Algorithms for Solving Higher Index DAEs

Lecture 12b in EECS 144/244

University of California, Berkeley November 12 and November 14, 2013

David Broman

broman@eecs.berkeley.edu

EECS Department
University of California, Berkeley, USA
and
Linköping University, Sweden

Agenda

2

broman@eecs.berkeley.edu

Part I DAE Basics

Part II

Matching

Part III

BLT Sorting

Part IV

Pantelides

Part V

Dummy Derivatives

Part I

DAE Basics

Part II Matching Part III BLT Sorting Part IV Pantelides Part V
Dummy Derivatives

DAE

broman@eecs.berkeley.edu

4

System of Differential algebraic equation (DAE) in general form:

$$F(x, \dot{x}, y, t) = 0$$

where $x \in \mathbb{R}^n, \dot{x} \in \mathbb{R}^n, y \in \mathbb{R}^m, F : G \subseteq \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R} \to \mathbb{R}^{n+m}$.

We have *n* number of variables that appear differentiated

We have *m* number of variables that *do not* appear differentiated

We have *n*+*m* number of equations

$$\dot{x} = -x$$
$$x(0) = 1$$

$$x = -x + y$$
$$x^2 + y^2 = 10$$

1 variable *x* is differentiated 1 variable *y* is not differentiated

2 equations

ODE, initial value problem (IVP)

Is this an ODE or an DAE?

Part I DAE Basics Part II Matching Part III BLT Sorting Part IV Pantelides

$$\dot{x} = -x + y$$

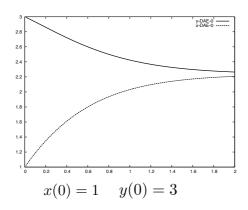
$$x^2 + y^2 = 10$$

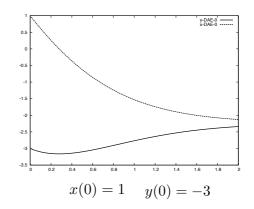
Is it an initial value problem (IVP)?

What should the initial value for y be?

$$x(0) = 1$$
$$y(0) = 3$$

We need to find consistent initial values. Note that y(0) = -3 is also a consistent initial value.





Part I DAE Basics Part II Matching Part III BLT Sorting Part IV Pantelides Part V
Dummy Derivatives

DAE, Example 1

6

broman@eecs.berkeley.edu

$$\dot{x} = -x + y$$
$$x^2 + y^2 = 10$$

Can we find an order that can solve these equations?

Yes, in each step:

- 1. Solve for *y* in equation (2). x is known.
- 2. Solve for x' in equation (1). Now both x and y are known.

In this case, we can actually symbolically transform this into an ODE directly.

$$\dot{x} = -x + \sqrt{10 - x^2}$$

(note that the DAE is nonlinear, and we here just selected one solution)

Part I DAE Basics Part II Matching Part III BLT Sorting Part IV Pantelides

$$\dot{x} = -x + y - z$$

$$z = x^{2} + y^{2}$$

$$z = x + x * y$$

Is this an DAE?

Can we find an order that can solve these equations?

Yes, one differentiated variable (x) and two algebraic variables (y and z)

No, equations 2 and 3 are algebraically dependent on each other.

 $\dot{x} = f(x, y, t)$ 0 = g(x, y, t)

This is called the semi-explicit form of an DAE

1. Solve (nonlinear) algebraic equations

- Solution (in each time step)
- 2. Solve differentiated variables

Part I

DAE Basics

Part II
Matching

Part III BLT Sorting Part IV
Pantelides

Part V
Dummy Derivatives

DAE Index

8

broman@eecs.berkeley.edu

<u>Definition</u>: The index of an DAE is the minimum number of times that all or part of the DAE must be differentiated with respect to *t* in order to determine *x*' as a continuous function of *x* and *t*.

(Brenan, Campbell, Petzold, 1989)

$$\dot{x} = -x + y$$
$$x^2 + y^2 = 10$$

Our first example was an index 0 DAE. No differentiation is need to obtain an ODE. An ODE has also index 0.

$$\dot{x} = -x + y - z$$

$$z = x^2 + y^2$$

$$z = x + x * y$$

Example two has an algebraic loop, and the two algebraic equations are non-singular. Example of an index 1 DAE.

Note that you can differentiate parts of the equation system once (equations (2) and (3)) to obtain an ODE. (Not recommended for numerical stability)

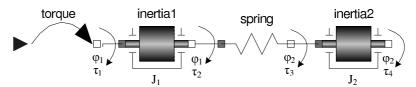
We will soon see examples where a system of equation is singular. These may be *higher-index DAEs (index > 1)*.

Part I
DAE Basics

Part II Matching Part III BLT Sorting Part IV Pantelides

Drive Shaft Example

broman@eecs.berkeley.edu

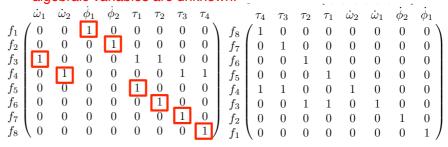


Is this an DAE?

$$\dot{\varphi}_1 = \omega_1
\dot{\varphi}_2 = \omega_2
\dot{\omega}_1 = \frac{\tau_1 + \tau_2}{J_1}
\dot{\omega}_2 = \frac{\tau_3 + \tau_4}{J_2}
\tau_1 = u
\tau_2 = c \cdot (\varphi_2 - \varphi_1)
\tau_3 = -c \cdot (\varphi_2 - \varphi_1)$$

Index-0 DAE (by substitution we get directly an ODE) Variables: $(\varphi_1, \varphi_2, \omega_1, \omega_2, \tau_1, \tau_2, \tau_3, \tau_4)$ Appearing differentiated: $(\dot{\varphi}_1, \dot{\varphi}_2, \dot{\omega}_1, \dot{\omega}_2)$

Incidence matrix. Differentiated variables and the algebraic variables are unknown.



Matching: Find a unique mapping between variables and equations.

