
 Modelyze: Embedding Equation-Based DSLs

David Broman
broman@eecs.berkeley.edu

EECS Department
UC Berkeley, USA

 and

Linköping University, Sweden

SYNCHRON'13
Dagstuhl, Germany, November 20, 2013

Modelyze contributors
David Broman
Jeremey G. Siek
Hokeun Kim

2

Part III 
Modelyze  
Demo"

broman@eecs.berkeley.edu

Part I"
Modelyze  
Overview"

Part II 
Formal  
Semantics"

Agenda

Part I

Modelyze Overview

Part II

Formal Semantics

�(x) = ⌧1

� `
L

x x :⌧1
(L-VAR)

�, x :⌧1 `
L

e1 e

0
1 :⌧2

� `
L

�x:⌧1.e1 �x:⌧1.e
0
1 :⌧1!⌧2

(L-ABS)

�(c) = ⌧1

� `
L

c c :⌧1
(L-CONST) � `

L

⌫(⌧1) ⌫(⌧1) :<⌧1> (L-NEW)

� `
L

error error : ⌧

(L-ERROR)

� `
L

e1 e

0
1 :⌧11!⌧12

� `
L

e2 e

0
2 :⌧2 ⌧11 ⇠ ⌧2

� `
L

e1 e2 e

0
1 e

0
2 :⌧12

(L-APP1)

� `
L

e1 e

0
1 :?

� `
L

e2 e

0
2 :⌧2

� `
L

e1 e2 e

0
1 e

0
2 :?

(L-APP2)

� `
L

e1 e

0
1 :<⌧11>!⌧12 � `

L

e2 e

0
2 :⌧2 <⌧11> 6⇠ ⌧2 ⌧11 ⇠ ⌧2

� `
L

e1 e2 e

0
1 (lift e

0
2 :⌧2) :⌧12

(L-APP3)

� `
L

e1 e

0
1 :⌧11!⌧12 � `

L

e2 e

0
2 :<⌧2> ⌧11 6⇠ <⌧2> ⌧11 ⇠ ⌧2

� `
L

e1 e2 (lift e

0
1 :⌧11!⌧12)@ e

0
2 :<⌧12>

(L-APP4)

� `
L

e1 e

0
1 :<⌧11!⌧12>

� `
L

e2 e

0
2 :⌧2

de02 : ⌧2e = e

00
2

<⌧11> ⇠ d⌧2e
� `

L

e1 e2 e

0
1@ e

00
2 :<⌧12>

(L-APP5)

� `
L

e1 e

0
1 :<?>

� `
L

e2 e

0
2 :⌧2

de02 : ⌧2e = e

00
2

� `
L

e1 e2 e

0
1@ e

00
2 :<?>

(L-APP6)

� `
L

e1 e

0
1 :⌧1 � `

L

e2 e

0
2 :⌧2 � `

L

e3 e

0
3 :⌧3

<?> ⇠ ⌧1 d⌧2e ⇠ d⌧3e de02 : ⌧2, e
0
3 : ⌧3e = (⌧5, e

00
2 , e

00
3)

� `
L

case(e1, sym :⌧4, e2, e3) case(e01, sym :⌧4, e
00
2 , e

00
3) :⌧5

(L-CSYM)

� `
L

e1 e

0
1 :⌧1 �, x1 :<?>, x2 :<?> `

L

e2 e

0
2 :⌧2

� `
L

e3 e

0
3 :⌧3 <?> ⇠ ⌧1 d⌧2e ⇠ d⌧3e de02 : ⌧2, e

0
3 : ⌧3e = (⌧4, e

00
2 , e

00
3)

� `
L

case(e1, x1 @x2, e2, e3) case(e01, x1 @x2, e
00
2 , e

00
3) :⌧4

(L-CAPP)

� `
L

e1 e

0
1 :⌧1 �, x :⌧4 `

L

e2 e

0
2 :⌧2

� `
L

e3 e

0
3 :⌧3 <?> ⇠ ⌧1 d⌧2e ⇠ d⌧3e de02 : ⌧2, e

0
3 : ⌧3e = (⌧5, e

00
2 , e

00
3)

� `
L

case(e1, lift x :⌧4, e2, e3) case(e01, lift x :⌧4, e
00
2 , e

00
3) :⌧5

(L-CLIFT)

Figure 6: Type System and Symbolic Lifting for �<?>.

18

Part III

Modelyze Demo

3

Part III 
Modelyze  
Demo"

broman@eecs.berkeley.edu

Part I"
Modelyze  
Overview"

Part II 
Formal  
Semantics"

Part II

Modelyze Overview

4

Part III 
Modelyze  
Demo"

broman@eecs.berkeley.edu

Part I"
Modelyze  
Overview"

Part II 
Formal  
Semantics"

Problem: Expressiveness and Analyzability

Cannot express all modeling or analysis needs.
Limited to what the modeling language can provide.

A, v1.0 A, v1.1 A, v2.0 A, v2.2 Language versions:

L, v1.0 L, v1.1 L, v2.0 L, v2.2 Standard library
versions:

Modelica: A new language definition approximately every second year

Uses
•  Simulation
•  Optimization
•  Code generation for real-time
•  Model export
•  Grey-box system identification
 etc.

A, v1.0 A, v1.1 A, v2.0 A, v2.2

B, v1.0 A, v1.1

C, v1.0
gives many dialects and different
languages (e.g. Mosilab, Optimica)

5

Part III 
Modelyze  
Demo"

broman@eecs.berkeley.edu

Part I"
Modelyze  
Overview"

Part II 
Formal  
Semantics"

What is Modelyze?

Modelyze
(MODEL and analYZE)

Purpose: Research language –
addresses the expressiveness and
analyzability problem by making the
language extensible

Novelty: Typed symbolic expressions

Small, simple, host language for
embedding domain-specific languages
(DSL) of different models of
computation (MoC)

Key aspect: Both the DSL and models
in the DSL are defined in Modelyze

Formal semantics for a core of the language.
Proven type soundness for the core.

Gradually typed functional language
(call-by-value)

Prototype implementation (interpreter).
Evaluated for series of equation-based DSLs.

6

Part III 
Modelyze  
Demo"

broman@eecs.berkeley.edu

Part I"
Modelyze  
Overview"

Part II 
Formal  
Semantics"

Experimental DSLs

ModelyzeDAE ModelyzeEOO

ModelyzeHC ModelyzeHEOO

Extensible DSLs for physical modeling

Ongoing work on combining heterogeneous DSLs for CPS

ModelyzeMA

ModelyzeSync ModelyzeDE ModelyzeHEOO

Differential-Algebraic
Equations (DAE)

HybridCharts
(DAE with modes)

Acausal connections
(Electrical and
Mechanical domain)

EOO + HC = HEOO

Master algorithm according to
formalized FMI interface (see
Broman et al. EMSOFT’13)

7

Part III 
Modelyze  
Demo"

broman@eecs.berkeley.edu

Part I"
Modelyze  
Overview"

Part II 
Formal  
Semantics"

Overview of the Compilation and Simulation Process

Type
Checking Elaboration Symbolic

Manipulation
Code

 Generation Simulation Result

Compile-time parts in Modelica

Compile-time
part in
Modelyze Run-time changes

Run-time semantics described
in Modelyze libraries
(meta-programming)

Type checking and collapsing the
instance hierarch come “for free”.
Part of Modelyze (host language)

Model

Model
Library Model
Libraries

Model
Library DSL
Semantics

8

Part III 
Modelyze  
Demo"

broman@eecs.berkeley.edu

Part I"
Modelyze  
Overview"

Part II 
Formal  
Semantics"

Related Work

Preprocessing and template metaprogramming
•  C++ Templates (Veldhuizen, 1995)
•  Template Haskell (Sheard & Peyton Jones, 2002)
•  Stratego/XP (Bravenboer et al., 2008)

Implementing DSLs
Compiler construction
•  JastAdd (Ekman & Hedin, 2007)
•  MetaModelica (Pop & Fritzson, 2006)

Embedded DSLs
•  Haskell DSELs, e.g., Fran (Ellito & Hudak, 1997),

Lava (Bjesse et al. 1998), and
Paradise(Augustsson, 2008)

•  FHM (Nilsson et al., 2003)
•  ForSyDe (Sander & Jantsch, 2004)
•  Pure embedding (Higher-order functions,

polymorphism, lazy evaluation, type classes)
(Hudak, 1998)

Combining Dynamic and Static Typing

Representing Code and Data type

•  Gradual Typing (Siek & Taha, 2007)
•  Soft Typing (Cartwright & Fagan, 1991)
•  Dynamic type with typecase (Abadi et al., 1991)
•  Typed Scheme, Racket (Tobin-Hochstadt,

Felleisen, 2008)
•  Thorn, like types (Wrigstad et al., 2010)

•  Dynamic languages LISP, Mathematica
•  MetaML <T> (Taha & Sheard, 2000)
•  GADT (Peyton Jones et al.,2006; Xi et al., 2003;

Cheney & Ralf, 2003)
•  Open Data types (Löh & Hinze, 2006)
•  Pattern Calculus (Jay, 2009)
•  Syntactic library (Axelsson, 2012)

9

Part III 
Modelyze  
Demo"

broman@eecs.berkeley.edu

Part I"
Modelyze  
Overview"

Part II 
Formal  
Semantics"

Pendulum Example

y

x

T

!

mg

T cos(!)

T sin(!)

l

-4

-3

-2

-1

0

1

2

3

0 2 4 6 8 10

y
x

Figure 2: (a) Diagram of a simple pendulum. (b) Plot of the simulated pendulum.

3 init x (l*sin(angle));

4 init y (-l*cos(angle));

5
6 -T*x/l = m*x’’;

7 -T*y/l - m*g = m*y’’;

8 xˆ2 + yˆ2 = lˆ2;

9 }

The definition of the Pendulum is parameterized by using a function abstraction. Sup-
plying concrete arguments to the pendulum creates an instance of the model. For
example, expression Pendulum(5,3,45*pi/180) represents a mathematical model
with the mass 5kg, string length 2m, and start angle 45 degrees. Variable pi is bound
outside the function to an approximated value of ⇡.

Line two in the code listing defines the new unknowns x, y, and T. We use the
term unknown for variables within the an equation system at the DSL. Internally, in
the host language, these unknowns are represented as typed symbols. That is, when
code line two is evaluated, three new fresh symbols with the symbolic type of Real
are created. On the other hand, we use the term variables for standard variables in
a functional language, which can only be bound to a value once. Hence, there is no
notion of mutable variables in Modelyze.

From a modeling point of view, the rest the model should be self explaining. For
example, note the direct correspondence between the equations (1)-(3), and lines 6-8
of the code listing. Also, note the similarities between the initial equations (4)-(5) and
code lines 3-4.

2.2. Seamless Integration - Removing End User Annotation Burden
From the previous example, it is not obvious what parts of the syntax that are directly
derived from the host language, and what parts are expressed in the DSL DAE . This
is intentional and is what we call seamless integration between the host language and
the embedded DSL.

6

2. Typed Symbolic Expressions

In this section we describe and motivate the concept of typed symbolic expressions,
which is the main novelty Modelyze. The section is divided into four parts. First, we
introduce a small modeling example, which is then used in the rest of the section. Sec-
ond, we show how our approach releases the end user from host language derived an-
notation burden by providing a seamless integration between the host language and the
DSL. Third, we show how gradually typed functions with pattern matching constructs
can be used to analysed and transformed symbolic expressions. Forth, we motivate
why, and show how, certain errors can be detected at the DSL level.

2.1. An Example from the Modeling Engineers Perspective
To illustrate a concrete and simple equation-based model, we model a simple two-
dimensional mechanical pendulum. The model is described in a DSL called DAE ,
which is Modelyze extended with support for modeling differential-algebraic equa-
tions. Figure 2 depicts the pendulum and the related simulation plot. The pendulum
consists of a massless string of length l together with an attached ball. Angle ✓ is the
displacement from the equilibrium, force T the tension in the string, and m the mass
of the ball.

