies: Bosch, National Instruments, and Toyota).
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Fig. 1. (a) SMM architecture vs. (b) traditional architecture with SPM. Cores
cannot access main memory directly in SMM architecture. All code and data
must be present in SPM at the time of execution.

SMM (Software Managed Multicore) architectures [8], [9]
are a promising alternative for real-time systems. In SMM,
each core has a scratchpad memory (SPM), so-called local
memory, as shown in Fig. 1(a). A core can only access its
SPM in an SMM architecture, as opposed to the traditional
architecture in Fig. 1(b) where a core can access both main
memory and SPM with different latencies. Accesses to the
main memory must be done explicitly through the use of direct
memory access (DMA) instructions. The absence of coherency
makes such architectures scalable and simpler to design and
verify compared to traditional multicore architectures [3]. An
example of an SMM architecture is the Cell processor that is
used in Playstation 3 [10].

If all code and data of a task can fit in the SPM, the
timing model of memory accesses is trivial: each load and
store always take a constant number of clock cycles. However,
if all code or data does not fit in the SPM, it must be
dynamically managed by executing DMA instructions during
runtime. Dynamic code management strongly affects timing
and must consequently be an integral part of WCET analysis.

In traditional architectures that have SPMs, cores can
directly access main memory, though it takes a longer time
to access main memory than the SPM. In such architectures,
the question is what to bring in the SPM to reduce the WCET
of a task. This approach is not, however, feasible in SMM
architectures because all relevant code must be present in the
SPM at the time of execution. For this reason, existing WCET-
aware dynamic code management techniques for SPMs [11],
[12]—which select part of the code to be loaded in the SPM
and keep the rest in the main memory—are not applicable in
SMM architecture.

There exists previous work on developing dynamic code
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task model and an Early-Release EDF scheduling algorithm
for uni-processors to guarantee minimum service levels for
low criticality tasks. Every low criticality task has a maximum
period and a set of shorter desired periods. At runtime, the
low criticality tasks are released according to their maximum
period. If there is enough slack in the system, then the tasks are
released at one of their earliest desired periods. This approach
was later extended to multi-processors [11].

Contributions. We propose a novel extension to multi-rate
synchronous languages that allows the modeling of mixed-
criticality systems. The synchrony hypothesis is relaxed to
allow the specification of tasks with soft real-time deadlines.
Instead of requiring tasks to execute at constant frequencies,
low criticality tasks can execute within a specified range
of frequencies. We also propose a multi-processor schedul-
ing method for the proposed multi-rate, mixed criticality,
synchronous task model. Tasks are statically scheduled on
processors such that their minimum execution frequencies are
met. Slack in the static schedule is consumed by increasing the
scheduled time of the low criticality tasks, thereby increasing
their execution frequency. Additional slack can develop at
runtime when tasks execute for less than their WCET. The
additional slack is used to reschedule low criticality tasks
to further increase their execution frequency. We claim that
this is the first multi-rate, mixed criticality framework for
synchronous languages on multi-processors. In summary, our
main contributions are:

• Relaxing the synchrony hypothesis to capture the tim-
ing requirements of mixed-criticality tasks. We offer
frequency-based parameters for specifying different
levels of criticality. The parameters are tightly coupled
to embedded multi-rate applications by relating task
frequency bounds to task criticality. (Section II).

• The relaxation of the synchrony hypothesis to support
mixed-criticality violates the synchronous model of
communication. To address this, we use a simple
lossless buffering approach with bounded queue sizes.
In contrast to closely related formalisms, such as
Synchronous Data Flow [20], tasks in our approach
can produce dynamically varying number data items,
but only within statically known bounds. (Section III).

• We devise a multi-processor (static and dynamic)
scheduling method that tries to maximize system
utilization by distributing slack time proportionally
across all tasks. (Section IV).

• We evaluate our proposed scheduling approach ex-
tensively against the ER-EDF approach [11]. Bench-
marking results show that our proposed approach can
schedule up to 15% more task sets and achieve con-
sistently higher system utilization (up to 98.5%) than
ER-EDF. Moreover, tasks achieve higher execution
frequencies and share the slack more fairly than ER-
EDF. (Section V).

II. MULTI-RATE, MIXED-CRITICALITY, SYNCHRONOUS
TASK MODEL

We contend that the proposed task model is applicable to
a wide range of cyber-physical systems, such as Unmanned
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Fig. 1. Functional block diagram of a UAV with criticality levels and
frequency bounds.

Aerial Vehicles (UAVs) [21], biomedical devices [22], and au-
tomotive systems [23]. As a motivating example, we describe
the design of a UAV inspired by the Paparazzi project [24]. A
UAV is a remotely controlled aerial vehicle commonly used
in surveillance operations. Figure 1 illustrates the functionality
of a UAV as a block diagram of tasks. The Nav task localizes
the UAV using onboard sensors, updates the flight path, and
sends the desired position to the Stability task. The Stability
task controls the flight surfaces to ensure stable flight to the
desired position. Extremely low jitter is required for stable
flight. The UAV has the following useful but less critical
features. The Video task streams a video of the UAV’s flight
from an onboard camera to allow users to fly the UAV from
the UAV’s point of view. The higher the frame rate, the better
the flying experience. The Avoid task uses onboard sensors to
detect obstacles around the UAV and sends collision avoidance
data to the Nav task. Thus, the more frequent obstacles are
checked for, the faster the UAV can safely travel at. Less
critical features that a UAV can have include a data logging
facility to log important flight events (Logging) and to share
obstacle and localization data with nearby UAVs (Sharing).
Because the UAV combines tasks of different criticalities, it is
an excellent example of a mixed-criticality system.