Sorting: Sort equations (permute matrix)

Part I DAE Basics Part II Matching Part III BLT Sorting Part IV Pantelides Part V
Dummy Derivatives

10

broman@eecs.berkeley.edu

Part II

Matching

broman@eecs.berkeley.edu

Example: Matching

System of equations

$$f_1(y) = 0$$

$$f_2(\dot{x}_1, \dot{x}_2, y) = 0$$

$$f_3(\dot{x}_2) = 0$$

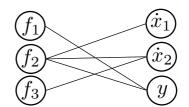
Construct a bipartite graph

G = (F, V, E)

$$F = \{f_1, f_2, f_3\} \quad E = \{(f_1, y), (f_2, \dot{x}_1), V = \{\dot{x}_1, \dot{x}_2, y\} \quad (f_2, \dot{x}_2), (f_2, y), \{f_3, \dot{x}_2\}\}$$

Incidence Matrix

$$\begin{array}{cccc}
\dot{x}_1 & \dot{x}_2 & y \\
f_1 & 0 & 0 & 1 \\
f_2 & 1 & 1 & 1 \\
f_3 & 0 & 1 & 0
\end{array}$$



Part I DAE Basics Part II
Matching

Part III BLT Sorting Part IV Pantelides Part V
Dummy Derivatives

Algorithm: Matching

12

broman@eecs.berkeley.edu

 $\begin{array}{c|c} \operatorname{MATCH}(G) & \operatorname{\textbf{Color visited vertices}} \\ 1 & assign \leftarrow \emptyset \\ 2 & \text{for each } f \in G.F \\ 3 & \text{\textbf{do }} C \leftarrow \emptyset \\ 4 & \text{\textbf{if not MATCH-EQUATION}}(G, f, \underline{C}, \underbrace{assign}, \emptyset) \\ 5 & \text{\textbf{then return }} (\operatorname{FALSE}, assign) \\ 6 & \text{\textbf{return }} (\operatorname{TRUE}, assign) \end{array}$

Assigns variables to equations

 $assign[v] = \left\{ \begin{array}{ll} f & \text{if } f \text{ matches } v \\ \text{NIL} & \text{otherwise} \end{array} \right.$

Underline means call by reference.

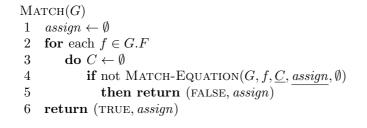
vmap and *equation coloring* is not used until in Part IV.

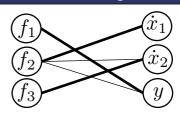
```
MATCH-EQUATION(G, f, \underline{C}, assign, vmap) \leftarrow
  1 C \leftarrow C \cup \{f\}
      if there exits a v \in G.V such that (f, v) \in G.E
  3
         and assign[v] = NIL and vmap[v] = NIL
  4
         then assign[v] \leftarrow f
  5
                return TRUE
  6
         else for each v where (f, v) \in G.E and v \notin C
  7
                and vmap[v] = NIL
  8
                    do C \leftarrow C \cup \{v\}
  9
                        if MATCH-EQUATION(G, assign[v], \underline{C}, assign, vmap)
10
                           then assign[v] \leftarrow f
                                  return TRUE
11
12
    return FALSE
```

Part I DAE Basics Part II Matching Part III BLT Sorting Part IV Pantelides

Example: Matching

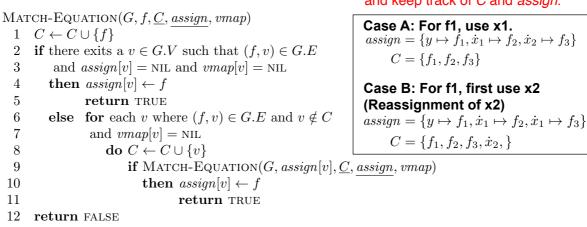
broman@eecs.berkeley.edu





Exercise

Do each step of the algorithms and keep track of *C* and *assign*.



DAE Basics

Part I

Part III BLT Sorting Part IV Pantelides Part V
Dummy Derivatives

Example: Matching

14

broman@eecs.berkeley.edu

System of equations

$$f_1(y) = 0$$

$$f_2(\dot{x}_1, \dot{x}_2, y) = 0$$

$$f_3(\dot{x}_2) = 0$$



Incidence Matrix

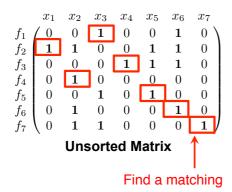
$$\begin{array}{cccc}
\dot{x}_1 & \dot{x}_2 & y \\
f_1 & 0 & 0 & 1 \\
f_2 & 1 & 1 & 1 \\
f_3 & 0 & 1 & 0
\end{array}$$

We may now permute the matrix

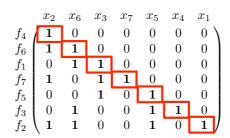
$$\begin{array}{cccc}
\dot{x}_2 & y & \dot{x}_1 \\
f_3 & 1 & 0 & 0 \\
f_1 & 0 & 1 & 0 \\
f_2 & 1 & 1 & 1
\end{array}$$

The matching problem solves the problem of finding a permutation such that the matrix has a nonzero diagonal. Also called *maximum traversal*.

16



But, we cannot always permute the matrix into lower triangular form...



Sorting (permutation of Matrix) into Lower Triangular Matrix Form

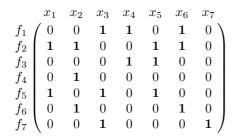
We now have a causal form; solving the equation system is straight forward.

An DAE (or ODE) in Lower triangular matrix form is index 1.

Part I DAE Basics Part II
Matching

Part III BLT Sorting Part IV Pantelides Part V
Dummy Derivatives

Sorting into Block Lower Triangular (BLT) Form



Another unsorted Matrix

 x_2 x_6 x_3 x_5 x_1 x_4 x_7 0 0 0 0 0 0 0 0 f_6 1 1 00 0 f_1 1 1 0 1 0 0 0 0 f_5 1 0 1 0 0 f_2 1 0 0 0 f_3 1 0 1 f_7

Sorting (permutation of Matrix) into Block Lower Triangular (BLT) Form

We have identified an algebraic loop.

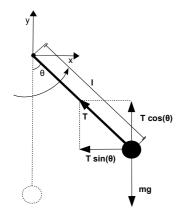
In part III we discuss a BLT sorting algorithm

At each time step, the algebraic loops may be solved using Guassian elimination (if linear) or a Newton's method (if nonlinear).

An DAE in BLT form with algebraic loops (structurally non-singular) is Index 1

Part I DAE Basics Part II Matching Part III BLT Sorting

Part IV Pantelides



Is this an DAE? Can we solve it? Can we create BLT?

IDEA: Symbolically differentiate equations to get derivatives.

Pendulum in Cartesian coordinate system

$$-T \cdot \frac{x}{l} = m\ddot{x}$$

$$-T \cdot \frac{y}{l} - mg = m\ddot{y}$$

$$x^{2} + y^{2} = l^{2}$$

Simplified using

$$-T/l = \lambda$$
$$m = 1$$
$$l^2 = L$$

Simplified

$$\ddot{x} = \lambda \cdot x$$
$$\ddot{y} = \lambda \cdot y - g$$
$$x^{2} + y^{2} = L$$

Rewritten in first order

$$\dot{x} = u$$

$$\dot{y} = v$$

$$\dot{u} = \lambda \cdot x$$

$$\dot{v} = \lambda \cdot y - g$$

$$x^{2} + y^{2} = L$$

Incidence Matrix

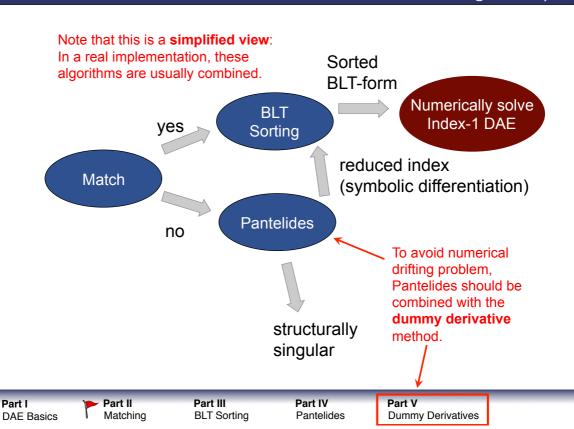
No, we cannot find a matching (see f₅). This is a higher-index problem (index > 1).