Assuming no air drag, we model the forces in x and y directions together using
Newton’s second law of motion (F = ma)

�T · x

l

= mẍ (1)

�T · y

l

� mg = mÿ (2)

where the accelerations in x and y directions are expressed using second order deriva-
tives ẍ and ÿ. The example is given in cartesian coordinates, where the angle ✓ is
eliminated by replacing expressions cos(✓) and sin(✓) with y

l

and x

l

respectively.
The equations based on Newton’s law of motion are not enough to model the pen-

dulum. Hence, the equation

x

2
+ y

2
= l

2 (3)

is needed to constrain the ball so that it follows the trajectory when the string is
stretched. The initial value positions for x and y are defined by specifying a start
angle ✓

s

, specifying the initial displacement from equilibrium. The initial equations
are

x(0) = l sin(✓

s

) (4)
y(0) = �l cos(✓

s

) (5)

The above mathematical model (differential equations together with initial conditions)
can be expressed in DAE as follows:

1 def Pendulum(m:Real,l:Real,angle:Real) = {

2 def x,y,T:Real;

5

2. Typed Symbolic Expressions

In this section we describe and motivate the concept of typed symbolic expressions,
which is the main novelty Modelyze. The section is divided into four parts. First, we
introduce a small modeling example, which is then used in the rest of the section. Sec-
ond, we show how our approach releases the end user from host language derived an-
notation burden by providing a seamless integration between the host language and the
DSL. Third, we show how gradually typed functions with pattern matching constructs
can be used to analysed and transformed symbolic expressions. Forth, we motivate
why, and show how, certain errors can be detected at the DSL level.

2.1. An Example from the Modeling Engineers Perspective
To illustrate a concrete and simple equation-based model, we model a simple two-
dimensional mechanical pendulum. The model is described in a DSL called DAE ,
which is Modelyze extended with support for modeling differential-algebraic equa-
tions. Figure 2 depicts the pendulum and the related simulation plot. The pendulum
consists of a massless string of length l together with an attached ball. Angle ✓ is the
displacement from the equilibrium, force T the tension in the string, and m the mass
of the ball.

Assuming no air drag, we model the forces in x and y directions together using
Newton’s second law of motion (F = ma)

�T · x

l

= mẍ (1)

�T · y

l

� mg = mÿ (2)

where the accelerations in x and y directions are expressed using second order deriva-
tives ẍ and ÿ. The example is given in cartesian coordinates, where the angle ✓ is
eliminated by replacing expressions cos(✓) and sin(✓) with y

l

and x

l

respectively.
The equations based on Newton’s law of motion are not enough to model the pen-

dulum. Hence, the equation

x

2
+ y

2
= l

2 (3)

is needed to constrain the ball so that it follows the trajectory when the string is
stretched. The initial value positions for x and y are defined by specifying a start
angle ✓

s

, specifying the initial displacement from equilibrium. The initial equations
are

x(0) = l sin(✓

s

) (4)
y(0) = �l cos(✓

s

) (5)

The above mathematical model (differential equations together with initial conditions)
can be expressed in DAE as follows:

1 def Pendulum(m:Real,l:Real,angle:Real) = {

2 def x,y,T:Real;

5

2. Typed Symbolic Expressions

In this section we describe and motivate the concept of typed symbolic expressions,
which is the main novelty Modelyze. The section is divided into four parts. First, we
introduce a small modeling example, which is then used in the rest of the section. Sec-
ond, we show how our approach releases the end user from host language derived an-
notation burden by providing a seamless integration between the host language and the
DSL. Third, we show how gradually typed functions with pattern matching constructs
can be used to analysed and transformed symbolic expressions. Forth, we motivate
why, and show how, certain errors can be detected at the DSL level.

2.1. An Example from the Modeling Engineers Perspective
To illustrate a concrete and simple equation-based model, we model a simple two-
dimensional mechanical pendulum. The model is described in a DSL called DAE ,
which is Modelyze extended with support for modeling differential-algebraic equa-
tions. Figure 2 depicts the pendulum and the related simulation plot. The pendulum
consists of a massless string of length l together with an attached ball. Angle ✓ is the
displacement from the equilibrium, force T the tension in the string, and m the mass
of the ball.

Assuming no air drag, we model the forces in x and y directions together using
Newton’s second law of motion (F = ma)

�T · x

l

= mẍ (1)

�T · y

l

� mg = mÿ (2)

where the accelerations in x and y directions are expressed using second order deriva-
tives ẍ and ÿ. The example is given in cartesian coordinates, where the angle ✓ is
eliminated by replacing expressions cos(✓) and sin(✓) with y

l

and x

l

respectively.
The equations based on Newton’s law of motion are not enough to model the pen-

dulum. Hence, the equation

x

2
+ y

2
= l

2 (3)

is needed to constrain the ball so that it follows the trajectory when the string is
stretched. The initial value positions for x and y are defined by specifying a start
angle ✓

s

, specifying the initial displacement from equilibrium. The initial equations
are

x(0) = l sin(✓

s

) (4)
y(0) = �l cos(✓

s

) (5)

The above mathematical model (differential equations together with initial conditions)
can be expressed in DAE as follows:

1 def Pendulum(m:Real,l:Real,angle:Real) = {

2 def x,y,T:Real;

5

Differential-Algebraic
equations

Algebraic constraint Initial values

y

x

T

!

mg

T cos(!)

T sin(!)

l

-4

-3

-2

-1

0

1

2

3

0 2 4 6 8 10

y
x

Figure 2: (a) Diagram of a simple pendulum. (b) Plot of the simulated pendulum.

3 init x (l*sin(angle));

4 init y (-l*cos(angle));

5
6 -T*x/l = m*x’’;

7 -T*y/l - m*g = m*y’’;

8 xˆ2 + yˆ2 = lˆ2;

9 }

The definition of the Pendulum is parameterized by using a function abstraction. Sup-
plying concrete arguments to the pendulum creates an instance of the model. For
example, expression Pendulum(5,3,45*pi/180) represents a mathematical model
with the mass 5kg, string length 2m, and start angle 45 degrees. Variable pi is bound
outside the function to an approximated value of ⇡.

Line two in the code listing defines the new unknowns x, y, and T. We use the
term unknown for variables within the an equation system at the DSL. Internally, in
the host language, these unknowns are represented as typed symbols. That is, when
code line two is evaluated, three new fresh symbols with the symbolic type of Real
are created. On the other hand, we use the term variables for standard variables in
a functional language, which can only be bound to a value once. Hence, there is no
notion of mutable variables in Modelyze.

From a modeling point of view, the rest the model should be self explaining. For
example, note the direct correspondence between the equations (1)-(3), and lines 6-8
of the code listing. Also, note the similarities between the initial equations (4)-(5) and
code lines 3-4.

2.2. Seamless Integration - Removing End User Annotation Burden
From the previous example, it is not obvious what parts of the syntax that are directly
derived from the host language, and what parts are expressed in the DSL DAE . This
is intentional and is what we call seamless integration between the host language and
the embedded DSL.

6

10

Part III 
Modelyze  
Demo"

broman@eecs.berkeley.edu

Part I"
Modelyze  
Overview"

Part II 
Formal  
Semantics"

Declarative Mathematical Model

2. Typed Symbolic Expressions

In this section we describe and motivate the concept of typed symbolic expressions,
which is the main novelty Modelyze. The section is divided into four parts. First, we
introduce a small modeling example, which is then used in the rest of the section. Sec-
ond, we show how our approach releases the end user from host language derived an-
notation burden by providing a seamless integration between the host language and the
DSL. Third, we show how gradually typed functions with pattern matching constructs
can be used to analysed and transformed symbolic expressions. Forth, we motivate
why, and show how, certain errors can be detected at the DSL level.

2.1. An Example from the Modeling Engineers Perspective
To illustrate a concrete and simple equation-based model, we model a simple two-
dimensional mechanical pendulum. The model is described in a DSL called DAE ,
which is Modelyze extended with support for modeling differential-algebraic equa-
tions. Figure 2 depicts the pendulum and the related simulation plot. The pendulum
consists of a massless string of length l together with an attached ball. Angle ✓ is the
displacement from the equilibrium, force T the tension in the string, and m the mass
of the ball.

Assuming no air drag, we model the forces in x and y directions together using
Newton’s second law of motion (F = ma)

�T · x

l

= mẍ (1)

�T · y

l

� mg = mÿ (2)

where the accelerations in x and y directions are expressed using second order deriva-
tives ẍ and ÿ. The example is given in cartesian coordinates, where the angle ✓ is
eliminated by replacing expressions cos(✓) and sin(✓) with y

l

and x

l

respectively.
The equations based on Newton’s law of motion are not enough to model the pen-

dulum. Hence, the equation

x

2
+ y

2
= l

2 (3)

is needed to constrain the ball so that it follows the trajectory when the string is
stretched. The initial value positions for x and y are defined by specifying a start
angle ✓

s

, specifying the initial displacement from equilibrium. The initial equations
are

x(0) = l sin(✓

s

) (4)
y(0) = �l cos(✓

s

) (5)

The above mathematical model (differential equations together with initial conditions)
can be expressed in DAE as follows:

1 def Pendulum(m:Real,l:Real,angle:Real) = {

2 def x,y,T:Real;

5

2. Typed Symbolic Expressions

In this section we describe and motivate the concept of typed symbolic expressions,
which is the main novelty Modelyze. The section is divided into four parts. First, we
introduce a small modeling example, which is then used in the rest of the section. Sec-
ond, we show how our approach releases the end user from host language derived an-
notation burden by providing a seamless integration between the host language and the
DSL. Third, we show how gradually typed functions with pattern matching constructs
can be used to analysed and transformed symbolic expressions. Forth, we motivate
why, and show how, certain errors can be detected at the DSL level.

2.1. An Example from the Modeling Engineers Perspective
To illustrate a concrete and simple equation-based model, we model a simple two-
dimensional mechanical pendulum. The model is described in a DSL called DAE ,
which is Modelyze extended with support for modeling differential-algebraic equa-
tions. Figure 2 depicts the pendulum and the related simulation plot. The pendulum
consists of a massless string of length l together with an attached ball. Angle ✓ is the
displacement from the equilibrium, force T the tension in the string, and m the mass
of the ball.

Assuming no air drag, we model the forces in x and y directions together using
Newton’s second law of motion (F = ma)

�T · x

l

= mẍ (1)

�T · y

l

� mg = mÿ (2)

where the accelerations in x and y directions are expressed using second order deriva-
tives ẍ and ÿ. The example is given in cartesian coordinates, where the angle ✓ is
eliminated by replacing expressions cos(✓) and sin(✓) with y

l

and x

l

respectively.
The equations based on Newton’s law of motion are not enough to model the pen-

dulum. Hence, the equation

x

2
+ y

2
= l

2 (3)

is needed to constrain the ball so that it follows the trajectory when the string is
stretched. The initial value positions for x and y are defined by specifying a start
angle ✓

s

, specifying the initial displacement from equilibrium. The initial equations
are

x(0) = l sin(✓

s

) (4)
y(0) = �l cos(✓

s

) (5)

The above mathematical model (differential equations together with initial conditions)
can be expressed in DAE as follows:

1 def Pendulum(m:Real,l:Real,angle:Real) = {

2 def x,y,T:Real;

5

2. Typed Symbolic Expressions

In this section we describe and motivate the concept of typed symbolic expressions,
which is the main novelty Modelyze. The section is divided into four parts. First, we
introduce a small modeling example, which is then used in the rest of the section. Sec-
ond, we show how our approach releases the end user from host language derived an-
notation burden by providing a seamless integration between the host language and the
DSL. Third, we show how gradually typed functions with pattern matching constructs
can be used to analysed and transformed symbolic expressions. Forth, we motivate
why, and show how, certain errors can be detected at the DSL level.

2.1. An Example from the Modeling Engineers Perspective
To illustrate a concrete and simple equation-based model, we model a simple two-
dimensional mechanical pendulum. The model is described in a DSL called DAE ,
which is Modelyze extended with support for modeling differential-algebraic equa-
tions. Figure 2 depicts the pendulum and the related simulation plot. The pendulum
consists of a massless string of length l together with an attached ball. Angle ✓ is the
displacement from the equilibrium, force T the tension in the string, and m the mass
of the ball.