In our task model, a synchronous program is a set of
tasks ⌧ 2 � that are released together when the program
starts executing. Without loss of generality, we assume tasks
that do not create new tasks at runtime. The programmer
assigns a criticality ⇣

⌧

to each task as either life , mission ,
or non-critical . That is, ⇣

⌧

2 {life, mission, non-critical}.
Life critical tasks are released periodically and adhere to the
synchrony hypothesis. Thus, life critical tasks must complete
their computation before their next release time (a hard real-
time deadline). For example, if a life critical task with period
p
⌧

is released at time r
⌧

, then its deadline (and next release) is
at time r

⌧

+p
⌧

. We relax the synchrony hypothesis for mission
critical tasks in that bounded deadline misses are tolerated. For
example, if a mission critical task misses its deadline of time
r
⌧

+ pmin

⌧

, then it cannot miss a relaxed deadline of time
r
⌧

+ pmax

⌧

, where pmin

⌧

< pmax

⌧

. We relax the synchrony
hypothesis completely for non-critical tasks by removing the
notion of deadlines. For example, if a non-critical task with
period p is released at time r

⌧

and completes its computation

2
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Abstract—Software Managed Multicore (SMM) architectures
have advantageous scalability, power efficiency, and predictability
characteristics, making SMM particularly promising for real-time
systems. In SMM architectures, each core can only access its
scratchpad memory (SPM); any access to main memory is done
explicitly by DMA instructions. As a consequence, dynamic code
management techniques are essential for loading program code
from the main memory to SPM. Current state-of-the-art dynamic
code management techniques for SMM architectures are, how-
ever, optimized for average-case execution time, not worst-case
execution time (WCET), which is vital for hard real-time systems.
In this paper, we present two novel WCET-aware dynamic SPM
code management techniques for SMM architectures. The first
technique is optimal and based on integer linear programming
(ILP), whereas the second technique is a heuristic that is sub-
optimal, but scalable. Experimental results with benchmarks from
Mälardalen WCET suite and MiBench suite show that our ILP
solution can reduce the WCET estimates up to 80% compared
to previous techniques. Furthermore, our heuristic can, for most
benchmarks, find the same optimal mappings within one second
on a 2GHz dual core machine.

I. INTRODUCTION

In real-time [1] and cyber-physical [2] systems, timing is a
correctness criterion, not just a performance factor. Execution
of program tasks must be completed within certain timing
constraints, often referred to as deadlines. When real-time
systems are used in safety-critical applications, such as auto-
mobiles or aircraft, missing a deadline can cause devastating,
life-threatening consequences. Computing safe upper bounds
of a task’s worst-case execution time (WCET) is essential to
guarantee the absence of missed deadlines.

Real-time systems are becoming more and more complex
with increasing performance demands. Performance improve-
ments in recent processor designs have mainly been driven
by the multicore paradigm because of power and temperature
limitations with single-core designs [3]. Some recent real-
time systems architectures are moving towards multicore [4]
or multithreaded [5], [6] designs. However, coherent caches,
which are popular in traditional multicore platforms, are not a
good fit for real-time systems. Coherent caches make WCET
analysis difficult and result in pessimistic WCET estimates [7].
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Fig. 1. (a) SMM architecture vs. (b) traditional architecture with SPM. Cores
cannot access main memory directly in SMM architecture. All code and data
must be present in SPM at the time of execution.

SMM (Software Managed Multicore) architectures [8], [9]
are a promising alternative for real-time systems. In SMM,
each core has a scratchpad memory (SPM), so-called local
memory, as shown in Fig. 1(a). A core can only access its
SPM in an SMM architecture, as opposed to the traditional
architecture in Fig. 1(b) where a core can access both main
memory and SPM with different latencies. Accesses to the
main memory must be done explicitly through the use of direct
memory access (DMA) instructions. The absence of coherency
makes such architectures scalable and simpler to design and
verify compared to traditional multicore architectures [3]. An
example of an SMM architecture is the Cell processor that is
used in Playstation 3 [10].

If all code and data of a task can fit in the SPM, the
timing model of memory accesses is trivial: each load and
store always take a constant number of clock cycles. However,
if all code or data does not fit in the SPM, it must be
dynamically managed by executing DMA instructions during
runtime. Dynamic code management strongly affects timing
and must consequently be an integral part of WCET analysis.

In traditional architectures that have SPMs, cores can
directly access main memory, though it takes a longer time
to access main memory than the SPM. In such architectures,
the question is what to bring in the SPM to reduce the WCET
of a task. This approach is not, however, feasible in SMM
architectures because all relevant code must be present in the
SPM at the time of execution. For this reason, existing WCET-
aware dynamic code management techniques for SPMs [11],
[12]—which select part of the code to be loaded in the SPM
and keep the rest in the main memory—are not applicable in
SMM architecture.

There exists previous work on developing dynamic code
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