How should we determine which equations to differentiate. Solution: Pantelides Algorithm

Part I **DAE Basics** Part II Matching Part III **BLT Sorting** Part IV Pantelides

Dummy Derivatives

How the algorithms fit together (simplified)



Part III

BLT Sorting

Part I DAE Basics Part II Matching Part III
BLT Sorting

Part IV Pantelides Part V
Dummy Derivatives

Algorithm: BLT Sort

20

broman@eecs.berkeley.edu

```
Input: a bipartite graph G
BLT(G)
      (match, assign) \leftarrow Match(G)
  2
      if not match
  3
         then return error "Singular"
  4
     D.V \leftarrow G.F
  5
  6
      D.E \leftarrow \emptyset
      for each (f, v) \in G.E where f \in G.F and assign[v] \neq f
  7
  8
          do D.E \leftarrow D.E \cup \{(assign[v], f)\}
  9
10
      MAKEEMPTY(O)
11
      MAKEEMPTY(S)
12 i \leftarrow 0
13
     lowlink \leftarrow \emptyset
     number \leftarrow \emptyset
14
15
      for each v \in D.V
16
          do if number[v] = NIL
                  then StrongConnect(v, D, \underline{S}, \underline{i}, \underline{lowlink}, \underline{number}, \underline{O})
17
     return O
                       Output: a stack of sets of equation vertices, where each set
                       represents an equation block in the BLT matrix.
```

Part I DAE Basics Part II Matching Part III
BLT Sorting

Part IV Pantelides

 $\operatorname{BLT}(G)$ Input: a bipartite graph G

- 1 $(match, assign) \leftarrow MATCH(G)$ Part 1
- 2 **if** not *match* Find matching
- 3 then return error "Singular"
 - $D.V \leftarrow G.F$
- 6 $D.E \leftarrow \emptyset$ Construct equation
- 7 for each $(f, v) \in G.E$ where $f \in G.F$ and $assign[v] \neq f$ dependency graph
- 8 **do** $D.E \leftarrow D.E \cup \{(assign[v], f)\}$
- 9 10 Makeempty(O)
- 11 MAKEEMPTY(S)
- 12 $i \leftarrow 0$

4

5

- 13 $lowlink \leftarrow \emptyset$
- 14 $number \leftarrow \emptyset$
- 15 **for** each $v \in D.V$
- do if number[v] = NIL
- then STRONGCONNECT $(v, D, \underline{S}, \underline{i}, lowlink, number, \underline{O})$
- 18 return O

Output: a stack of sets of equation vertices, where each set represents an equation block in the BLT matrix.

Part I DAE Basics Part II Matching Part III
BLT Sorting

Part IV Pantelides Part V
Dummy Derivatives

Part 3

algorithm

Sort into blocks of

equations using

Tarjan's strongly

connected component

Example: BLT Sort

broman@eecs.berkeley.edu

22

 \dot{x}_2 \dot{x}_3 \dot{x}_4 y_1 y_2 0 1 f_1 f_2 0 1 1 0 0 0 f_3 f_4 1 0 1 0 0 f_5 0 0 0 1

$$G = (F, V, E)$$

$$F = \{f_1, f_2, f_3, f_4, f_5, f_6\}$$

$$V = \{\dot{x}_1, \dot{x}_2, \dot{x}_3, \dot{x}_4, y_1, y_2\}$$

In Part 1 of BLT - matching

- 1 $(match, assign) \leftarrow MATCH(G)$
- 2 **if** not match
- 3 then return error "Singular"

Returns TRUE (steps omitted) with assignment

$$assign = \{\dot{x}_1 \mapsto f_2, \dot{x}_2 \mapsto f_3, \dot{x}_3 \mapsto f_6, \dot{x}_4 \mapsto f_1, y_1 \mapsto f_4, y_2 \mapsto f_5\}$$

```
Input: a bipartite graph G
BLT(G)
  1
     (match, assign) \leftarrow Match(G)
     if not match
  3
        then return error "Singular"
  4
     D.V \leftarrow G.F
  5
                                                                       Part 2
     D.E \leftarrow \emptyset
  6
                                                                       Construct equation
     for each (f, v) \in G.E where f \in G.F and assign[v] \neq f dependency graph
 7
 8
          do D.E \leftarrow D.E \cup \{(assign[v], f)\}
  9
10
     MAKEEMPTY(O)
11
     MAKEEMPTY(S)
12
     i \leftarrow 0
13
     lowlink \leftarrow \emptyset
     number \leftarrow \emptyset
14
     for each v \in D.V
15
16
         do if number[v] = NIL
                then STRONGCONNECT(v, D, S, i, lowlink, number, O)
17
18 return O
                     Output: a stack of sets of equation vertices, where each set
                     represents an equation block in the BLT matrix.
      Part I
                         Part II
                                         Part III
                                                           Part IV
                                                                            Part V
```

BLT Sorting

Pantelides

Example: BLT Sort

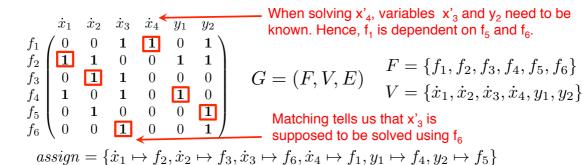
Matching

DAE Basics

broman@eecs.berkeley.edu

24

Dummy Derivatives



In Part 2 of BLT – construct equation dependency graph (digraph)

5
$$D.V \leftarrow G.F$$

6
$$D.E \leftarrow \emptyset$$

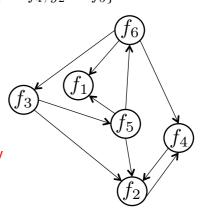
7 **for** each $(f, v) \in G.E$ where $f \in G.F$ and $assign[v] \neq f$ 8 **do** $D.E \leftarrow D.E \cup \{(assign[v], f)\}$

$$D = (V, E)$$

$$V = \{f_1, f_2, f_3, f_4, f_5, f_6\}$$

Exercise

$$E = \{ f_2 \mapsto f_4, f_3 \mapsto f_2, f_3 \mapsto f_5, f_4 \mapsto f_2, f_5 \mapsto f_1, f_5 \mapsto f_2, f_5 \mapsto f_6, f_6 \mapsto f_1, f_6 \mapsto f_3, f_6, \mapsto f_4 \}$$