Assuming no air drag, we model the forces in x and y directions together using
Newton’s second law of motion (F = ma)

�T · x

l

= mẍ (1)

�T · y

l

� mg = mÿ (2)

where the accelerations in x and y directions are expressed using second order deriva-
tives ẍ and ÿ. The example is given in cartesian coordinates, where the angle ✓ is
eliminated by replacing expressions cos(✓) and sin(✓) with y

l

and x

l

respectively.
The equations based on Newton’s law of motion are not enough to model the pen-

dulum. Hence, the equation

x

2
+ y

2
= l

2 (3)

is needed to constrain the ball so that it follows the trajectory when the string is
stretched. The initial value positions for x and y are defined by specifying a start
angle ✓

s

, specifying the initial displacement from equilibrium. The initial equations
are

x(0) = l sin(✓

s

) (4)
y(0) = �l cos(✓

s

) (5)

The above mathematical model (differential equations together with initial conditions)
can be expressed in DAE as follows:

1 def Pendulum(m:Real,l:Real,angle:Real) = {

2 def x,y,T:Real;

5

Using function abstraction to
define the model

Unknowns are given types but
not bound to values

Equations and initial values are
defined declaratively, just as
the mathematical equations

transform symbolic expressions. Forth, we motivate why, and show how, certain errors
can be detected at the appropriate DSL level of abstraction.

2.1. An Example from the Modeling Engineer’s Perspective
We model a simple two-dimensional mechanical pendulum to illustrate a concrete and
simple equation-based model. The model is described in a DSL we developed named
M-DAE, which is Modelyze extended with support for modeling differential-algebraic
equations. Figure 2 depicts the pendulum and the related simulation plot. The pendu-
lum consists of a massless string of length l together with an attached ball. Angle ✓

is the displacement from the equilibrium, force T the tension in the string, and m the
mass of the ball.

Assuming no air drag, we model the forces in x and y directions together using
Newton’s second law of motion (F = ma)

�T · x

l

= mẍ (1)

�T · y

l

� mg = mÿ (2)

where accelerations in the x and y directions are expressed using second order deriva-
tives ẍ and ÿ. The example is given in cartesian coordinates, where the angle ✓ is
eliminated by replacing expressions cos(✓) and sin(✓) with y

l

and x

l

respectively.
The equations based on Newton’s law of motion are not enough to model the pen-

dulum. Hence, the equation

x

2
+ y

2
= l

2 (3)

is needed to constrain the ball so that it follows a trajectory in which the string is taut.
The initial value positions for x and y are defined by the start angle ✓

s

that specifies the
initial displacement from equilibrium. The initial equations are

x(0) = l sin(✓

s

) (4)
y(0) = �l cos(✓

s

) (5)

The above mathematical model (differential equations together with initial conditions)
is expressed in M-DAE as follows:

1 def Pendulum(m:Real,l:Real,angle:Real) = {

2 def x,y,T:Real;

3 init x (l*sin(angle));

4 init y (-l*cos(angle));

5
6 -T*x/l = m*x’’;

7 -T*y/l - m*g = m*y’’;

8 xˆ2. + yˆ2. = lˆ2.;

9 }

The Pendulum model is defined using a function abstraction. Supplying concrete ar-
guments to the pendulum, for the mass of the ball, length of the string, and initial angle,

5

11

Part III 
Modelyze  
Demo"

broman@eecs.berkeley.edu

Part I"
Modelyze  
Overview"

Part II 
Formal  
Semantics"

Declarative Mathematical Model

Which parts are part of the
host language (Modelyze)?

Unknowns are internally
represented as typed symbols

Fresh
(unique)
symbol

�

<?>

LC

(extends �

<?>

L

)

Expressions e += h⌧ (⌧ie | s :⌧

Values v ::= �x:⌧.e | c | s :⌧ | v@ v | lift v :⌧ |
h?(⌧iv | h⌧3 ! ⌧4 (⌧1 ! ⌧2iv | h<⌧2>(<⌧1>iv

Figure 6: Abstract syntax of �<?>LC .

The intuition is that expression e is of type ⌧1 and the whole cast expression h⌧2 (⌧1ie
is of type ⌧2.

We define new syntax for values of different categories. Let the meta-variable w

ranges over SymValues , i.e., values of symbolic types. Moreover, we define a meta-
variable ⇠ that ranges over CastValues . This separation of values into different syn-
tactic categories is necessary for making the language deterministic, i.e., that not more
than one rule of the runtime semantics is applicable at the same time.

Cast insertion is defined by a four-place cast insertion relation

� `
C

e e

0
:⌧

where e is an expression in �

<?>

L

, e

0 an expression in �

<?>

LC

, ⌧ the resulting type, and
� the typing environment. The cast insertion relation is inductively defined using the
following set of inference rules:
When there is a symbolic lifting translation for an expression e, the expression e is
well-typed with regards to a type system for �

<?>

L

. Because we do not make use of a
specific type system of �

<?>

L

, we omit its definition and instead state the soundness of
translation with regards to the cast insertion relation.

Lemma 2 (Symbolic Lifting is Sound). If � `
L

e e

0
:⌧ then there exists an e

00 such
that � `

C

e

0 e

00
:⌧.

Proof. By induction on a derivation of � `
L

e e

0
: ⌧ . All cases are straightforward

using the definition of type consistency.

Let us now define the type system for �

<?>

LC

by a three-place typing relation

� ` e :⌧

where e is an expression in �

<?>

LC

, ⌧ its type, and � the typing environment. The typing
relation is inductively defined in Figure 8.
The aim of performing the cast insertion is to make it possible to prove type safety of
the language. There are three separate cases where we need to remove the consistency
relation to be able to prove the preservation lemma.

The first case is the existence of ⌧11 ⇠ ⌧2 in rule (L-APP1). Trying to prove
preservation of �

<⌧>

?

by induction on a derivation of � `
L

e e

0
: ⌧ will fail on the

(L-APP1) case. Hence, the trick in the cast insertion is shown in the conclusion of rule
(L-APP1). By casting e

0
2 from ⌧2 to ⌧11, the expression h⌧11 (⌧2ie02 has type ⌧11,

eliminating the need for the premise ⌧11 ⇠ ⌧2.

22

Tagged with
a type

�

<⌧>

?

Ground Types � 2 G
Symbolic Data Types D 2 D
Types ⌧ ::= � | ⌧!⌧ | ? | <⌧> | D
Variables x, y 2 X
Symbols s 2 S
Constants c 2 C
Expressions e ::= x | �x :⌧.e | e e | c | error |

⌫(⌧) | case(e, p, e, e)

Patterns p ::= sym :⌧ | x@x | lift x :⌧

�

<?>

L

(extends �

<⌧>

?

)

Expressions e + = e@ e | lift e :⌧

Figure 3: Abstract syntax of �<⌧>
?

and �<?>L .

expressions are lifted into symbolic expressions. The reason for symbolic lifting is, as
explained in the previous chapter, to create data structures of equations that can later
be inspected and analyzed. Both �

<⌧>

?

and �

<?>

L

are gradually typed languages, that is,
they mix static and dynamic typing. The dynamic aspect is made explicit through a
cast insertion translation into the second intermediate language �

<?>

LC

. We prove that
these translations are type preserving, the usual progress and preservation lemmas for
�

<?>

LC

, and type safety for �

<⌧>

?

. We conclude this section with a discussion of several
extensions to the core language �

<⌧>

?

.

3.1. Syntax
The abstract syntax for �

<⌧>

?

is summarized in Fig. 3. The meta-variables x and y range
over X, a countable set of names. The meta-variable e ranges over the set of expressions
Expr and ⌧ ranges over the set of types Types . We use subscripts for denoting different
expressions or types, e.g., e1 and e2 represent two different expressions.

The first five expressions are standard, but to review, the expression x is a free
variable and lambda abstraction �x:⌧.e binds variable x of type ⌧ in e. The expression
e1 e2 is application and c 2 C a constant. The set of constants C is the union of the set
of boolean values {true, false}, the set of integers, the set of floating-point values,
the set of strings, and the set of primitive functions. The expression error is a simple
form of exception used primarily to signal a cast error.

There are two new kinds of expressions in �

<⌧>

?

. Expression ⌫(⌧) (pronounced
“new”) creates a fresh symbol with type ⌧ . The expression case(e, d, e

t

, e

f

) eliminates
symbolic data. The value of e is matched against the pattern p. In the core language,
the patterns are non-recursive. Nested patterns within match constructs are compiled
into case expressions in the core language. The value of e

t

is returned on a successful
match and the value of e

f

is return on a unsuccessful match. Patterns can have three
different shapes: sym : ⌧ for symbols, x@x for matching symbolic application, and

13

Symbolic type

Variable x is bound to fresh a
symbol of type <Real>

transform symbolic expressions. Forth, we motivate why, and show how, certain errors
can be detected at the appropriate DSL level of abstraction.

2.1. An Example from the Modeling Engineer’s Perspective
We model a simple two-dimensional mechanical pendulum to illustrate a concrete and
simple equation-based model. The model is described in a DSL we developed named
M-DAE, which is Modelyze extended with support for modeling differential-algebraic
equations. Figure 2 depicts the pendulum and the related simulation plot. The pendu-
lum consists of a massless string of length l together with an attached ball. Angle ✓

is the displacement from the equilibrium, force T the tension in the string, and m the
mass of the ball.

Assuming no air drag, we model the forces in x and y directions together using
Newton’s second law of motion (F = ma)

�T · x

l

= mẍ (1)

�T · y

l

� mg = mÿ (2)

where accelerations in the x and y directions are expressed using second order deriva-
tives ẍ and ÿ. The example is given in cartesian coordinates, where the angle ✓ is
eliminated by replacing expressions cos(✓) and sin(✓) with y

l

and x

l

respectively.
The equations based on Newton’s law of motion are not enough to model the pen-

dulum. Hence, the equation

x

2
+ y

2
= l

2 (3)

is needed to constrain the ball so that it follows a trajectory in which the string is taut.
The initial value positions for x and y are defined by the start angle ✓

s

that specifies the
initial displacement from equilibrium. The initial equations are

x(0) = l sin(✓

s

) (4)
y(0) = �l cos(✓

s

) (5)

The above mathematical model (differential equations together with initial conditions)
is expressed in M-DAE as follows:

1 def Pendulum(m:Real,l:Real,angle:Real) = {

2 def x,y,T:Real;

3 init x (l*sin(angle));

4 init y (-l*cos(angle));

5
6 -T*x/l = m*x’’;

7 -T*y/l - m*g = m*y’’;

8 xˆ2. + yˆ2. = lˆ2.;

9 }

The Pendulum model is defined using a function abstraction. Supplying concrete ar-
guments to the pendulum, for the mass of the ball, length of the string, and initial angle,

5

12

Part III 
Modelyze  
Demo"

broman@eecs.berkeley.edu

Part I"
Modelyze  
Overview"

Part II 
Formal  
Semantics"

Release the user from annotation burden

Symbols cannot be bound
to values, so x^2 would
crash at runtime

Use quasi-quoting to mix symbolic
expressions and program code?

Using MetaML syntax < > for quotation
and ~ for anti-quoting (escape)

Heavy annotation
burden for the end-
user

transform symbolic expressions. Forth, we motivate why, and show how, certain errors
can be detected at the appropriate DSL level of abstraction.

2.1. An Example from the Modeling Engineer’s Perspective
We model a simple two-dimensional mechanical pendulum to illustrate a concrete and
simple equation-based model. The model is described in a DSL we developed named
M-DAE, which is Modelyze extended with support for modeling differential-algebraic
equations. Figure 2 depicts the pendulum and the related simulation plot. The pendu-
lum consists of a massless string of length l together with an attached ball. Angle ✓

is the displacement from the equilibrium, force T the tension in the string, and m the
mass of the ball.

