Timed Processors and WCET-Aware Code Management for Mixed-Criticality Systems

RePP 2014 Workshop, Grenoble, France

April 6, 2014

David Broman*

broman@eecs.berkeley.edu

UC Berkeley, USA and Linköping University, Sweden

* This talk highlights key aspects of two papers that will appear in RTAS 2014 (April 15-17, Berlin), authored by the following persons:

Michael Zimmer David Broman Chris Shaver Edward A. Lee

Yooseong Kim David Broman Jian Cai Aviral Shrivastava

Systems

The FlexPRET **Processor Platform** WCET-Aware SPM Management

Part I Mixed-Criticality Systems

Part II The FlexPRET Processor Platform Part III WCET-Aware SPM Management

Modern Systems with Many Processor Platforms

broman@eecs.berkeley.edu

5

Aerospace

Modern aircraft have many computer controlled systems

- Engine control
- Electric power control
- Radar system
- Navigation system
- Flight control
- Environmental control system ٠

etc...

Modern cars have many ECU (Electronic Control Units)

- Airbag control
- Door control
- Electric power steering control •
- Power train control •
- Speed control
- Battery management. ٠

etc.. Over 80 ECUs in a high-end model (Albert and Jones, 2010)

Part I Mixed-Criticality Svstems

Part II The FlexPRET Processor Platform Part III WCET-Aware SPM Management

Mixed-Criticality Systems

Issues with too many processors

- High cost ٠
- Space and weight •
- Energy consumption ٠

Required for Safety

- Spatial isolation between tasks
- Temporal isolation between tasks (necessary to meet deadlines)

Federated Approach

Each processor has its own task

Consolidate into fewer processors

Part II The FlexPRET **Processor Platform** Part III WCET-Aware SPM Management 6

Mixed-Criticality Systems

Issues with too many processors

- High cost
- Space and weight
- Energy consumption

Required for Safety

- Spatial isolation between tasks
- Temporal isolation between tasks (necessary to meet deadlines)

Federated Approach

...but such safety requirements are only needed for highly critical tasks

Mixed-Criticality Challenge

Reconcile the conflicting requirements of:

- Partitioning (for safety)
- Sharing (for efficient resource usage) (Burns & Davis, 2013)

olidate into fewer processors

Part II The FlexPRET Processor Platform

Part III WCET-Aware SPM Management

8

Possible Approaches...

broman@eecs.berkeley.edu

Real-time Operating System (RTOS) Using Software Scheduling

- + Efficient resource usage
- + Standard hardware
- Requires verification and certification of the RTOS
- Hard to do timing analysis (caches, pipeline, preemption of tasks)

Multi-core with Task Partitioning

- + Temporal and spatial isolation if no resource sharing
- + Standard hardware
- Resources are typically shared (cache coherence problem)
- WCET analysis for multi-core is very difficult
- Low resource utilization (cores do nothing after tasks finished computations)

Part II The FlexPRET Processor Platform Part III WCET-Aware SPM Management

broman@eecs.berkeley.edu

10

broman@eecs.berkeley.edu

 Software Scheduling for Mixed Criticality Reservation-based partitioning, ARNIC 653 First priority-based MC (Vestal, 2007) Sporadic task scheduling (Baruha and Vestal, 2008) Slack scheduling (Niz et al. 2009) Review of MC area, 168 references (Burns & David, 2013) 	 WCET Analysis WCET-aware compiler (Falk & Lukuciejewski, 2010) Detection of loop and infeasible paths (Gustafsson et al., 2006) Cache analysis (Ferdinand & Wilhelm, 1999) WCET Survey (Wilhelm et al., 2008)
 Scratchpad Memory Management Average case SPM methods for SMM (Bai et al, 2013; Jung et al., 2010; Pabalkar et al. 2008; Baker et al., 2010) Static SPM WCET methods (Keinaorge 2008, Platzar 2012) SPM management at basic block level (Puaut & Pais, 2007) 	 Predictable and Multithreaded Processors PRET idea (Edwards and Lee, 2007) PTARM (Liu et al., 2012) Patmos (Schoeberl et al., 2011) JOP (Schoeberl, 2008) XMOS X1 (May, 2009) MERASA, MC on multicore (Ungerer, 2010) Several EU projects related to Mixed-Criticality: MultiPARTES, Recomp. CERTAINTY, Proxima

Part II The FlexPRET **Processor Platform** Part III WCET-Aware SPM Management

11

Part II

The FlexPRET **Processor Platform**

Single threaded processor

broman@eecs.berkeley.edu

12

- FlexPRET can execute 1 to 8 hardware threads concurrently •
- 5-stage pipeline implemented in Chisel (HDL embedded in Scala)
- Synthesized on a Xilinx Virtex-5 FPGA (for prototyping)
- **RISCV ISA**

Systems

Processor Platform

WCET-Aware SPM Management

Thread-Interleaving for Predictability

broman@eecs.berkeley.edu

Mixed-Criticality Systems Part II The FlexPRET Processor Platform Part III WCET-Aware SPM Management