Part I DAF Basics Part II Matching Part III
BLT Sorting

Part IV Pantelides

Algorithm: BLT Sort

```
Input: a bipartite graph G
BLT(G)
  1
      (match, assign) \leftarrow Match(G)
      if not match
  3
        then return error "Singular"
  4
  5
     D.V \leftarrow G.F
  6
     D.E \leftarrow \emptyset
  7
     for each (f, v) \in G.E where f \in G.F and assign[v] \neq f
  8
         do D.E \leftarrow D.E \cup \{(assign[v], f)\}
  9
10
     MAKEEMPTY(O)
                                                                       Part 3
11
     MAKEEMPTY(S)
                                                                       Sort into blocks of
12
     i \leftarrow 0
                                                                       equations using
13
    lowlink \leftarrow \emptyset
                                                                       Tarjan's strongly
     number \leftarrow \emptyset
                                                                       connected component
     for each v \in D.V
15
                                                                       algorithm
16
         do if number[v] = NIL
                then STRONGCONNECT(v, D, S, i, lowlink, number, O)
17
 18
     return O
                     Output: a stack of sets of equation vertices, where each set
                     represents an equation block in the BLT matrix.
      Part I
                         Part II
                                         Part III
                                                            Part IV
                                                                             Part V
      DAE Basics
                         Matching
                                         BLT Sorting
                                                            Pantelides
                                                                             Dummy Derivatives
```

Algorithm: StrongConnect (Tarjan)

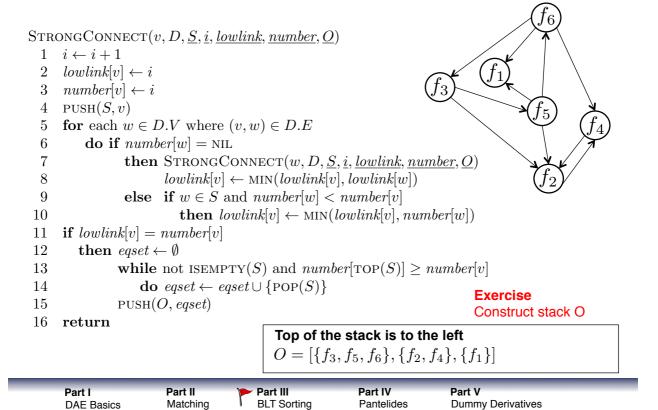
26

broman@eecs.berkeley.edu

```
STRONGCONNECT(v, D, \underline{S}, \underline{i}, \underline{lowlink}, \underline{number}, \underline{O})
      i \leftarrow i + 1
      lowlink[v] \leftarrow i
  3
      number[v] \leftarrow i
      PUSH(S, v)
  4
       for each w \in D.V where (v, w) \in D.E
  5
  6
            do if number[w] = NIL
  7
                    then StrongConnect(w, D, \underline{S}, \underline{i}, \underline{lowlink}, \underline{number}, \underline{O})
  8
                            lowlink[v] \leftarrow MIN(lowlink[v], lowlink[w])
  9
                    else if w \in S and number[w] < number[v]
                               then lowlink[v] \leftarrow \min(lowlink[v], number[w])
 10
 11
       if lowlink[v] = number[v]
          then eqset \leftarrow \emptyset
 12
                  while not ISEMPTY(S) and number[TOP(S)] \ge number[v]
 13
                       do eqset \leftarrow eqset \cup \{POP(S)\}
 14
 15
                  PUSH(O, eqset)
 16
      return
```

Algorithm: StrongConnect (Tarjan)

broman@eecs.berkeley.edu



Example: BLT Sort

28

broman@eecs.berkeley.edu

Part I DAE Basics

1

0

0

 f_2

 f_4

1

0

1

0

1

1

Part II Matching

1

1

1

1

0

Part III
BLT Sorting

Part IV Pantelides

Part IV

Pantelides

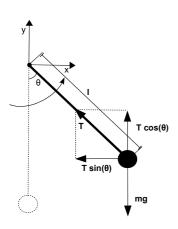
Part I DAE Basics Part II Matching Part III BLT Sorting Part IV
Pantelides

Part V
Dummy Derivatives

Example: Pendulum

30

broman@eecs.berkeley.edu



Pendulum in Cartesian coordinate system

$$-T \cdot \frac{x}{l} = m\ddot{x}$$

$$-T \cdot \frac{y}{l} - mg = m\ddot{y}$$

$$x^{2} + y^{2} = l^{2}$$

Rewritten in first order

$$\dot{x} = u$$

$$\dot{y} = v$$

$$\dot{u} = \lambda \cdot x$$

$$\dot{v} = \lambda \cdot y - g$$

$$x^{2} + y^{2} = L$$

Simplified using Simplified

$$\begin{array}{ccc}
-T/l = \lambda & & \ddot{x} = \lambda \cdot x \\
m = 1 & & \ddot{y} = \lambda \cdot y - g \\
l^2 = L & & x^2 + y^2 = L
\end{array}$$

Incidence Matrix

Part I DAE Basics Part II Matching Part III BLT Sorting Part IV Pantelides

System of equations

$$\dot{x} = u$$

$$\dot{y} = v$$

$$\dot{u} = \lambda \cdot x$$

$$\dot{v} = \lambda \cdot y - g$$

$$x^{2} + y^{2} = L$$

$$\dot{x} = u
\dot{y} = v
\dot{u} = \lambda \cdot x
\dot{v} = \lambda \cdot y - g
x^2 + y^2 = L$$

$$f_1(\dot{x}, u) = 0
f_2(\dot{y}, v) = 0
f_3(\dot{u}, \lambda, x) = 0
f_4(\dot{v}, \lambda, y) = 0
f_5(x, y) = 0$$

Note that we include both differentiated and not differentiated variables.

Construct a bipartite graph

$$G = (F, V, E)$$

$$F = \{f_1, f_2, f_3, f_4, f_5\}$$

$$V = \{x, y, u, v, \dot{x}, \dot{y}, \dot{u}, \dot{v}, \lambda\}$$

$$E = \{(f_1, \dot{x}), (f_1, u),$$

$$(f_2, \dot{y}), (f_2, v),$$

$$(f_3, \dot{u}), (f_3, \lambda), (f_3, x),$$

$$(f_4, \dot{v}), (f_4, \lambda), (f_4, y),$$

$$(f_5, x), (f_5, y)\}$$

Part I **DAE Basics** Part II Matching Part III **BLT Sorting** Part IV Pantelides Part V **Dummy Derivatives**

