
David BromanDavid Broman

Department of Computer and Information Science
Linköping University, Sweden

david.broman@ida.liu.se

Extensible Modeling Languages

Utilizing Libraries for Model Creation, Use,
and Domain-Specific Extensions

5th MODPROD Workshop on Model-Based Product Development

February 8, 2011

2

David Broman
david.broman@liu.se

Part I

Expressiveness

Part II

Extensibility

Part III

Formalization

Equation-Based Object-Oriented (EOO)
Languages

Equation-Based
Object-Oriented

(EOO)

Domain-Specific
Language (DSL)

• Primarily domain:
Modeling of physical
systems

Models and Objects

• Object in e.g., Java, C++:
object = data + methods

• Multiple physical domains:
e.g., mechanical, electrical,
hydraulic

• Objects in EOO languages:
object = data + equations

Acausality

• At the equation-level
u = R * i

• At the object connection level

• Modelica
• VHDL-AMS
• gPROMS

3

David Broman
david.broman@liu.se

Part I

Expressiveness

Part II

Extensibility

Part III

Formalization

Agenda

Part I
Expressiveness

Part II
Extensibility

Part III
Formalization

4

David Broman
david.broman@liu.se

Part I

Expressiveness

Part II

Extensibility

Part III

Formalization

Expressiveness

Expressiveness – ease and possibility of expressing complex
models or tasks

A, v1.0 A, v1.1 A, v2.0 A, v2.2Language versions:

L, v1.0 L, v1.1 L, v2.0 L, v2.2
Standard library
versions:

5

David Broman
david.broman@liu.se

Part I

Expressiveness

Part II

Extensibility

Part III

Formalization

Extensibility

Uses

• Simulation

• Optimization
• Code generation for real-time
• Model export
• Grey-box system identification
etc.

A, v1.0 A, v1.1 A, v2.0 A, v2.2

gives larger and more complex languages

B, v1.0 A, v1.1

C, v1.0

gives many dialects and different
languages

Extensibility – mechanisms to add new language features

6

David Broman
david.broman@liu.se

Part I

Expressiveness

Part II

Extensibility

Part III

Formalization

Formalization

Language Specifications of state-of-the-art are informally defined

• hard to interpret unambiguously when developing compilers

• hard to reason about when extending the language

Formalization – precise semantics “meaning” of the language

• hard to formalize e.g. Modelica due to size and complexity

7

David Broman
david.broman@liu.se

Part I

Expressiveness

Part II

Extensibility

Part III

Formalization

What is MKL?

Modeling Kernel Language
(MKL)

Purpose: Research language –
explore new concepts

Bottom-up approach

Precise formal semantics

Small extensible language

Base it on a proven foundation
– the lambda calculus

Platform for experimental equation-based DSLs
(Continuous-time, hybrid, structural dynamic,
and acusal models)

Statically typed functional language

8

David Broman
david.broman@liu.se

Part I

Expressiveness

Part II

Extensibility

Part III

Formalization

Part I

Expressiveness

9

David Broman
david.broman@liu.se

Part I

Expressiveness

Part II

Extensibility

Part III

Formalization

Expressiveness - HOAM

Higher-Order

Functions

I.e. first class citizens,
can be passed around
as any value

+

Acausal Models

Models in EOO
languages,
composing DAEs and
other interconnected
models.

=

Higher-Order

Acausal Models

I.e., first class
acausal models.

Higher-Order Acusal Models (HOAM)

10

David Broman
david.broman@liu.se

Part I

Expressiveness

Part II

Extensibility

Part III

Formalization

HOAM – Example

Example of a mechatronic system with a DC motor and a flexible shaft

One shaft element is
created by standard

components.

11

David Broman
david.broman@liu.se

Part I

Expressiveness

Part II

Extensibility

Part III

Formalization

HOAM – Example

Example of a mechatronic system with a DC motor and a flexible shaft

Higher-order function that can
compose any mechanical
component in series

12

David Broman
david.broman@liu.se

Part I

Expressiveness

Part II

Extensibility

Part III

Formalization

Part II

Extensibility

13

David Broman
david.broman@liu.se

Part I

Expressiveness

Part II

Extensibility

Part III

Formalization

Modelica Environment

Modelica Model

Model

Library
Model
Library

Model

Library

Modelica

Tool

Result

(e.g., simulation)

Language Specification
- Type checking
- Collapsing the instance hierarchy

- Connection Semantics
- Simulation (Runtime)

14

David Broman
david.broman@liu.se

Part I

Expressiveness

Part II

Extensibility

Part III

Formalization

Language Specification
- Type checking
- Collapsing the instance hierarch

MKL Environment

MKL Model

Model

Library
Model
Library

Model

Library

MKL

Tool

Result

(e.g., simulation)

Language Specification
- Type checking

- Collapsing the instance hierarchy
- Connection Semantics

- Simulation (Runtime)

Library for using models
- Connection Semantics
- Simulation (Runtime)

Library for using models
- Connection Semantics
- Simulation (Runtime)

Library for using models
- Connection Semantics
- Simulation (Runtime)

Benefits
• Tool vendors – no need to update tool after lib ext.

• Library developer - less dependent on tool vendors

• A model behaves the same way in different tools

15

David Broman
david.broman@liu.se

Part I

Expressiveness

Part II

Extensibility

Part III

Formalization

Intensional Analysis and Model Lifting

Static Semantics

Type Checking

Model Lifting

Lifted Model

Collapsed using evaluation

Lifted Model

Equation System

Analysis, models treated as data.
Connection Semantics,

Simulation, etc.

Result

Dynamic Semantics

MKL Model

16

David Broman
david.broman@liu.se

Part I

Expressiveness

Part II

Extensibility

Part III

Formalization

Part III

Formalization

17

David Broman
david.broman@liu.se

Part I

Expressiveness

Part II

Extensibility

Part III

Formalization

Language Specification
- Type checking
- Collapsing the instance hierarch

Formalization of Semantics

MKL Model

Model

Library
Model
Library

Model

Library

MKL

Tool

Result

(e.g., simulation)

Library for using models
- Connection Semantics
- Simulation (Runtime)

Library for using models
- Connection Semantics
- Simulation (Runtime)

Library for using models
- Connection Semantics
- Simulation (Runtime)

Static Type System

Small-step
Operational Semantics

Formalization of
Connection Semantics

Executable
Specifcation

18

David Broman
david.broman@liu.se

Part I

Expressiveness

Part II

Extensibility

Part III

Formalization

How do we verify our solution?

Prototype
Implementation

Type Safety
Proof

Two main lemmas
• Progress

• Preservation

19

David Broman
david.broman@liu.se

Part I

Expressiveness

Part II

Extensibility

Part III

Formalization

Conclusions

Expressivness

(HOAM)

Extensibility

(Library Approach)

Formalization

(Operational Semantics)

Thanks for listening!

Modeling Kernel Language (MKL)