Assuming no air drag, we model the forces in x and y directions together using
Newton’s second law of motion (F = ma)

�T · x

l

= mẍ (1)

�T · y

l

� mg = mÿ (2)

where accelerations in the x and y directions are expressed using second order deriva-
tives ẍ and ÿ. The example is given in cartesian coordinates, where the angle ✓ is
eliminated by replacing expressions cos(✓) and sin(✓) with y

l

and x

l

respectively.
The equations based on Newton’s law of motion are not enough to model the pen-

dulum. Hence, the equation

x

2
+ y

2
= l

2 (3)

is needed to constrain the ball so that it follows a trajectory in which the string is taut.
The initial value positions for x and y are defined by the start angle ✓

s

that specifies the
initial displacement from equilibrium. The initial equations are

x(0) = l sin(✓

s

) (4)
y(0) = �l cos(✓

s

) (5)

The above mathematical model (differential equations together with initial conditions)
is expressed in M-DAE as follows:

1 def Pendulum(m:Real,l:Real,angle:Real) = {

2 def x,y,T:Real;

3 init x (l*sin(angle));

4 init y (-l*cos(angle));

5
6 -T*x/l = m*x’’;

7 -T*y/l - m*g = m*y’’;

8 xˆ2. + yˆ2. = lˆ2.;

9 }

The Pendulum model is defined using a function abstraction. Supplying concrete ar-
guments to the pendulum, for the mass of the ball, length of the string, and initial angle,

5

However, one problem with quasi-quoting is that it adds an extra level of annotation
burden on the engineer to carefully add quotes at selected places in a program fragment.
For example, if code line 8 of the Pendulum example is written using MetaML’s quasi-
quote notation, the resulting code line is

<˜xˆ2. + ˜yˆ2. = ˜((fun t -> <t>)lˆ2.)>;

Note how the end-user must carefully consider the different sub-expressions. For ex-
ample, on the right hand side of the equation, an extra lambda abstraction needs to be
inserted so that expression lˆ2 is directly computed to a value (variable l is known
when arguments to function Pendulum are supplied).

To relieve the end user from such annotation burden, the quotation of symbolic
expressions is performed implicitly by the Modelyze compiler. We call this new pro-
cess symbolic lifting analysis (SLA). In contrast to binding time analysis (BTA) [41]
in partial evaluation [42], SLA determines which expressions cannot be evaluated at
runtime, thus lifting these expressions into symbolic data structures. The SLA uses
types to distinguish which expressions that should be lifted. This is the first motivation
for why symbols are typed in Modelyze.

Example 2.1 (Symbolic Lifting). Consider again the Pendulum example, where three
typed symbols are created on line 2. Each such symbol has a unique identifier and an
associated (tagged) type. Similar to MetaML’s notation of code types, our symbol types
are expressed using enclosing angle brackets. For example, the type of a symbolic
integer is <Int> and the type of a symbolic real is <Real>. Hence, in the example,
variables x, y, and T are of type <Real>. Syntactically, typed symbols are created
using the syntax

def x:T;e (6)

which means that a new fresh symbol is created and tagged with type T , and then
substituted for all free occurences of x in e. Note that x itself is not the symbol, but a
fresh symbol is substituted for x. This means that there can be many more symbols in
an executing program than static occurences of def, which is a prerequisite for defining
large reusable models.

Let us zoom in on sub-expression x/l of the following equation
-T*x/l = m*x’’;

on line 6 of the example. If we rewrite the expression in prefix curried form, we
have ((/ x) l), where /:Real->Real->Real, x:<Real>, and l:Real. Clearly,
this expression does not type check, because the parameters of the division operator are
of type Real, but the first argument x is of the symbolic type <Real>. This is where
symbolic lifting takes place. Because the division cannot be performed at runtime,
the division operator is lifted to the symbolic type <Real->Real->Real>. Moreover,
because the lifted version of the division operator now is of a symbolic type, the length
l is also lifted to type <Real>. After lifting the separate parts, the expression x/l type
checks and is of type <Real>.

To conclude this subsection, we have given some intuition regarding what happens
during type checking and the symbolic lifting. The full details of the type system,
including symbolic lifting and a proof of type soundness, are presented in Section 3.

7

13

Part III 
Modelyze  
Demo"

broman@eecs.berkeley.edu

Part I"
Modelyze  
Overview"

Part II 
Formal  
Semantics"

Symbol Lifting Analysis (SLA)

Rewritten to prefix curried form

(/):Real-> Real -> Real
x:<Real>
l:Real

where

Symbol Lifting Analysis (SLA): During type checking, lift expressions that cannot
be safely evaluated at runtime into symbolic expressions (data).

(((/) x) l)

Syntactically, the typing environment will also be handled with set notations, e.g., x :

⌧ 2 � is equivalent to �(x) = ⌧ . However, Definition 1 states that variable names in
the environment are always distinct.

We use the notation �, x:⌧ to extend environment � with a new binding x:⌧ . If a
binding of x exists in �, the new binding replaces the old one. We define the domain
of a typing relation as follows:

Definition 2. dom(�) ⌘ {x | x : ⌧ 2 �}

We also define the subset relation between typing environments:

Definition 3. � ✓ �

0 ⌘ 8x⌧.�(x) = ⌧ implies �

0
(x) = ⌧

The type system for �

<⌧>

?

is defined by a four-place symbolic lifting relation

� `
L

e e

0
:⌧

where e is an expression in �

<⌧>

?

, e

0 an expression in �

<?>

L

, ⌧ the type of the result-
ing value, and � the typing environment. The symbolic lifting relation is inductively
defined using a set of inference rules.

Definition 4 (Well typed expression in �

<⌧>

?

). An expression e of language �

<⌧>

?

is well
typed (typable) in typing environment � if there exits e

0 and ⌧ , such that � `
L

e e

0
:

⌧ .

Language �

<⌧>

?

is a explicitly typed language and the symbolic lifting can therefore be
performed in a direct bottom up manner. Input to such a function would be an empty
typing environment and expression e1 and the output expression e2 whose type is ⌧ .

We now give an overview of the type and translation rules for the symbolic lifting
relation, shown in Figure 5. We first consider the rules that are not lifting any expres-
sion, i.e., where the type of the expression is not changed during translation. The rules
for variables and for lambda abstractions are standard and similar to the simply-typed
lambda calculus. The rule (L-CONST) assumes a function � : C ! Types that ap-
plied to a constant returns the constant’s type. We assume that the �-function cannot
return a symbolic type and therefore give the following assumption:

Assumption 1 (�-types).
If �(c) = ⌧ then ⌧ 2 G or there exists ⌧1 and ⌧2 such that ⌧ = ⌧1!⌧2.

We define the lifting operator de : ⌧e to check whether an expression has symbolic
type, and if not, wrap it in a lift expression. Similarly, we define a lifting operator
d⌧e on types.

de : ⌧e =
(

e if ⌧ ⇠ <?>
lift e :⌧ otherwise

d⌧e =
(

⌧ if ⌧ ⇠ <?>
<⌧> otherwise

Lemma 1.

1. If � ` e : ⌧ , then � ` de : ⌧e : d⌧e.

17

Division cannot be performed, lift expression to
type <Real-> Real -> Real>.

(((lift(/):Real-Real->Real) @ x) @ (lift l:Real))

Term lift e:T wrapps e and results in type <T>

Term e1@e2 is a symbolic
application, represented as a
tuple.

Resulting
type
<Real>

transform symbolic expressions. Forth, we motivate why, and show how, certain errors
can be detected at the appropriate DSL level of abstraction.

2.1. An Example from the Modeling Engineer’s Perspective
We model a simple two-dimensional mechanical pendulum to illustrate a concrete and
simple equation-based model. The model is described in a DSL we developed named
M-DAE, which is Modelyze extended with support for modeling differential-algebraic
equations. Figure 2 depicts the pendulum and the related simulation plot. The pendu-
lum consists of a massless string of length l together with an attached ball. Angle ✓

is the displacement from the equilibrium, force T the tension in the string, and m the
mass of the ball.

Assuming no air drag, we model the forces in x and y directions together using
Newton’s second law of motion (F = ma)

�T · x

l

= mẍ (1)

�T · y

l

� mg = mÿ (2)

where accelerations in the x and y directions are expressed using second order deriva-
tives ẍ and ÿ. The example is given in cartesian coordinates, where the angle ✓ is
eliminated by replacing expressions cos(✓) and sin(✓) with y

l

and x

l

respectively.
The equations based on Newton’s law of motion are not enough to model the pen-

dulum. Hence, the equation

x

2
+ y

2
= l

2 (3)

is needed to constrain the ball so that it follows a trajectory in which the string is taut.
The initial value positions for x and y are defined by the start angle ✓

s

that specifies the
initial displacement from equilibrium. The initial equations are

x(0) = l sin(✓

s

) (4)
y(0) = �l cos(✓

s

) (5)

The above mathematical model (differential equations together with initial conditions)
is expressed in M-DAE as follows:

1 def Pendulum(m:Real,l:Real,angle:Real) = {

2 def x,y,T:Real;

3 init x (l*sin(angle));

4 init y (-l*cos(angle));

5
6 -T*x/l = m*x’’;

7 -T*y/l - m*g = m*y’’;

8 xˆ2. + yˆ2. = lˆ2.;

9 }

The Pendulum model is defined using a function abstraction. Supplying concrete ar-
guments to the pendulum, for the mass of the ball, length of the string, and initial angle,

5

14

Part III 
Modelyze  
Demo"

broman@eecs.berkeley.edu

Part I"
Modelyze  
Overview"

Part II 
Formal  
Semantics"

Pattern Matching on Symbolic Expressions

type Equations

Expressions of a symbolic data type can be constructed by creating symbols of the
type. In the pendulum example, equations of the Equations type are constructed using
the infix equality symbol =, defined as follows:

def (=) : Real -> Real -> Equations

The notation of enclosing the operator in parenthesis means that it is an infix oper-
ator. In contrast to the symbols created in the Pendulum model, the symbol for = is a
global symbol. The type of (=) is <Real -> Real -> Equations>, that is, the type
of a symbol is always a symbolic type.

Now, assume that the syntactic definition of how to create equations are given in a
static DSL library (recall Figure ??) called equations.mkl.

type Equations

def (=) : Real -> Real -> Equations

def (;) : Equations -> Equations -> Equations

Using the infix operator ; we can form a system of equations. Assume that we
define a dynamic DSL library called linear-eqs-solver.mkl that defines functions
for solving linear algebraic equations. One fundamental function in such a library is to
get all unknown variables of an equation system. Function

1 def getUnknowns(exp:<?>, acc:(Set <Real>)) -> (Set <Real>) = {

2 match exp with

3 | e1 e2 -> getUnknowns(e2,getUnknowns(e1,acc))

4 | sym:Real -> Set.add exp acc

5 | _ -> acc

6 }

defines such a functions, which recursively traverse a symbolic expression repre-
senting an equation system and returns all the typed symbols of type Real, represent-
ing unknowns. The function takes two parameters exp (the symbolic expression) and
acc (an accumulator for a set of symbols) of types <?> and {<Real>}, respectively.
The first parameter makes use of the dynamic type ? meaning that exp can be of any
symbolic type. The second parameter is of the built-in set type. Manipulating sets of
symbols is a very common task, which is main the rationale for making it a primitive
construct of the host language.

The pattern matching construct match deconstructs symbolic expressions. For ex-
ample, line 3 pattern match on a symbolic application, that is, a function application
that has been lifted to be a symbolic expression. Line 4 matches a symbol that is tagged
with type Real. Such a symbol is a symbol representing and unknown, and is therefore
added to the accumulator set acc. If it does not match any of the symbolic expressions
(line 5) the accumulator is returned. Note how the gradual type system is used to per-
form a generic traversal of a symbolic expression, collecting all symbols representing
unknowns. For example, the model LinearEqs

1 def TwoEqs(x:<Real>) = {

2 def y:Real;

3 x + 12 = 3 * y;

9

Dynamic symbolic type <?>

Accumulator Sets of symbolic
type <Real>

Query for all unknowns in a
model instance

Uniform data structure, no
boilplate code (matching on
symbolic applications)

Match all symbols of type <Real>
i.e., unknowns in the model.

