
High-Confidence Cyber-Physical Co-Design

David Broman

University of California, Berkeley, USA and Linköping University, Sweden
broman@eecs.berkeley.edu

1. INTRODUCTION
Cyber-physical systems (CPS) [4] are characterized by com-
bining computations, networks, and physical processes. En-
gineering cyber-physical systems is not new; high-end auto-
mobiles have for decades included complex embedded sys-
tems that interact with the physical environment. As an
intellectual discipline, however, CPS design poses both new
opportunities and challenges. The rapid development of a
CPS with high-confidence of its functional correctness is a
co-design problem—the design of the cyber part (embedded
control systems and networks) and the physical part influ-
ence each other. For instance, when designing an industrial
robot, the thickness of the robot arms changes the physical
behavior of the system; thinner arms have less inertia and
can move faster, but introduce more flexibility and spring
behavior, making the control algorithm harder to design.
As a consequence, to meet increasingly challenging system-
level objectives, the cyber and physical parts need to be
concurrently designed.

2. CO-DESIGN CHALLENGES
Today, model-based design is a well established approach
for the concurrent design of different parts of cyber-physical
systems. Complex systems can be virtually modeled using
languages and tools such as Modelica [6], Ptolemy II [3],
and Matlab/Simulink. To achieve high-confidence co-design,
however, there are two major challenges.

Firstly, the modeling languages and tools must be expres-
sive enough to capture the dynamic semantics of the mod-
eled system. Expressiveness is easy to achieve if no consid-
eration is taken to the possibility of analyzing the model; an
ANSI C program can model the dynamics of a very com-
plex system, but is formally hard to analyze. Simulation is
one form of analysis, where properties are checked by test-
ing, but full coverage is often not possible. Formal verifica-
tion, such as model checking [2], can prove properties of the
model, but requires a less expressive model of computation
(MoC). The challenge is to provide both expressiveness and
analyzability.

Secondly, a necessary condition for high-confidence of CPSs
is high model fidelity, meaning that the model accurately
imitates the real system. The problem is to automatically
synthesize the model’s cyber parts, such that the simulated
model and the behavior of the real running system coincide.
Synthesizing the functional behavior can be done today; the
main challenge is to guarantee the preservation of the timing
behavior.

3. OUR APPROACH
We propose an integrated language and compiler based ap-
proach to address these challenges. Our work is based on
an extensible host language called Modelyze [1] (MODEl
and anaLYZE), where various MoCs may be embedded as
domain-specific languages (DSLs). The key aspect of our ap-
proach is that both the definition of the DSL and the CPS
models are defined within the same language—Modelyze.
We are currently evaluating this embedded DSL approach
for encoding different MoCs as well as how formal verifica-
tion can be encoded in the same framework. As a conse-
quence, we address the combined expressiveness-analyzabi-
lity problem by enabling extensibility within the language; if
certain semantics cannot be described within the framework,
a user may embed a new DSL with the desired properties.

The second part of our approach concerns high-confidence
model synthesis. In another project within our research
group, we are developing a Precision Timed (PRET) infras-
tructure, including an intermediate language and an ARM-
based PRET machine [5] with thread interleaved pipeline
and scratchpad memories for predictability. Our objective
is, within Modelyze libraries, to define both functional and
timing semantics as a translation from a Modelyze DSL to
a PRET intermediate language. We intend to evaluate our
approach in the mechatronics domain, where both the model
of the physical plant and the control system are defined in
Modelyze.

Project funding: Swedish Research Council #623-2011-955.

4. REFERENCES
[1] D. Broman and J. G. Siek. Modelyze: a gradually typed host

language for embedding equation-based modeling languages.
Technical Report UCB/EECS-2012-173, EECS Department,
University of California, Berkeley, June 2012.

[2] E. M. Clarke. Model checking. In Foundations of software
technology and theoretical computer science, pages 54–56.
Springer, 1997.

[3] J. Eker, J. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig,
S. Sachs, and Y. Xiong. Taming heterogeneity - the Ptolemy
approach. Proceedings of the IEEE, 91(1):127–144, 2003.

[4] E. A. Lee. Cyber Physical Systems: Design Challenges. In
Proc. of the 11th Symposium on Object Oriented Real-Time
Distributed Computing, pages 363–369. IEEE, 2008.

[5] I. Liu, J. Reineke, D. Broman, M. Zimmer, and E. A. Lee. A
PRET Microarchitecture Implementation with Repeatable
Timing and Competitive Performance. In Proc. of the 30th
IEEE International Conference on Computer Design. IEEE,
2012.

[6] Modelica Association. Modelica - A Unified Object-Oriented
Language for Physical Systems Modeling - Language
Specification Version 3.3, 2012.