Pendulum

broman@eecs.berkeley.edu

32

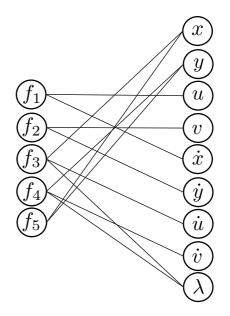
$$f_1(\dot{x}, u) = 0$$

$$f_2(\dot{y}, v) = 0$$

$$f_3(\dot{u}, \lambda, x) = 0$$

$$f_4(\dot{v}, \lambda, y) = 0$$

$$f_5(x, y) = 0$$



broman@eecs.berkeley.edu

 $\begin{array}{ccc} \text{Pantelides}(G, \underline{\mathit{vmap}}, \underline{\mathit{eqmap}}) \\ 1 & assign \leftarrow \emptyset \\ 2 & \textbf{for } \operatorname{each} e \in G.F \\ 3 & \textbf{do} & f \leftarrow e \\ 4 & \textbf{repeat} \\ 5 & C \leftarrow \emptyset \end{array}$

Mapping variables to differentiated variables

$$vmap[v] = \begin{cases} v' & \text{if } \frac{dv}{dt} = v'\\ \text{NIL} & \text{otherwise} \end{cases}$$

Mapping equations to their differentiated version

$$eqmap[f] = \left\{ \begin{array}{ll} f' & \text{if } \frac{df}{dt} = f' \\ \text{NIL} & \text{otherwise} \end{array} \right.$$

```
6
                        match \leftarrow MATCH-EQUATION(G, f, \underline{C}, assign, vmap)
 7
                        if not match
                           then for each v \in C where v \in G.V
 8
 9
                                       do let v' be a vertex, such that v' \notin G.V
10
                                           vmap[v] \leftarrow v'
                                           G.V \leftarrow G.V \cup \{v'\}
11
                                  for each f \in C where f \in G.F
12
                                      do let f' be a vertex, such that f' \notin G.F
13
                                           eqmap[f] \leftarrow f'
14
                                           G.F \leftarrow G.F \cup \{f'\}
15
                                           for each v \in G.V where (f, v) \in G.E
16
                                               \textbf{do} \ G.E \leftarrow G.E \cup \{(f',v), (f',vmap[v])\}
17
18
                                  for each v \in C where v \in G.V
                                       \mathbf{do} \; assign[vmap[v]] \leftarrow eqmap[assign[v]] Assigns variables to equations
19
20
                                  f \leftarrow eqmap[f]
21
                 until match
                                                                                                               if f matches v
22
    return assign
```

Part IPart IIIPart IVPart VDAE BasicsMatchingBLT SortingPantelidesDummy Derivatives

Pen<u>dulum</u>

broman@eecs.berkeley.edu

y

u

v

 \dot{x}

 \dot{y}

 \dot{u}

34

We start with no variable to equation assignments.

Pantelides (G, vmap, eqmap)

1 $assign \leftarrow \emptyset$

2 for each $e \in G.F$

3

 $\mathbf{do}\ f \leftarrow e$

4 5 repeat

Preparation for matching algorithm. Set all vertices to be uncolored.

Initial state after step 5.

$$vmap = \{x \mapsto \dot{x}, y \mapsto \dot{y}, u \mapsto \dot{u}, v \mapsto \dot{v}\}$$

$$eqmap = \{\}$$

$$assign = \{\}$$

$$C = \{\}$$

Part IV

Pantelides

Iterate over each equation f

(we see later why we introduce f).

Part V
Dummy Derivatives

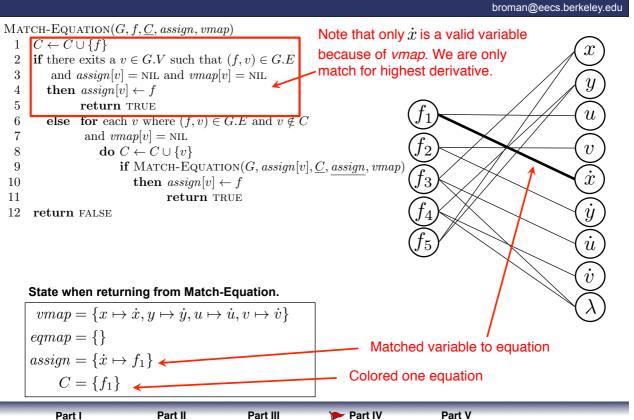
Part I DAE Basics Part II Matching Part III BLT Sorting

DAE Basics

Matching

```
Pantelides (G, vmap, eqmap)
      assign \leftarrow \emptyset
  2
      for each e \in G.F
                                                                            Try to find a match for equation f.
  3
          do f \leftarrow e
  4
               repeat
  5
  6
                         match \leftarrow \text{MATCH-EQUATION}(G, f, \underline{C}, assign, vmap)
  7
                         if not match
  8
                            then for each v \in C where v \in G.V
                                        do let v' be a vertex, such that v' \notin G.V
  9
 10
                                            vmap[v] \leftarrow v'
                                            G.V \leftarrow G.V \cup \{v'\}
 11
                                   for each f \in C where f \in G.F
 12
                                       do let f' be a vertex, such that f' \notin G.F
 13
                                            eqmap[f] \leftarrow f'
 14
                                            G.F \leftarrow G.F \cup \{f'\}
 15
                                            for each v \in G.V where (f, v) \in G.E
 16
                                                \textbf{do} \ G.E \leftarrow G.E \cup \{(f',v), (f',vmap[v])\}
 17
 18
                                   for each v \in C where v \in G.V
 19
                                        do assign[vmap[v]] \leftarrow eqmap[assign[v]]
 20
                                   f \leftarrow eqmap[f]
 21
                  until match
 22
     return assign
         Part I
                               Part II
                                                   Part III
                                                                        Part IV
                                                                                            Part V
          DAE Basics
                               Matching
                                                   BLT Sorting
                                                                        Pantelides
                                                                                            Dummy Derivatives
```

Pendulum 36



BLT Sorting

Pantelides

Dummy Derivatives

broman@eecs.berkeley.edu

Algorithm: Pantelides

Pantelides (G, vmap, eqmap)

 $assign \leftarrow \emptyset$

Function Match-Equation returns TRUE. Consequently, we break out of the repeat-until loop and proceeds with the next equation.

```
2
     for each e \in G.F
 3
         do f \leftarrow e
 4
              repeat
 5
                        C \leftarrow \emptyset
                        match \leftarrow MATCH-EQUATION(G, f, \underline{C}, assign, vmap)
 6
 7
                        if not match
 8
                           then for each v \in C where v \in G.V
                                       do let v' be a vertex, such that v' \notin G.V
 9
10
                                            vmap[v] \leftarrow v'
                                            G.V \leftarrow G.V \cup \{v'\}
11
                                   for each f \in C where f \in G.F
12
                                       do let f' be a vertex, such that f' \notin G.F
13
                                            eqmap[f] \leftarrow f'
14
                                            G.F \leftarrow G.F \cup \{f'\}
15
                                            for each v \in G.V where (f, v) \in G.E
16
                                                \textbf{do} \ G.E \leftarrow G.E \cup \{(f',v), (f',vmap[v])\}
17
                                   for each v \in C where v \in G.V
18
19
                                       do assign[vmap[v]] \leftarrow eqmap[assign[v]]
20
                                   f \leftarrow eqmap[f]
21
                 until match
22
    return assign
```