4 2 * y = 33 * x;

5 }

6
7 def LinearEqs = {

8 def a,b:Real;

9 TwoEqs(2*a+b);

10 TwoEqs(a-3*b);

11 }

shows how a model consisting of two linear algebraic equations (TwoEqs) can be com-
posed together. The resulting equation system clearly have four equations, but which
are the unknowns? By executing expression

1 getUnknowns(LinearEqs ,Set.empty)

we get a set of four symbols. Note that all four symbols are not syntactically unique
by just looking at the source code of models TwoEqs and LinearEqs. The reason is
that the two applications to TwoEqs each generates a new fresh symbol for y.

Now, assume that a new DSL should be developed that can handle differential-
algebraic equations. The syntactic necessary extensions are to be able to express initial
values and derivatives. Assume that we place these extensions in a new static DSL
library called dae.mkl that includes the following:

1 include Equations

2 def der : Real -> Real

3 def (’) = der

4 def init : Real -> Real -> Equations

The first line shows simple file inclusion of the library equations.mkl (case in-
sensitive where the file suffix .mkl is implicit). This means that the data types that we
create by defining typed symbols are open, meaning that we can add new symbols later
in the program (in separate libraries), and then use it together in the same symbolic
expression.

In this DAE extension, we first define the constructor der for representing deriva-
tives, that has the symbolic type <Real->Real>. This means that for an unknown x of
type <Real>, the expression der(x) with type <Real> represents the derivative of x.
We also give a postfix syntactic representation ’ for derivatives. This is the syntax that
is used in the Pendulum example. Hence, an expression for the second order derivative
x’’ is equivalent to der(der(x)). We also define a new symbol init for expressing
initial values.

The functionality of returning all unknowns of an equation system is still useful for
a DAE. Because the static definitions of the DAE are based on the same definitions as
for the linear equation system, we can still apply function getUnknowns on a DAE.
For example,

1 getUnknowns(Pendulum(5,3,45*pi/180),Set.empty)

returns as expected a set of three symbols. We can now create further specialized
functions which are specific for the DAE. For example, assume that we want to have a
function that returns the mapping between all unknowns (symbols) and their symbolic
initial value:

10

Returns a set with 3 symbols (representing x, y, and T).

15

Part III 
Modelyze  
Demo"

broman@eecs.berkeley.edu

Part I"
Modelyze  
Overview"

Part II 
Formal  
Semantics"

Static Error Checking at the DSL Level

Syntactically correct
model (host syntax) Static type error instead of dynamic error

during translation/pattern matching.

Quite intuitive error messages at the DSL level.

Example 2.5 (Static Error Checking). Consider again the Pendulum example but with
an errors:

1 def ModifiedPendulum(m:Real,l:Real,angle:Real) = {

2 def x,y,T:Real;

3 init x (l*sin(angle));

4 init y; //Error: Missing initial value

5
6 -T*x/l = m*x’’;

7 -T*y/l - m*g = m*y’’;

8 xˆ2. + yˆ2. = lˆ2.;

9 }

Syntactically, this model is correct, i.e., neither the lexer nor the parser complains
about the model. However, the inserted error prevents the model from being simulated.
If there was no static type checking, the failure caused by this error would not have
been detected until very late in the simulation process. The missing initial value would
make the numerical solver to fail when trying to initialize the equation system. In such
a case, the model engineer does not get any information of where in the actual model
code the error is located.

However, by performing static type checking at the DSL level directly on the typed
symbols, the user may receive error messages with significantly better fault localiza-
tion. For example, the current Modelyze type checker reports the following error mes-
sage for the example model with the missing initial value:

modifiedpendulum.moz 4:10-4:10 error: Missing argument

of type ’Real’.

We should point out that this static type checking only rules out some of the potential
errors that a user can make. Incorrectly specified equation systems that are either over
or under-constrained are not detected. Improving such error detection involves further
error detection mechanisms [43, 44, 45].

To summarize, typed symbolic expressions can be used in a host language to re-
lieve the user from the quasi-quoting annotation burden, enable expressive transforma-
tion and pattern matching on symbolic expressions, and to provide good static error
reporting at the DSL level. Section 4 further evaluates the strength and weaknesses of
the suggested approach.

3. Semantics of Modelyze

Modelyze consists of a surface language and a core language. The translation steps
from the surface to the core language are standard and include parsing, syntactic trans-
formations, and pattern compilation [46]. In this section we present and formalize an
essential subset of the core that includes typed symbolic expressions, symbol types,
gradual typing, and symbol lifting analysis. Modelyze also includes other language
constructs, such as lists, sets, maps, conditional expressions, and print statements,
which are not essential for describing the main contributions of the language.

11

16

Part III 
Modelyze  
Demo"

broman@eecs.berkeley.edu

Part I"
Modelyze  
Overview"

Part II 
Formal  
Semantics"

Mechatronic Control Example (ModelyzeEOO)

DCMotor

Spring

Damper

EMF

InductorResistorVoltage
Source

Ground

Inertia

PID

Speed
Sensor

DCMotor IdealGear
Flexible Shaft

n=5

Reference signal

-

ShaftElement

Inertia

Feedback

s1

Constant
Source

s2

s3

s4

r1 r2 r3 r4

Figure 12: Example of a model in EOO representing a cyber-physical system containing a PID controler,
an electrical DC Motor, and a rotational mechanical system.

in infix order with real symbolic names.

4.2. Equation-Based Object-Oriented (EOO) DSL
The second DSL is EOO , an equation-based object-oriented language with similar
modeling capabilities as basic continuous-time modeling in Modelica [3]. The DSL
reuse the DAE syntax and semantics from the DAE DSL and adds the capability do
define hierarchical object-oriented models, meaning that the topology of the models
have a direct correspondence to physical models.

Figure 12 depicts the structure of a model described in EOO . The model describes
the dynamics of a mechatronic powertrain system, consisting of a direct current (DC)
motor that drives a ideal gear, a flexible shaft, and an inertia. The rotational speed
(angle velocity) is controlled by a feedback control loop using a PID controller.

One benefit with block based modeling languages is to be able to compose sub-
models together to form new models. However, compared to block diagrams (e.g.,
Simulink [34]) are EOO models acausal, meaning that the direction of information
flow between the model components is not determined at modeling time. For example,
there is no flow direction between the shaft and the inertia. Initially during simulation,
will the torque from the DC motor speed up the inertia. However, when the enertia is
rotating, its torque also affects the rotation of the shaft.

The acusal modling capabilities of the DSL is achieved by translating the hierarchi-
cal model into a DAE in two main phases. In the first phase, the hierarchy of the EOO

34

Control Components

Electrical Components

Mechanical Components

17

Part III 
Modelyze  
Demo"

broman@eecs.berkeley.edu

Part I"
Modelyze  
Overview"

Part II 
Formal  
Semantics"

Mechatronic Control Example

DCMotor

Spring

Damper

EMF

InductorResistorVoltage
Source

Ground

Inertia

PID

Speed
Sensor

DCMotor IdealGear
Flexible Shaft

n=5

Reference signal

-

ShaftElement

Inertia

Feedback

s1

Constant
Source

s2

s3

s4

r1 r2 r3 r4

Figure 12: Example of a model in EOO representing a cyber-physical system containing a PID controler,
an electrical DC Motor, and a rotational mechanical system.

in infix order with real symbolic names.

4.2. Equation-Based Object-Oriented (EOO) DSL
The second DSL is EOO , an equation-based object-oriented language with similar
modeling capabilities as basic continuous-time modeling in Modelica [3]. The DSL
reuse the DAE syntax and semantics from the DAE DSL and adds the capability do
define hierarchical object-oriented models, meaning that the topology of the models
have a direct correspondence to physical models.

Figure 12 depicts the structure of a model described in EOO . The model describes
the dynamics of a mechatronic powertrain system, consisting of a direct current (DC)
motor that drives a ideal gear, a flexible shaft, and an inertia. The rotational speed
(angle velocity) is controlled by a feedback control loop using a PID controller.

One benefit with block based modeling languages is to be able to compose sub-
models together to form new models. However, compared to block diagrams (e.g.,
Simulink [34]) are EOO models acausal, meaning that the direction of information
flow between the model components is not determined at modeling time. For example,
there is no flow direction between the shaft and the inertia. Initially during simulation,
will the torque from the DC motor speed up the inertia. However, when the enertia is
rotating, its torque also affects the rotation of the shaft.

The acusal modling capabilities of the DSL is achieved by translating the hierarchi-
cal model into a DAE in two main phases. In the first phase, the hierarchy of the EOO

34

Nodes are represented
as symbols. “Wiring”
components together.

Higher-order model (higher-order function)

defining hierarchical object-oriented models, meaning that the topology of the models
have a direct correspondence to physical models.

Figure 12 depicts the structure of a model described in M-EOO. The model de-
scribes the dynamics of a mechatronic powertrain system, consisting of a direct current
(DC) motor that drives an ideal gear, a flexible shaft, and an inertia. The rotational
speed (angle velocity) is controlled by a feedback control loop using a PID [56] con-
troller.

One benefit with block based modeling languages is to be able to compose sub-
models together to form new models. However, compared to Simulink models [57],
EOO models are acausal, meaning that the direction of information flow between the
model components is not determined at modeling time. For example, there is no direc-
tion of flow between the shaft and the inertia. Initially during simulation, the torque
from the DC motor speeds up the inertia. However, when the inertia is rotating, its
torque also affects the rotation of the shaft.

The acausal modeling capabilities of the DSL are achieved by translating the hi-
erarchical model into a DAE in two main phases. In the first phase, the hierarchy
of the EOO model is collapsed into a large equation system. This equation system
contains—besides differential equations—information about the structure of the hier-
archical model. This structured information is used in the second phase to generate
additional unknowns and equations for the final equation system. Broman and Nils-
son [58] describe the details of this process. In the rest of this section, we focus on
the model engineer’s and domain expert’s implementation perspective, rather that the
algorithmic perspective per se.

The following Modelyze source code5 shows the concrete top level implementation
of the CPS model outlined in Figure 12.

1 def CPS() = {

2 def s1, s2, s3, s4:Signal;

3 def r1, r2, r3, r4:Rotational;

4 ConstantSource(1.0, s1);

5 Feedback(s1, s4, s2);

6 PID(3.0, 0.7, 0.1, 10.0, s2, s3);

7 DCMotor(s3, r1);

8 IdealGear(4.0, r1, r2);

9 serialize(5.0, r2, r3, ShaftElement);

10 Inertia(0.3, r3, r4);

11 SpeedSensor(r4, s4);

12 }

Line two and three defines signal and mechanical rotational nodes (connection points
in the component graph). All these nodes are typed symbols, e.g., Rotational is a
symbolic data type. These nodes are then supplied to the various model components.
This is the way a model engineer connects components together. For example, in line

5In the current prototype implementation, the model engineer uses a text based concrete syntax. However,
we do not see any technical challenges of implementing a graphical GUI (similar to Modelica tools) where
the engineer edits models graphically and these models are automatic translation to textual source code.

34

18

Part III 
Modelyze  
Demo"

broman@eecs.berkeley.edu

Part I"
Modelyze  
Overview"

Part II 
Formal  
Semantics"

Mechatronic Control Example

DCMotor

Spring

Damper

EMF

InductorResistorVoltage
Source

Ground

Inertia

PID

Speed
Sensor

DCMotor IdealGear
Flexible Shaft

n=5

Reference signal

-

ShaftElement

Inertia

Feedback

s1

Constant
Source

s2

s3

s4

r1 r2 r3 r4

Figure 12: Example of a model in EOO representing a cyber-physical system containing a PID controler,
an electrical DC Motor, and a rotational mechanical system.

in infix order with real symbolic names.

