### Modelyze: Embedding Equation-Based DSLs

### SYNCHRON'13

Dagstuhl, Germany, November 20, 2013

#### **David Broman**

broman@eecs.berkeley.edu

EECS Department UC Berkeley, USA and Linköping University, Sweden

#### **Modelyze contributors**

David Broman Jeremey G. Siek Hokeun Kim



### Part II

### **Modelyze Overview**







### What is Modelyze?

broman@eecs.berkeley.edu





### **Overview of the Compilation and Simulation Process**



7



### **Related Work**

broman@eecs.berkeley.edu

| Implementing DSLsCompiler construction• JastAdd (Ekman & Hedin, 2007)• MetaModelica (Pop & Fritzson, 2006)Preprocessing and template metaprogramming                                                                                                                                                                                              | <ul> <li>Combining Dynamic and Static Typing</li> <li>Gradual Typing (Siek &amp; Taha, 2007)</li> <li>Soft Typing (Cartwright &amp; Fagan, 1991)</li> <li>Dynamic type with typecase (Abadi et al., 1991)</li> <li>Typed Scheme, Racket (Tobin-Hochstadt, Felleisen, 2008)</li> </ul>                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>C++ Templates (Veldhuizen, 1995)</li> <li>Template Haskell (Sheard &amp; Peyton Jones, 2002)</li> <li>Stratego/XP (Bravenboer et al., 2008)</li> </ul>                                                                                                                                                                                   | Thorn, like types (Wrigstad et al., 2010)      Representing Code and Data type                                                                                                                                                                                                                                                      |
| Embedded DSLs                                                                                                                                                                                                                                                                                                                                     | Representing bode and bata type                                                                                                                                                                                                                                                                                                     |
| <ul> <li>Haskell DSELs, e.g., Fran (Ellito &amp; Hudak, 1997),<br/>Lava (Bjesse et al. 1998), and<br/>Paradise(Augustsson, 2008)</li> <li>FHM (Nilsson et al., 2003)</li> <li>ForSyDe (Sander &amp; Jantsch, 2004)</li> <li>Pure embedding (Higher-order functions,<br/>polymorphism, lazy evaluation, type classes)<br/>(Hudak, 1998)</li> </ul> | <ul> <li>Dynamic languages LISP, Mathematica</li> <li>MetaML <t> (Taha &amp; Sheard, 2000)</t></li> <li>GADT (Peyton Jones et al.,2006; Xi et al., 2003;<br/>Cheney &amp; Ralf, 2003)</li> <li>Open Data types (Löh &amp; Hinze, 2006)</li> <li>Pattern Calculus (Jay, 2009)</li> <li>Syntactic library (Axelsson, 2012)</li> </ul> |

Part I Modelyze Overview Part II Formal Semantics Part III Modelyze Demo

### **Pendulum Example**

broman@eecs.berkeley.edu



### **Declarative Mathematical Model**



**Part I** Modelyze Overview Part II Formal Semantics Part III Modelyze Demo 10

broman@eecs.berkeley.edu

### **Declarative Mathematical Model**

#### broman@eecs.berkeley.edu



#### Release the user from annotation burden broman@eecs.berkeley.edu

Modelyze

Overview



Semantics

Modelyze

Demo

11

Symbol Lifting Analysis (SLA)

broman@eecs.berkeley.edu

Symbol Lifting Analysis (SLA): During type checking, lift expressions that cannot be safely evaluated at runtime into symbolic expressions (data).







### Static Error Checking at the DSL Level

broman@eecs.berkeley.edu



# Mechatronic Control Example (ModelyzeEOO)



Modelyze Overview Part II Formal Semantics Part III Modelyze Demo 15

16

### **Mechatronic Control Example**





broman@eecs.berkeley.edu

## Part II Formal Semantics

 $\begin{array}{c} \Gamma \vdash_{L} e_{1} \rightsquigarrow e_{1}' : <\tau_{11} \rightarrow \tau_{12} > \\ \Gamma \vdash_{L} e_{2} \rightsquigarrow e_{2}' : \tau_{2} \\ \lceil e_{2}' : \tau_{2} \rceil = e_{2}'' \\ <\tau_{11} > \sim \lceil \tau_{2} \rceil \end{array}$  (L-APP5)



### **Intermediate Languages**

Modelyze

Overview

broman@eecs.berkeley.edu

20

# To enable formalization and proving type soundness, we define three intermediate languages.



Formal

Semantics

Modelyze

Demo



**Proposition 3** (Symbolic Lifting Preserves Types). If  $\Gamma \vdash_L e \rightsquigarrow e' : \tau$  then e' is well typed in  $\Gamma$  at type  $\tau$ .

**Proposition 4** (Cast Insertion Preserves Types). If  $\Gamma \vdash_C e \rightsquigarrow e' : \tau$  then  $\Gamma \vdash e' : \tau$ .

**Lemma 3** (Progress). If  $\vdash e : \tau$  then  $e \in Values$ , or for all S there exists S' and e' such that  $e \mid S \longrightarrow e' \mid S'$ , or e = error.

**Lemma 7** (Preservation). If  $\Gamma \vdash e: \tau$  and  $e \mid S \longrightarrow e' \mid S'$  then  $\Gamma \vdash e': \tau$ .

| Parti    |  |
|----------|--|
| Modelyze |  |
| Overview |  |

- . .

## Part III Modelyze Demo







#### See journal preprint:

David Broman and Jeremy G. Siek. **Modelyze: a Gradually Typed Host Language for Embedding Equation-Based Modeling Languages**", Preprint, Submitted to Science of Computer Programming. Available as Tech. Report UCB/EECS-2012-173, University of California, Berkeley, June, 2012.

#### Open source implementation: http://www.eecs.berkeley.edu/~broman/

| Part I   | Part II   | Part III |
|----------|-----------|----------|
| Modelyze | Formal    | Modelyze |
| Overview | Semantics | Demo     |