 Part I
 Part II
 Part III
 Part IV
 Part V

 DAE Basics
 Matching
 BLT Sorting
 Pantelides
 Dummy Derivatives

Pendulum

broman@eecs.berkeley.edu

38

MATCH-EQUATION $(G, f, \underline{C}, assign, vmap)$ $C \leftarrow C \cup \{f\}$ Same pattern for the first four **if** there exits a $v \in G.V$ such that $(f, v) \in G.E$ equations. 3 and assign[v] = NIL and vmap[v] = NIL4 then $assign[v] \leftarrow f$ 5 return TRUE **else** for each v where $(f, v) \in G.E$ and $v \notin C$ 6 7 and vmap[v] = NIL8 **do** $C \leftarrow C \cup \{v\}$ 9 if Match-Equation(G, assign[v], \underline{C} , assign, vmap) \dot{x} 10 then $assign[v] \leftarrow f$ return TRUE 11 return FALSE State after matching for f_1, f_2, f_3, f_4 $vmap = \{x \mapsto \dot{x}, y \mapsto \dot{y}, u \mapsto \dot{u}, v \mapsto \dot{v}\}\$

Part I DAE Basics

 $C = \{f_4\}$

 $eqmap = \{\}$

Part II Matching

 $assign = \{\dot{x} \mapsto f_1, \dot{y} \mapsto f_2, \dot{u} \mapsto f_3, \dot{v} \mapsto f_4\}$

Part III BLT Sorting Part IV
Pantelides

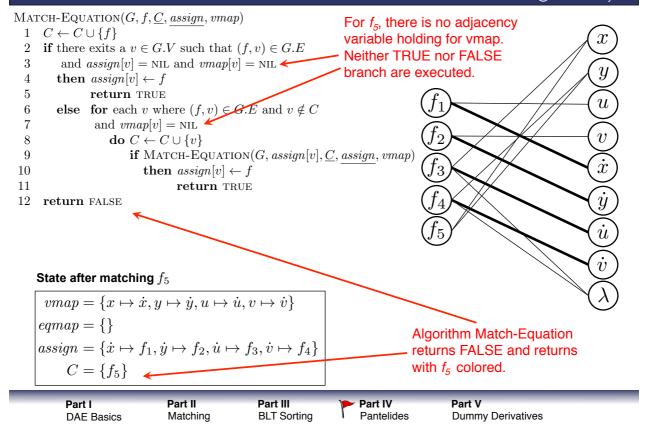
Part V Dummy Derivatives

(could also have matched lambda).

Note that only the last equation is colored

because colors are cleared before matching.

Matched 4 equations



40

broman@eecs.berkeley.edu

```
Pantelides (G, vmap, eqmap)
      assign \leftarrow \emptyset
  2
      for each e \in G.F
  3
          do f \leftarrow e
                                                            We have match = FALSE
  4
              repeat
                        C \leftarrow \emptyset
  5
  6
                        match \leftarrow \text{MATCH-EQUATION}(G, f, \underline{C}, assign, vmap)
  7
                        if not match
                           then for each v \in C where v \in G.V
                                                                                                   No colored
  8
  9
                                      do let v' be a vertex, such that v' \notin G.V
                                                                                                   variables.
 10
                                           vmap[v] \leftarrow v'
                                          G.V \leftarrow G.V \cup \{v'\}
 11
                                                                                                     But we have one
                                  for each f \in C where f \in G.F
 12
                                                                                                     colored equation.
                                      do let f' be a vertex, such that f' \notin G.F
 13
                                          eqmap[f] \leftarrow f'
 14
                                          G.F \leftarrow G.F \cup \{f'\}
 15
                                          for each v \in G.V where (f, v) \in G.E
 16
                                              do G.E \leftarrow G.E \cup \{(f', v), (f', vmap[v])\}
 17
                                                                                                    No colored
 18
                                  for each v \in C where v \in G.V
                                      do assign[vmap[v]] \leftarrow eqmap[assign[v]]
 19
                                                                                                    variables.
 20
                                  f \leftarrow eqmap[f]
 21
                 until match
 22
     return assign
```

Part I DAE Basics Part II Matching Part III BLT Sorting Part IV Pantelides

y

u

v

 \dot{x}

 \dot{y}

 \dot{u}

Create edges to

derivatives.

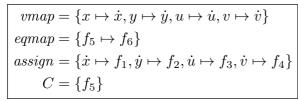
variables and their

State after matching f_5

```
vmap = \{x \mapsto \dot{x}, y \mapsto \dot{y}, u \mapsto \dot{u}, v \mapsto \dot{v}\}\
eqmap = \{\}
assign = \{\dot{x} \mapsto f_1, \dot{y} \mapsto f_2, \dot{u} \mapsto f_3, \dot{v} \mapsto f_4\}
        C = \{f_5\}
```

```
12 for each f \in C where f \in G.F
        do let f' be a vertex, such that f' \notin G.F
            eqmap[f] \leftarrow f'
            G.F \leftarrow G.F \cup \{f'\}
15
            for each v \in G.V where (f, v) \in G.E
16
                do G.E \leftarrow G.E \cup \{(f', v), (f', vmap[v])\}
17
```

State after creating differentiated equation.



Part I **DAE Basics** Part II Matching Part III **BLT Sorting** Part IV Pantelides

Create a new

equation node f_6

by differentiating f_5 .