4.2. Equation-Based Object-Oriented (EOO) DSL
The second DSL is EOO , an equation-based object-oriented language with similar
modeling capabilities as basic continuous-time modeling in Modelica [3]. The DSL
reuse the DAE syntax and semantics from the DAE DSL and adds the capability do
define hierarchical object-oriented models, meaning that the topology of the models
have a direct correspondence to physical models.

Figure 12 depicts the structure of a model described in EOO . The model describes
the dynamics of a mechatronic powertrain system, consisting of a direct current (DC)
motor that drives a ideal gear, a flexible shaft, and an inertia. The rotational speed
(angle velocity) is controlled by a feedback control loop using a PID controller.

One benefit with block based modeling languages is to be able to compose sub-
models together to form new models. However, compared to block diagrams (e.g.,
Simulink [34]) are EOO models acausal, meaning that the direction of information
flow between the model components is not determined at modeling time. For example,
there is no flow direction between the shaft and the inertia. Initially during simulation,
will the torque from the DC motor speed up the inertia. However, when the enertia is
rotating, its torque also affects the rotation of the shaft.

The acusal modling capabilities of the DSL is achieved by translating the hierarchi-
cal model into a DAE in two main phases. In the first phase, the hierarchy of the EOO

34

1 def DCMotor(V:Voltage,flange:Rotational) = {

2 def e1, e2, e3, e4:Electrical;

3 SignalVoltage(V, e1, e4);

4 Resistor(200, e1, e2);

5 Inductor(0.1, e2, e3);

6 EMF(1, e3, e4, flange);

7 Ground(e4);

8 }

We can see that within the electrical domain, another node of type Electrical
is used. The main benefits of defining different types of these nodes is that a model
engineer would get early and precise error feedback if for example a node within the
mechanical domain is supplied to a Resistor. Such a model is obviously illegal, and
this shows another example of how the static type system can be used to give precise
error feedback to the model engineer.

At the lowest level in the hierarchy, the differential equations are explicitly stated.
For example, in the Inductor model

1 def Inductor(L:Real, p:Electrical , n:Electrical) = {

2 def i:Current;

3 def v:Voltage;

4 Branch i v p n;

5 L * i’ = v;

6 }

line 5 shows the differential equation describing the behavior of the inductor. A new
construct added to EOO is the Branch construct (line 4). A branch is conceptually
a path between two nodes through a component model. The branch encodes informa-
tion about the model structure, and is used in the second phase when generating new
equations and unknowns. Example of equations that are generated during this phase
are sum-to-zero equations for nodes, i.e., obeying Kirchhoff’s current law.

Without going into details of the actual algorithm, we can study how the Branch
construct is defined, constructed, and eliminated. The Branch is a symbol and defined
as

def Branch : Real -> Real -> ? -> ? -> Equations

The first two parameters represent in the electrical domain the current flowing
through the model component and the voltage drop across the component. However,
this approach is applicable in other physical domains (e.g., the mechanical domain),
and consequently, the same branch can be used in these domains as well. The third and
fourth parameters correspond to the connected nodes. These nodes can be of different
types (e.g., Electrical or Rotational). We are therefore using dynamic types to
make this polymorphic. Even if this eliminates certain level of static checking, we ar-
gue that this is not problematic because the use of the Branch construct is only exposed
to the domain expert and not to the model engineer.

The Branch example illustrates the need for the symbolic types to be open. That
is, we can in DSL EOO extend the symbolic expressions of type Equations and still
make use of earlier functions that performed pattern matching on these expressions.
This also means that the symbolic data types can never be regarded as complete because

36

Hierarchies of model
components.

Unkowns and
behaviour equation

7 the DCMotor model is applied to signal s3 and node r1. Models in M-EOO are
normal Modelyze functions. Hence, applying a model to a node is a standard function
application. Because nodes (symbols) are values, the symbolic lifting analysis does not
lift these applications to symbolic expressions. Consequently, phase one of collapsing
the model hierarchy comes for free directly from the host language, that is, during
evaluation, nodes are substituted and function abstractions eliminated. Again, note that
the underlying symbolic types of the host language do not affect the DSL experience
for the model engineer.

On line 9, a recursive function serialize is used for creating 5 model components
in series. The supplied shaft element is a higher-order model [59], a model containing
equations is supplied to a generic function that combines model components in series
(in this case a flexible shaft). Again, this is an example were the functionality comes di-
rectly from the host language’s support for first class functions. We are in this example
using dynamic types for getting polymorphism (elements with different node types).
Hence, we loose in this case static type information. This limitation of the current
approach can be improved by adding parametric polymorphism. Combining gradual
typing with parametric polymorphism is solved by Ahmed et al. [60], and we regard it
as future work to combine parametric polymorphism with typed symbolic expressions.

One level down in the model hierarchy,the DCMotor is defined as follows:
1 def DCMotor(V:Voltage,flange:Rotational) = {

2 def e1, e2, e3, e4:Electrical;

3 SignalVoltage(V, e1, e4);

4 Resistor(200.0, e1, e2);

5 Inductor(0.1, e2, e3);

6 EMF(1.0, e3, e4, flange);

7 Ground(e4);

8 }

Within the electrical domain, another node of type Electrical is used. The main
benefit of defining different types of these nodes is that a model engineer gets early
and precise error feedback. For example, if a node within the mechanical domain is
supplied to the Resistor model component on line 4, we get the error message:
controlsys.moz 4:19-4:25 error: Illegal argument type.

Expected an argument of type ’Electrical ’.

At the lowest level in the hierarchy, the differential equations are explicitly stated.
For example, in the Inductor model

1 def Inductor(L:Real, p:Electrical , n:Electrical) = {

2 def i:Current;

3 def v:Voltage;

4 Branch i v p n;

5 L * i’ = v;

6 }

line 5 shows the differential equation describing the behavior of the inductor.
A new construct added to M-EOO is the Branch construct (line 4). A branch is

conceptually a path between two nodes through a component model. The branch en-
codes information about the model structure and is used in the second phase when

35

19

Part III 
Modelyze  
Demo"

broman@eecs.berkeley.edu

Part I"
Modelyze  
Overview"

Part II 
Formal  
Semantics"

Part II
Formal Semantics

�(x) = ⌧1

� `
L

x x :⌧1
(L-VAR)

�, x :⌧1 `
L

e1 e

0
1 :⌧2

� `
L

�x:⌧1.e1 �x:⌧1.e
0
1 :⌧1!⌧2

(L-ABS)

�(c) = ⌧1

� `
L

c c :⌧1
(L-CONST) � `

L

⌫(⌧1) ⌫(⌧1) :<⌧1> (L-NEW)

� `
L

error error : ⌧

(L-ERROR)

� `
L

e1 e

0
1 :⌧11!⌧12

� `
L

e2 e

0
2 :⌧2 ⌧11 ⇠ ⌧2

� `
L

e1 e2 e

0
1 e

0
2 :⌧12

(L-APP1)

� `
L

e1 e

0
1 :?

� `
L

e2 e

0
2 :⌧2

� `
L

e1 e2 e

0
1 e

0
2 :?

(L-APP2)

� `
L

e1 e

0
1 :<⌧11>!⌧12 � `

L

e2 e

0
2 :⌧2 <⌧11> 6⇠ ⌧2 ⌧11 ⇠ ⌧2

� `
L

e1 e2 e

0
1 (lift e

0
2 :⌧2) :⌧12

(L-APP3)

� `
L

e1 e

0
1 :⌧11!⌧12 � `

L

e2 e

0
2 :<⌧2> ⌧11 6⇠ <⌧2> ⌧11 ⇠ ⌧2

� `
L

e1 e2 (lift e

0
1 :⌧11!⌧12)@ e

0
2 :<⌧12>

(L-APP4)

� `
L

e1 e

0
1 :<⌧11!⌧12>

� `
L

e2 e

0
2 :⌧2

de02 : ⌧2e = e

00
2

<⌧11> ⇠ d⌧2e
� `

L

e1 e2 e

0
1@ e

00
2 :<⌧12>

(L-APP5)

� `
L

e1 e

0
1 :<?>

� `
L

e2 e

0
2 :⌧2

de02 : ⌧2e = e

00
2

� `
L

e1 e2 e

0
1@ e

00
2 :<?>

(L-APP6)

� `
L

e1 e

0
1 :⌧1 � `

L

e2 e

0
2 :⌧2 � `

L

e3 e

0
3 :⌧3

<?> ⇠ ⌧1 d⌧2e ⇠ d⌧3e de02 : ⌧2, e
0
3 : ⌧3e = (⌧5, e

00
2 , e

00
3)

� `
L

case(e1, sym :⌧4, e2, e3) case(e01, sym :⌧4, e
00
2 , e

00
3) :⌧5

(L-CSYM)

� `
L

e1 e

0
1 :⌧1 �, x1 :<?>, x2 :<?> `

L

e2 e

0
2 :⌧2

� `
L

e3 e

0
3 :⌧3 <?> ⇠ ⌧1 d⌧2e ⇠ d⌧3e de02 : ⌧2, e

0
3 : ⌧3e = (⌧4, e

00
2 , e

00
3)

� `
L

case(e1, x1 @x2, e2, e3) case(e01, x1 @x2, e
00
2 , e

00
3) :⌧4

(L-CAPP)

� `
L

e1 e

0
1 :⌧1 �, x :⌧4 `

L

e2 e

0
2 :⌧2

� `
L

e3 e

0
3 :⌧3 <?> ⇠ ⌧1 d⌧2e ⇠ d⌧3e de02 : ⌧2, e

0
3 : ⌧3e = (⌧5, e

00
2 , e

00
3)

� `
L

case(e1, lift x :⌧4, e2, e3) case(e01, lift x :⌧4, e
00
2 , e

00
3) :⌧5

(L-CLIFT)

Figure 6: Type System and Symbolic Lifting for �<?>.

18

20

Part III 
Modelyze  
Demo"

broman@eecs.berkeley.edu

Part I"
Modelyze  
Overview"

Part II 
Formal  
Semantics"

Intermediate Languages

To enable formalization and proving type soundness, we
define three intermediate languages.

�

<?>

Ground Types � 2 G
Symbolic Data Types D 2 D
Types ⌧ ::= � | ⌧!⌧ | ? | <⌧> | D
Variables x, y 2 X
Symbols s 2 S
Constants c 2 C
Expressions e ::= x | �x :⌧.e | e e | c | error |

⌫(⌧) | case(e, p, e, e)

Patterns p ::= sym :⌧ | x@x | lift x :⌧

�

<?>

L

(extends �

<?>)

Expressions e + = e@ e | lift e :⌧

Figure 4: Abstract syntax of �<?> and �<?>L .

To formalize the static and dynamic semantics, as well proving soundness property
of the language, we present three different intermediate languages. The language �

<?>

is the source language corresponding to the essential core of Modelyze. We define a
translation from �

<?> to an intermediate language �

<?>

L

that lifts selected expressions
into symbolic expressions (Section 3.3). The reason for symbolic lifting is, as dis-
cussed in the previous chapter, to create data structures of equations that can later be
inspected and analyzed. Both �

<?> and �

<?>

L

are gradually typed languages, that is, they
mix static and dynamic typing. The dynamic aspect is made explicit through a cast
insertion translation into another intermediate language �

<?>

LC

(Section 3.4). We present
an operational semantics for �

<?>

LC

and prove that the translations between the inter-
mediate languages are type preserving. We prove the usual progress and preservation
lemmas for �

<?>

LC

, from which we obtain type safety for �

<?> (Section 3.5).

3.1. Syntax
The abstract syntax for �

<?> is defined in Figure. 4. The meta-variables x and y range
over variables, taken from some countable set of names X. The meta-variable e ranges
over the set of expressions Expr and ⌧ ranges over the set of types Types . We use sub-
scripts to create different meta-variables, e.g., e1 and e2 are two different metavariables
that range over expressions.

The first five expressions are standard, but to review, the expression x is a free
variable and lambda abstraction �x:⌧.e binds variable x of type ⌧ in e and delays the
execution of e until the abstraction is applied to an argument. The expression e1 e2 is
an application and c 2 C is a constant. The set of constants C is the union of the set
of boolean values {true, false}, the set of integers, the set of floating-point values,
the set of strings, and the set of primitive functions. The expression error is a simple
form of exception used to signal cast and pattern match errors.