C level programming using real-time

15

• Work-in-progress of a LLVM based WCET-aware compiler

Mixed-Criticality Avionics Case Study

broman@eecs.berkeley.edu

avionics system at honeywell	iences
(Vestal, 2007) $\begin{array}{ c c c c c }\hline Task & Thread & Thread & T_i, D_i & E_{i,1} & E_{i,1/2} & E_i \\ ID & Mode & (ms) & (*10^5) & $	(i,1/3+ (10^5)
• Tasks from Malardalen $ au_{A1}$ 0 HA 25 1.10 1.00 0.9	95
τ_{A2} 1 HA 50 1.60 1.64 1.5	55
τ_{A3} 2 HA 100 2.00 1.82 1.7	72
• 8 hardware threads. τ_{A4} 3 HA 200 5.30 4.83 4.5	56
• 4 criticality levels A-D. τ_{B1} 4 HA 25 1.40 1.27 1.2	20
$ au_{B2} $ 4 HA 50 3.90 3.54 3.3	34
$ au_{\mathrm{H3}}$ 4 HA 50 2.80 2.54 2.4	40
A on separate HRTT τ_{B4} 5 HA 50 1.40 1.28 1.2	21
$ au_{B5} $ 5 HA 50 3.70 3.37 3.1	19
$ au_{B6} $ 5 HA 100 1.80 1.64 1.5	55
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	32
b on one f k f i τ_{C1} f c f k k k k k k k k k k	63
(with Rate monotonic) τ_{D1} 6 SA 50 5.40 5.03 4.0	65
$ au_{D2}$ 6 SA 200 2.40 2.33 2.3	28
$ au_{D3}$ 6 SA 50 1.30 1.26 1.3	23
C and D SR11 with cycle τ_{D4} 6 SA 200 1.50 1.45 1.4	42
stealing (EDF) τ_{D5} 7 SA 25 2.30 2.14 1.5	98
$ au_{D6}$ 7 SA 100 4.80 4.65 4.3	30
	2.44
$ au_{D7} $ / SA 200 13.00 12.70 12	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	56
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	56 28
$\begin{bmatrix} \tau_{D7} & 7 & SA & 200 & 15.00 & 12.70 & 12\\ \tau_{D8} & 7 & SA & 100 & 0.60 & 0.57 & 0.5\\ \tau_{D9} & 7 & SA & 50 & 2.40 & 2.33 & 2.2 \end{bmatrix}$	56 28
τ_{D7} 7 SA 200 13.00 12.70 12 τ_{D8} 7 SA 100 0.60 0.57 0.3 τ_{D9} 7 SA 50 2.40 2.33 2.3 Part II (a) The task set art III WCET-Aware	56 28

17

Part III

WCET-Aware SPM Management

Part I Mixed-Criticality Systems Part II The FlexPRET Processor Platform Part III WCET-Aware SPM Management

Software Managed Multicores

broman@eecs.berkeley.edu

18

In FlexPRET, HRTT can only access Scratchpad memory (SPM) directly.

Problem: How can we dynamically load code from the main memory to SPM such that WCET is minimized?

Part I Mixed-Criticality Systems Part II The FlexPRET Processor Platform Part III
 WCET-Aware
 SPM Management

N number of regions in SPM.

Task1: Given a function-to-region mapping, compute WCET

Task2: Find an optimal mapping the minimizes WCET

Contribution:

- Formalized an optimal solution using ILP
- Developed a scalable, but sub-optimal heuristic

Benchmarks and Limitations

20

broman@eecs.berkeley.edu

Benchmark on Malardalen benchmarks and MiBench

Conclusion: Finds optimal solution, but cannot handle recursive programs.

Part I Mixed-Criticality Systems Part II The FlexPRET Processor Platform Part III
 WCET-Aware
 SPM Management

broman@eecs.berkeley.edu

Conclusions

Part I Mixed-Criticality Systems Part II The FlexPRET Processor Platform Part III WCET-Aware SPM Management

Conclusions

Gives timing predictability for HRTT using thread-interleaved pipeline and SPM

Flexible thread scheduling for up to 8 threads. Scheduling in hardware.

Improving utilization by cycle stealing (from HRTT to SRTT).
 Uses timing instructions for cycle stealing.

Software Management Multicore (SMM) are architectures where the processor only can access SPM.

WCET-Aware

SPM Mapping

Developed an optimal SPM mapping solution that minimizes WCET.

21

The accepted (camera-ready) versions of the RTAS papers are available here: http://www.eecs.berkeley.edu/~broman/

Michael Zimmer, David Broman, Chris Shaver, and Edward A. Lee. **FlexPRET: A Processor Platform for Mixed-Criticality Systems**. Proceedings of the 20th IEEE Real-Time and Embedded Technology and Application Symposium (RTAS), Berlin, Germany, April 15-17, 2014.

Yooseong Kim, David Broman, Jian Cai, and Aviral Shrivastaval. WCET-Aware Dynamic Code Management on Scratchpads for Software-Managed Multicores. Proceedings of the 20th IEEE Real-Time and Embedded Technology and Application Symposium (RTAS), Berlin, Germany, April 15-17, 2014.

Eugene Yip, Matthew Kuo, Partha S Roop, and David Broman. **Relaxing the Synchronous Approach for Mixed-Criticality Systems**. Proceedings of the 20th IEEE Real-Time and Embedded Technology and Application Symposium (RTAS), Berlin, Germany, April 15-17, 2014.

Thank you for listening!