Part V

 $x^2 + y^2 = L$

 $2x\dot{x} + 2y\dot{y} = 0$

Dummy Derivatives

Algorithm: Pantelides

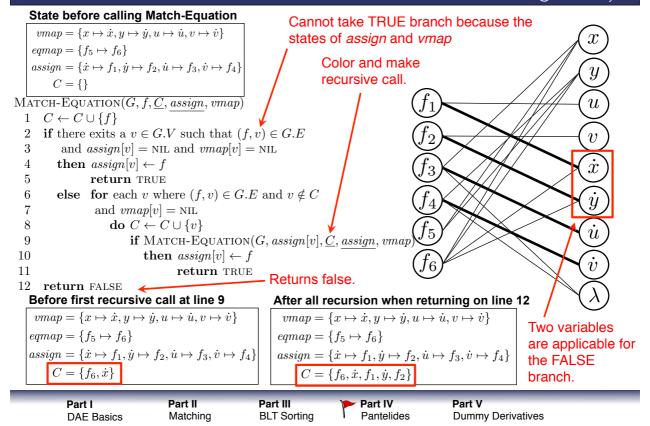
broman@eecs.berkeley.edu

42

```
Pantelides (G, vmap, eqmap)
      assign \leftarrow \emptyset
  2
      for each e \in G.F
  3
          do f \leftarrow e
  4
              repeat
  5
  6
                        match \leftarrow \text{MATCH-EQUATION}(G, f, \underline{C}, assign, vmap)
  7
                        if not match
                           then for each v \in C where v \in G.V
  8
  9
                                      do let v' be a vertex, such that v' \notin G.V
 10
                                           vmap[v] \leftarrow v'
                                           G.V \leftarrow G.V \cup \{v'\}
 11
                                  for each f \in C where f \in G.F
 12
                                      do let f' be a vertex, such that f' \notin G.F
 13
                                           eqmap[f] \leftarrow f'
 14
 15
                                           G.F \leftarrow G.F \cup \{f'\}
                                           for each v \in G.V where (f, v) \in G.E
 16
                                                                                                  Repeat again (match
                                               do G.E \leftarrow G.E \cup \{(f', v), (f', vmap[v])\}
 17
                                                                                                  was FALSE), but now
                                  for each v \in C where v \in G.V
 18
                                                                                                  with the differentiated
                                      do assign[vmap[v]] \leftarrow eqmap[assign[v]]
 19
                                                                                                 equation f_6
 20
                                  f \leftarrow eqmap[f]
 21
                 until match
                                                                                              eqmap = \{f_5 \mapsto f_6\}
 22
     return assign
```

Part I **DAE Basics** Part II Matching Part III **BLT Sorting**

Part IV **Pantelides** **Dummy Derivatives**



44

broman@eecs.berkeley.edu

```
Differentiating equation two times
Pantelides (G, vmap, eqmap)
      assign \leftarrow \emptyset
                                                                         x^2 + y^2 = L
      for each e \in G.F
                                  C = \{f_6, \dot{x}, f_1, \dot{y}, f_2\}
  3
                                                                         2x\dot{x} + 2y\dot{y} = 0
          do f \leftarrow e
  4
               repeat
                                                                         2x\ddot{x} + 2\dot{x}^2 + 2y\ddot{y} + 2\dot{y}^2 = 0
  5
  6
                         match \leftarrow \text{MATCH-EQUATION}(G, f, \underline{C}, assign, vmap)
  7
                         if not match
                            then for each v \in C where v \in G.V
  8
                                                                                                  First step: create new
                                        do let v' be a vertex, such that v' \notin G.V
  9
                                                                                                  differentiated variables
                                             vmap[v] \leftarrow v'
 10
                                            G.V \leftarrow G.V \cup \{v'\}
 11
                                    for each f \in C where f \in G.F
 12
 13
                                        do let f' be a vertex, such that f' \notin G.F
                                            eqmap[f] \leftarrow f'
 14
 15
                                            G.F \leftarrow G.F \cup \{f'\}
                                            for each v \in G.V where (f, v) \in G.E
 16
                                                 do G.E \leftarrow G.E \cup \{(f', v), (f', vmap[v])\}
 17
                                    for each v \in C where v \in G.V
 18
 19
                                        do assign[vmap[v]] \leftarrow eqmap[assign[v]]
 20
                                    f \leftarrow eqmap[f]
 21
                  until match
 22
     return assign
```

Part I DAE Basics Part II Matching Part III BLT Sorting Part IV
Pantelides

State before creating new variables

```
vmap = \{x \mapsto \dot{x}, y \mapsto \dot{y}, u \mapsto \dot{u}, v \mapsto \dot{v}\}
eqmap = \{f_5 \mapsto f_6\}
assign = \{\dot{x} \mapsto f_1, \dot{y} \mapsto f_2, \dot{u} \mapsto f_3, \dot{v} \mapsto f_4\}
C = \{f_6 \ \dot{x}, f_1, \dot{y}, f_2\}
```

for each $v \in C$ where $v \in G.V$ do let v' be a vertex, such that $v' \notin G.V$ $vmap[v] \leftarrow v'$ $G.V \leftarrow G.V \cup \{v'\}$

New variables and mapping

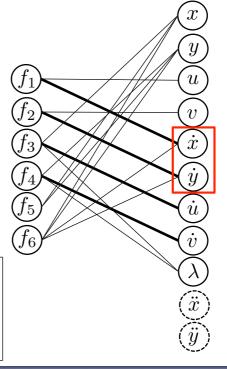
After adding new variables

$$vmap = \{x \mapsto \dot{x}, y \mapsto \dot{y}, u \mapsto \dot{u}, v \mapsto \dot{v}. \dot{x} \mapsto \ddot{x}, \dot{y} \mapsto \ddot{y}\}$$

$$eqmap = \{f_5 \mapsto f_6\}$$

$$assign = \{\dot{x} \mapsto f_1, \dot{y} \mapsto f_2, \dot{u} \mapsto f_3, \dot{v} \mapsto f_4\}$$

$$C = \{f_6, \dot{x}, f_1, \dot{y}, f_2\}$$



Part I DAE Basics Part II Matching Part III BLT Sorting Part IV Pantelides Part V
Dummy Derivatives

Algorithm: Pantelides

broman@eecs.berkeley.edu

46

```
Pantelides (G, vmap, eqmap)
      assign \leftarrow \emptyset
      for each e \in G.F
  3
          do f \leftarrow e
  4
               repeat
                         C \leftarrow \emptyset
  5
  6
                         match \leftarrow \text{MATCH-EQUATION}(G, f, \underline{C}, assign, vmap)
  7
                         if not match
                            then for each v \in C where v \in G.V
  8
                                                                                               Second step: create new
  9
                                       do let v' be a vertex, such that v' \notin G.V
                                                                                               differentiated equation
 10
                                            vmap[v] \leftarrow v'
                                                                                               nodes
                                            G.V \leftarrow G.V \cup \{v'\}
 11
                                   for each f \in C where f \in G.F
 12
                                       do let f' be a vertex, such that f' \notin G.F
 13
                                            eqmap[f] \leftarrow f'
 14
                                            G.F \leftarrow G.F \cup \{f'\}
 15
                                            for each v \in G.V where (f, v) \in G.E
 16
                                                do G.E \leftarrow G.E \cup \{(f', v), (f', vmap[v])\}
 17
 18
                                   for each v \in C where v \in G.V
                                       do assign[vmap[v]] \leftarrow eqmap[assign[v]]
 19
 20
                                   f \leftarrow eqmap[f]
 21
                  until match
 22
     return assign
```