There are two new kinds of expressions in �

<?>. Expression ⌫(⌧) (pronounced
“new”) creates a fresh symbol with type ⌧ . The expression case(e, p, e

t

, e

f

) eliminates

12

Core

�

<?>

Ground Types � 2 G
Symbolic Data Types D 2 D
Types ⌧ ::= � | ⌧!⌧ | ? | <⌧> | D
Variables x, y 2 X
Symbols s 2 S
Constants c 2 C
Expressions e ::= x | �x :⌧.e | e e | c | error |

⌫(⌧) | case(e, p, e, e)

Patterns p ::= sym :⌧ | x@x | lift x :⌧

�

<?>

L

(extends �

<?>)

Expressions e + = e@ e | lift e :⌧

Figure 4: Abstract syntax of �<?> and �<?>L .

To formalize the static and dynamic semantics, as well proving soundness property
of the language, we present three different intermediate languages. The language �

<?>

is the source language corresponding to the essential core of Modelyze. We define a
translation from �

<?> to an intermediate language �

<?>

L

that lifts selected expressions
into symbolic expressions (Section 3.3). The reason for symbolic lifting is, as dis-
cussed in the previous chapter, to create data structures of equations that can later be
inspected and analyzed. Both �

<?> and �

<?>

L

are gradually typed languages, that is, they
mix static and dynamic typing. The dynamic aspect is made explicit through a cast
insertion translation into another intermediate language �

<?>

LC

(Section 3.4). We present
an operational semantics for �

<?>

LC

and prove that the translations between the inter-
mediate languages are type preserving. We prove the usual progress and preservation
lemmas for �

<?>

LC

, from which we obtain type safety for �

<?> (Section 3.5).

3.1. Syntax
The abstract syntax for �

<?> is defined in Figure. 4. The meta-variables x and y range
over variables, taken from some countable set of names X. The meta-variable e ranges
over the set of expressions Expr and ⌧ ranges over the set of types Types . We use sub-
scripts to create different meta-variables, e.g., e1 and e2 are two different metavariables
that range over expressions.

The first five expressions are standard, but to review, the expression x is a free
variable and lambda abstraction �x:⌧.e binds variable x of type ⌧ in e and delays the
execution of e until the abstraction is applied to an argument. The expression e1 e2 is
an application and c 2 C is a constant. The set of constants C is the union of the set
of boolean values {true, false}, the set of integers, the set of floating-point values,
the set of strings, and the set of primitive functions. The expression error is a simple
form of exception used to signal cast and pattern match errors.

There are two new kinds of expressions in �

<?>. Expression ⌫(⌧) (pronounced
“new”) creates a fresh symbol with type ⌧ . The expression case(e, p, e

t

, e

f

) eliminates

12

Lifted

�

<?>

Ground Types � 2 G
Symbolic Data Types D 2 D
Types ⌧ ::= � | ⌧!⌧ | ? | <⌧> | D
Variables x, y 2 X
Symbols s 2 S
Constants c 2 C
Expressions e ::= x | �x :⌧.e | e e | c | error |

⌫(⌧) | case(e, p, e, e)

Patterns p ::= sym :⌧ | x@x | lift x :⌧

�

<?>

L

(extends �

<?>)

Expressions e + = e@ e | lift e :⌧

Figure 4: Abstract syntax of �<?> and �<?>L .

To formalize the static and dynamic semantics, as well proving soundness property
of the language, we present three different intermediate languages. The language �

<?>

is the source language corresponding to the essential core of Modelyze. We define a
translation from �

<?> to an intermediate language �

<?>

L

that lifts selected expressions
into symbolic expressions (Section 3.3). The reason for symbolic lifting is, as dis-
cussed in the previous chapter, to create data structures of equations that can later be
inspected and analyzed. Both �

<?> and �

<?>

L

are gradually typed languages, that is, they
mix static and dynamic typing. The dynamic aspect is made explicit through a cast
insertion translation into another intermediate language �

<?>

LC

(Section 3.4). We present
an operational semantics for �

<?>

LC

and prove that the translations between the inter-
mediate languages are type preserving. We prove the usual progress and preservation
lemmas for �

<?>

LC

, from which we obtain type safety for �

<?> (Section 3.5).

3.1. Syntax
The abstract syntax for �

<?> is defined in Figure. 4. The meta-variables x and y range
over variables, taken from some countable set of names X. The meta-variable e ranges
over the set of expressions Expr and ⌧ ranges over the set of types Types . We use sub-
scripts to create different meta-variables, e.g., e1 and e2 are two different metavariables
that range over expressions.

The first five expressions are standard, but to review, the expression x is a free
variable and lambda abstraction �x:⌧.e binds variable x of type ⌧ in e and delays the
execution of e until the abstraction is applied to an argument. The expression e1 e2 is
an application and c 2 C is a constant. The set of constants C is the union of the set
of boolean values {true, false}, the set of integers, the set of floating-point values,
the set of strings, and the set of primitive functions. The expression error is a simple
form of exception used to signal cast and pattern match errors.

There are two new kinds of expressions in �

<?>. Expression ⌫(⌧) (pronounced
“new”) creates a fresh symbol with type ⌧ . The expression case(e, p, e

t

, e

f

) eliminates

12

Cast inserted

Translation step from surface
language to core language.
Includes: parsing, syntatic
transformation, pattern
compilation etc.

Both are gradually typed
(Mixing static and dynamic typing).

Translating from the core to
Lifted language. Includes:
symbolic lifting analysis (SLA).

Dynamic aspects
made explicit by
cast insertion. Also
vital for proving type
safety.

21

Part III 
Modelyze  
Demo"

broman@eecs.berkeley.edu

Part I"
Modelyze  
Overview"

Part II 
Formal  
Semantics"

�

<?>

Ground Types � 2 G
Symbolic Data Types D 2 D
Types ⌧ ::= � | ⌧!⌧ | ? | <⌧> | D
Variables x, y 2 X
Symbols s 2 S
Constants c 2 C
Expressions e ::= x | �x :⌧.e | e e | c | error |

⌫(⌧) | case(e, p, e, e)

Patterns p ::= sym :⌧ | x@x | lift x :⌧

�

<?>

L

(extends �

<?>)

Expressions e + = e@ e | lift e :⌧

Figure 4: Abstract syntax of �<?> and �<?>L .

To formalize the static and dynamic semantics, as well proving soundness property
of the language, we present three different intermediate languages. The language �

<?>

is the source language corresponding to the essential core of Modelyze. We define a
translation from �

<?> to an intermediate language �

<?>

L

that lifts selected expressions
into symbolic expressions (Section 3.3). The reason for symbolic lifting is, as dis-
cussed in the previous chapter, to create data structures of equations that can later be
inspected and analyzed. Both �

<?> and �

<?>

L

are gradually typed languages, that is, they
mix static and dynamic typing. The dynamic aspect is made explicit through a cast
insertion translation into another intermediate language �

<?>

LC

(Section 3.4). We present
an operational semantics for �

<?>

LC

and prove that the translations between the inter-
mediate languages are type preserving. We prove the usual progress and preservation
lemmas for �

<?>

LC

, from which we obtain type safety for �

<?> (Section 3.5).

3.1. Syntax
The abstract syntax for �

<?> is defined in Figure. 4. The meta-variables x and y range
over variables, taken from some countable set of names X. The meta-variable e ranges
over the set of expressions Expr and ⌧ ranges over the set of types Types . We use sub-
scripts to create different meta-variables, e.g., e1 and e2 are two different metavariables
that range over expressions.

The first five expressions are standard, but to review, the expression x is a free
variable and lambda abstraction �x:⌧.e binds variable x of type ⌧ in e and delays the
execution of e until the abstraction is applied to an argument. The expression e1 e2 is
an application and c 2 C is a constant. The set of constants C is the union of the set
of boolean values {true, false}, the set of integers, the set of floating-point values,
the set of strings, and the set of primitive functions. The expression error is a simple
form of exception used to signal cast and pattern match errors.

There are two new kinds of expressions in �

<?>. Expression ⌫(⌧) (pronounced
“new”) creates a fresh symbol with type ⌧ . The expression case(e, p, e

t

, e

f

) eliminates

12

Abstract Syntax

Ranges over ground
types (Int, Real, etc.).

Function and
dynamic types.

Symbolic type.
 Symbolic data type

(e.g., the equation above).

symbolic data. The value of e is matched against the pattern p. In the core language,
the patterns are non-recursive. Nested patterns within match constructs are compiled
into case expressions in the core language. The value of e

t

is returned on a successful
match and the value of e

f

is return on a unsuccessful match. Patterns can have three
different shapes: sym : ⌧ for symbols, x@x for matching symbolic applications, and
lift x :⌧ for values that have been lifted to become symbolic data. In the lift pattern
form, the variable x is a pattern variable and ⌧ a type tag.

There are three standard types and two new types for this language. The meta-
variable � ranges over all ground types G (e.g., booleans and integers), types of the
form ⌧!⌧ are function types, and ? is the dynamic type [28]. To categorize symbolic
data of type ⌧ , we introduce the type <⌧>. Also, D ranges over primitive symbolic data
types. There is a finite set of such types in a program. An example of a D type is the
type Equations discussed in Section 2.3.

Modelyze’s syntax for creating a symbol is defined by the following derived form

def x:⌧; e ⌘ (�x:<⌧>.e)⌫(⌧) (7)

The symbolic lifting analysis translates from �

<?> to �

<?>

L

, making explicit whether
an application is really a symbolic application and whether a value should be treated
as just a value, or as a symoblic value. Thus, �

<?>

L

has two new expressions: The
first expression e@ e is called a symbolic application, which is typed as a function
application, but is never applied. From a runtime perspective, a symbolic application
can be seen as a tuple with two elements. The second new expression lift e : ⌧ is a
lift expression that injects the value of e into the symoblic type <⌧>.

Example 3.1 (Symbolic Lifting). The following example shows a simple translation
from the surface language to the core language, symbolic lifting analysis, and how the
lifted expression is evaluated to a value. We assume the symbolic data type Equation
and the symbol for equations (=)

type Equations

def (=) : Real -> Real -> Equations

are defined in the environment. Then the expression

def x:Real;

x+5.0 = 2.0*3.0

in the surface language is translated into

(�x :<Real>.(=)((+) x 5.0)((*) 2.0 3.0)) ⌫(Real)

in the core language. The symbol lifting analysis (formalized in Section 3.3) lifts the
expressions into symbolic expressions, so that the new expression is well typed. For
example, (+) is of type Real!Real!Real, but x is of type <Real>. The SLA phase
is then lifting (+) to lift (+) : Real!Real!Real that now has symbolic type
<Real!Real!Real>. The result after applying SLA on subterm (+) x 5.0 is

(�x :<Real>.(=)(lift (+) :T1@x@(lift 5.0:Real))((*) 2.0 3.0)) ⌫(Real)

13

Standard expressions (var, lambda,
application, constant, error).

“new” creates a new fresh
symbol of type tau.

Case expression for
eliminating symbolic data.
Three forms of patterns.

Core

22

Part III 
Modelyze  
Demo"

broman@eecs.berkeley.edu

Part I"
Modelyze  
Overview"

Part II 
Formal  
Semantics"

Type Soundness

�

<?>

LC

(extends �

<?>

L

)

Expressions e += h⌧ (⌧ie | s :⌧

Figure 7: Abstract syntax of �<?>LC .

The abstract syntax for �

<?>

LC

is defined in Figure 7. A new expression h⌧2 (⌧1ie
for casts is defined, where the expression e is cast from source type ⌧1 to target type ⌧2.
Also we add an expression for the runtime representation of a symbol (s :⌧).

Cast insertion is defined by a four-place cast insertion relation

� `
C

e e

0
:⌧

where e is an expression in �

<?>

L

, e

0 an expression in �

<?>

LC

, ⌧ the resulting type, and
� the typing environment. The cast insertion relation is inductively defined by the
inference rules in Figure 8. The rules are, for the most part, a straightforward extension
to the standard cast insertion relation for gradual typing [28]. One interesting thing to
note is that, in rules (C-SAPP1) and (C-SAPP2), the function and argument are cast to
<?> because that is the type expected when a case expression decomposes a symbolic
application. The notion of well-typed expression for �

<?>

L

is defined in terms of the cast
insertion relation.

Definition 3 (Well-typed expression in �

<?>

L

). An expression e of �

<?>

L

is well typed
(typable) in typing environment � at type ⌧ if there exists e

0 such that � `
C

e e

0
:⌧ .

The symoblic lifting translation, defined in the previous section, preserves types. That
is, it translates well-typed expressions to well-typed expressions.

Proposition 3 (Symbolic Lifting Preserves Types). If � `
L

e e

0
: ⌧ then e

0 is well
typed in � at type ⌧ .

Proof. By induction on a derivation of � `
L

e e

0
: ⌧ . All the cases are straightfor-

ward.

Next we define the type system for �

<?>

LC

by a three-place typing relation

� ` e :⌧

where e is an expression in �

<?>

LC

, ⌧ its type, and � the typing environment. The typing
relation is inductively defined in Figure 9. It is a simple type system in the sense of the
simply-typed lambda calculus.

The cast insertion relation translates well-typed expressions to well-typed expres-
sions.

Proposition 4 (Cast Insertion Preserves Types). If � `
C

e e

0
:⌧ then � ` e

0
:⌧ .

Proof. The proof is a straightforward induction on the derivation of � `
C

e e

0
: ⌧ .

The cases for (C-CSYM), (C-CAPP), and (C-CLIFT) use Proposition 1.

20

�

<?>

LC

(extends �

<?>

L

)

Expressions e += h⌧ (⌧ie | s :⌧

Figure 7: Abstract syntax of �<?>LC .

The abstract syntax for �

<?>

LC

is defined in Figure 7. A new expression h⌧2 (⌧1ie
for casts is defined, where the expression e is cast from source type ⌧1 to target type ⌧2.
Also we add an expression for the runtime representation of a symbol (s :⌧).

Cast insertion is defined by a four-place cast insertion relation

� `
C

e e

0
:⌧

where e is an expression in �

<?>

L

, e

0 an expression in �

<?>

LC

, ⌧ the resulting type, and
� the typing environment. The cast insertion relation is inductively defined by the
inference rules in Figure 8. The rules are, for the most part, a straightforward extension
to the standard cast insertion relation for gradual typing [28]. One interesting thing to
note is that, in rules (C-SAPP1) and (C-SAPP2), the function and argument are cast to
<?> because that is the type expected when a case expression decomposes a symbolic
application. The notion of well-typed expression for �

<?>

L

is defined in terms of the cast
insertion relation.

Definition 3 (Well-typed expression in �

<?>

L

). An expression e of �

<?>

L

is well typed
(typable) in typing environment � at type ⌧ if there exists e

0 such that � `
C

e e

0
:⌧ .

The symoblic lifting translation, defined in the previous section, preserves types. That
is, it translates well-typed expressions to well-typed expressions.

Proposition 3 (Symbolic Lifting Preserves Types). If � `
L

e e

0
: ⌧ then e

0 is well
typed in � at type ⌧ .

Proof. By induction on a derivation of � `
L

e e

0
: ⌧ . All the cases are straightfor-

ward.

Next we define the type system for �

<?>

LC

by a three-place typing relation

� ` e :⌧

where e is an expression in �

<?>

LC

, ⌧ its type, and � the typing environment. The typing
relation is inductively defined in Figure 9. It is a simple type system in the sense of the
simply-typed lambda calculus.

The cast insertion relation translates well-typed expressions to well-typed expres-
sions.

Proposition 4 (Cast Insertion Preserves Types). If � `
C

e e

0
:⌧ then � ` e

0
:⌧ .

Proof. The proof is a straightforward induction on the derivation of � `
C

e e

0
: ⌧ .

The cases for (C-CSYM), (C-CAPP), and (C-CLIFT) use Proposition 1.

20

Lemma 1 (Inversion of Typing Relation).

1. If � ` x :⌧ then �(x) = ⌧ .
2. If � ` (s :⌧1) :⌧ then ⌧ = <⌧1>.
3. If � ` �x:⌧1.e2 :⌧ then there exists ⌧2 such that ⌧ = ⌧1!⌧2 and

�, x :⌧1 ` e2 :⌧2.
4. If � ` c :⌧ then �(c) = ⌧ .
5. If � ` ⌫(⌧1) :⌧ then ⌧ = <⌧1>.
6. If � ` (lift e1 :⌧1) :⌧ then ⌧ = <⌧1> and � ` e1 :⌧1.
7. If � ` e1 e2 :⌧ then there exists a ⌧11 such that � ` e1 :⌧11!⌧ and � ` e2 :⌧11.
8. If � ` e1@ e2 :⌧ then ⌧ = <?>, � ` e1 :<?>, and � ` e2 :<?>.
9. If � ` h⌧2 (⌧1ie1 :⌧ then ⌧ = ⌧2, � ` e1 :⌧1, and ⌧1 ⇠ ⌧2.

10. If � ` case(e1, sym :⌧4, e2, e3) :⌧ then there exists ⌧1 such that
� ` e1 :<⌧1>, � ` e2 :⌧ , and � ` e3 :⌧ .

11. If � ` case(e1, x1 @x2, e2, e3) :⌧ then there exists ⌧1 such that
� ` e1 :<⌧1> and �, x1 :<?>, x2 :<?> ` e2 :⌧ and � ` e3 :⌧ .

12. If � ` case(e1, lift x :⌧4, e2, e3) :⌧ then there exists ⌧1 such that
� ` e1 :<⌧1> and �, x :⌧4 ` e2 :⌧ and � ` e3 :⌧ .

Proof. By inspection of the definition of � ` e :⌧ .

The next lemma tell us the shape of a value, given its type:

Lemma 2 (Canonical Forms).

1. If � ` v :� then 9c 2 C. c = v.
2. If � ` v :⌧1!⌧2 then (9x e. (�x:⌧1.e) = v), (9c.c = v),

or (9⌧1 ⌧2 ⌧3 ⌧4 v

0
.h⌧1 ! ⌧2 (⌧3 ! ⌧4iv0 = v).

3. If � ` v : <⌧> then (9s. s : ⌧ = v) or (9v

0
. lift v

0
: ⌧ = v) or (9v1 v2. ⌧ =

<?> ^ v1@ v2 = v) or (9⌧

0
v

0
.h<⌧>(<⌧ 0

>iv0 = v).
4. If � ` v :? then 9�v

0
. v = h?(�iv0.

5. There are no values of type D. (But there are values of type <D>.)

We are now ready to state one of the main lemmas of the proof, that a well-typed
expression is either a value or we can take a step:

Lemma 3 (Progress). If ` e : ⌧ then e 2 Values , or for all S there exists S

0 and e

0

such that e | S �! e

0 | S

0, or e = error .

Proof. By induction on a derivation of ` e : ⌧ . Case (T-VAR) cannot occur, because e

is closed. In cases (T-SYM), (T-ABS), and (T-CONST) we have e 2 Values .
For case (T-ERROR), we immediately have e = error .
For case (T-NEWSYM), the expression reduces by (E-NEWSYM).
For case (T-APP), the induction hypothesis says that each subexpression either re-

duces, is a value, or is an error. The error cases are handled by reduction rule (E-
ERROR). If a subexpression reduces, the entire expression reduces by (E-CONG).
Otherwise, both subexpressions are values. The Canonical Forms Lemma then tells
us that the value in function position is either 1) a function, 2) a constant, or 3) a cast
between function types. If it’s a function, reduce by (E-BETA), if it’s a constant, reduce
by (E-DELTA), and finally, if its a cast, reduce by (E-CAST1).

27

If p = lift x : ⌧4, then by the Inversion lemma we have � ` v1 : ⌧1 and �, x :

⌧4 ` e2 : ⌧ . Also, because match(v1, lift x : ⌧4, e2, e
0
2), we have v1 = lift v

0
1 : ⌧1

and ⌧1 = ⌧4. By Inversion, we have � ` v

0
1 : ⌧1. So � ` �x:⌧1. e2 : ⌧1 ! ⌧ and we

can conclude that � ` (�x:⌧1. e2) v

0
1 : ⌧ .

Lemma 7 (Preservation). If � ` e :⌧ and e | S �! e

0 | S

0 then � ` e

0
:⌧ .

Proof. The proof is by induction on the reduction e | S �! e

0 | S

0. We first dispatch
the standard cases. The case for (E-BETA) follows from the Inversion, Canonical
Forms, and Substitution lemmas. The case for (E-DELTA) follows from the Inversion
and Canonical Forms lemmas and the �-typability assumption. The cast cases (E-
CAST1) through (E-CAST4) follow immediately from the Inversion lemma. For (E-
CAST5), note that the error expression can be assigned any type, so this case is trivial.

We now come to the cases that are unique to �

<?>

LC

. The case (E-NEWSYM) is
truly trivial. The (E-CASE-T) case follows from the Match Preservation lemma. The
(E-CASE-F) case is straightforward. The (E-CASE-C) case is unusual, but straight-
forward. This reduction removes a cast, which normally would not be guaranteed to
preserves types, but here the enclosing case expression is well-typed so long as the dis-
criminated expression has symbolic type, and indeed, v1 is of symbolic type. Finally,
the (E-CONG) case follows immediately from the induction hypothesis.

Theorem 1 (Type Safety of �

<?>). If `
L

e1 e2 : ⌧ then there exists an e3 such that
`
C

e2 e3 : ⌧ and (if e3 | S3 �!⇤
e4 | S4 then ` e4 : ⌧ and (e4 2 Values , or

e4 = error , or there exists e5 and S5 such that e4 | S4 �! e5 | S5)).

Proof. By applying Proposition 3, soundness of symbolic lifting, to `
L

e1 e2 :⌧ we
have `

C

e2 e3 :⌧ for some e3. Also, by soundness of cast insertion (Proposition 4),
we have ` e3 : ⌧ . By induction on a derivation of e | S �!⇤

e

0 | S

0 we have two
cases: In the base case (RTC-REFL) e = e

0 and we directly have ` e

0
:⌧ . By applying

Progress to ` e

0
: ⌧ we show that e

0 is a value, e

0 is an error, or there exists e

00 and S

00

such that e

0 | S

0 �! e

00 | S

00. For case (RTC-STEP) we have by induction hypothesis
` e

0
: ⌧ . Also, by applying Preservation to assumption e

0 | S

0 �! e

00 | S

00, we obtain
` e

00
:⌧ . By applying Progress to ` e

00
:⌧ we reach the conclusion.

4. Evaluation

In this section we evaluate the Modelyze approach in the context of creating embed-
ded equation-based modeling languages. The evaluation is divided into three units of
analysis, each representing a specific equation-based DSL. The relationship between
the DSLs are depicted in the following diagram

M-DAE

xx %%

M-EOO M-HC

29

23

Part III 
Modelyze  
Demo"

broman@eecs.berkeley.edu

Part I"
Modelyze  
Overview"

Part II 
Formal  
Semantics"

Part III
Modelyze Demo

24

Part III 
Modelyze  
Demo"

broman@eecs.berkeley.edu

Part I"
Modelyze  
Overview"

Part II 
Formal  
Semantics"

Conclusions

Thanks for listening!

Modelyze

Equation-based extensible modeling using an
embedded DSL approach.

Symbol lifting analysis (SLA) used to release the
annotation burden from the end user

Gradually typed symbols used for pattern matching and
DSL-level error reporting

See journal preprint:

David Broman and Jeremy G. Siek. Modelyze: a Gradually Typed Host Language for
Embedding Equation-Based Modeling Languages”, Preprint, Submitted to Science of
Computer Programming. Available as Tech. Report UCB/EECS-2012-173, University of
California, Berkeley, June, 2012.

Open source implementation: http://www.eecs.berkeley.edu/~broman/