Part I DAE Basics Part II Matching Part III BLT Sorting Part IV
Pantelides

Pendulum

broman@eecs.berkeley.edu

u

v

 \dot{x}

 \dot{y}

 \dot{u}

State before creating equation nodes

$$vmap = \{x \mapsto \dot{x}, y \mapsto \dot{y}, u \mapsto \dot{u}, v \mapsto \dot{v}, \dot{x} \mapsto \ddot{x}, \dot{y} \mapsto \ddot{y}\}$$

$$eqmap = \{f_5 \mapsto f_6\}$$

$$assign = \{\dot{x} \mapsto f_1, \dot{y} \mapsto f_2, \dot{u} \mapsto f_3, \dot{v} \mapsto f_4\}$$

$$C = \{f_6 \mid \dot{x}, f_1, \dot{y}, f_2\}$$

 $\begin{aligned} \textbf{for each } f \in C \text{ where } f \in G.F \\ \textbf{do let } f' \text{ be a vertex, such that } f' \notin G.F \\ eqmap[f] \leftarrow f' \\ G.F \leftarrow G.F \cup \{f'\} \\ \textbf{for each } v \in G.V \text{ where } (f,v) \in G.E \\ \textbf{do } G.E \leftarrow G.E \cup \{(f',v),(f',vmap[v])\} \end{aligned}$

$\begin{array}{c} f_1 \\ f_2 \\ f_3 \\ f_4 \\ f_5 \\ f_6 \\ f_7 \\ f_7 \\ f_7 \\ f_7 \\ f_7 \\ f_8 \\ f_8 \\ f_9 \\ f_7 \\ f_8 \\ f_9 \\ f_9$

After adding equation f_6

$$vmap = \{x \mapsto \dot{x}, y \mapsto \dot{y}, u \mapsto \dot{u}, v \mapsto \dot{v}, \dot{x} \mapsto \ddot{x}, \dot{y} \mapsto \ddot{y}\}$$

$$eqmap = \{f_5 \mapsto f_6, f_6 \mapsto f_7\}$$

$$assign = \{\dot{x} \mapsto f_1, \dot{y} \mapsto f_2, \dot{u} \mapsto f_3, \dot{v} \mapsto f_4\}$$

$$C = \{f_6, \dot{x}, f_1, \dot{y}, f_2\}$$

Part I DAE Basics Part II Matching Part III BLT Sorting Part IV
Pantelides

Part V
Dummy Derivatives

Pendulum

broman@eecs.berkeley.edu

48

State before creating equation nodes

$$vmap = \{x \mapsto \dot{x}, y \mapsto \dot{y}, u \mapsto \dot{u}, v \mapsto \dot{v}, \dot{x} \mapsto \ddot{x}, \dot{y} \mapsto \ddot{y}\}$$

$$eqmap = \{f_5 \mapsto f_6\}$$

$$assign = \{\dot{x} \mapsto f_1, \dot{y} \mapsto f_2, \dot{u} \mapsto f_3, \dot{v} \mapsto f_4\}$$

$$C = \{f_6 \ \dot{x}, f_1, \dot{y}, f_2\}$$

for each $f \in C$ where $f \in G.F$ do let f' be a vertex, such that $f' \notin G.F$ $eqmap[f] \leftarrow f'$ $G.F \leftarrow G.F \cup \{f'\}$ for each $v \in G.V$ where $(f, v) \in G.E$ do $G.E \leftarrow G.E \cup \{(f', v), (f', vmap[v])\}$

After adding all equations

$$vmap = \{x \mapsto \dot{x}, y \mapsto \dot{y}, u \mapsto \dot{u}, v \mapsto \dot{v}, \dot{x} \mapsto \ddot{x}, \dot{y} \mapsto \ddot{y}\}$$

$$eqmap = \{f_5 \mapsto f_6 \mid f_6 \mapsto f_7, f_1 \mapsto f_8, f_2 \mapsto f_9\}$$

$$assign = \{\dot{x} \mapsto f_1, \dot{y} \mapsto f_2, \dot{u} \mapsto f_3, \dot{v} \mapsto f_4\}$$

$$C = \{f_6, \dot{x}, f_1, \dot{y}, f_2\}$$

DAE Basics

Part II Matching Part III BLT Sorting Part IV
Pantelides

```
Pantelides (G, vmap, eqmap)
     assign \leftarrow \emptyset
  2
      for each e \in G.F
  3
          do f \leftarrow e
  4
               repeat
  5
                         C \leftarrow \emptyset
  6
                         match \leftarrow \text{MATCH-EQUATION}(G, f, \underline{C}, assign, vmap)
  7
                         if not match
                            then for each v \in C where v \in G.V
  8
                                       do let v' be a vertex, such that v' \notin G.V
  9
 10
                                            vmap[v] \leftarrow v'
                                            G.V \leftarrow G.V \cup \{v'\}
 11
                                   for each f \in C where f \in G.F
 12
                                       do let f' be a vertex, such that f' \notin G.F
 13
                                            eqmap[f] \leftarrow f'
 14
                                            G.F \leftarrow G.F \cup \{f'\}
 15
                                            for each v \in G.V where (f, v) \in G.E
 16
                                                \mathbf{do} \ G.E \leftarrow G.E \cup \{(f',v), (f',vmap[v])\}
 17
 18
                                   for each v \in C where v \in G.V
 19
                                       do assign[vmap[v]] \leftarrow eqmap[assign[v]]
                                                                                               Third step: assign
 20
                                    f \leftarrow eqmap[f]
                                                                                              variables to equations
21
                  until match
                                                                                               for new variables.
 22
     return assign
         Part I
                               Part II
                                                   Part III
                                                                        Part IV
                                                                                            Part V
          DAE Basics
                               Matching
                                                   BLT Sorting
                                                                        Pantelides
                                                                                            Dummy Derivatives
```

Pendulum

50

broman@eecs.berkeley.edu

After adding all equations

```
vmap = \{x \mapsto \dot{x}, y \mapsto \dot{y}, u \mapsto \dot{u}, v \mapsto \dot{v}, \dot{x} \mapsto \ddot{x}, \dot{y} \mapsto \ddot{y}\}
eqmap = \{f_5 \mapsto f_6, f_6 \mapsto f_7, f_1 \mapsto f_8, f_2 \mapsto f_9\}
assign = \{\dot{x} \mapsto f_1, \dot{y} \mapsto f_2, \dot{u} \mapsto f_3, \dot{v} \mapsto f_4\}
C = \{f_6 \ \dot{x}, f_1 \ \dot{y}, f_2\}
```

for each $v \in C$ where $v \in G.V$ do $assign[vmap[v]] \leftarrow eqmap[assign[v]]$

After adding new assignments

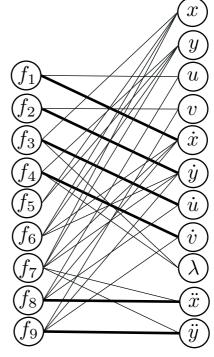
$$vmap = \{x \mapsto \dot{x}, y \mapsto \dot{y}, u \mapsto \dot{u}, v \mapsto \dot{v}, \dot{x} \mapsto \ddot{x}, \dot{y} \mapsto \ddot{y}\}$$

$$eqmap = \{f_5 \mapsto f_6, f_6 \mapsto f_7, f_1 \mapsto f_8, f_2 \mapsto f_9\}$$

$$assign = \{\dot{x} \mapsto f_1, \dot{y} \mapsto f_2, \dot{u} \mapsto f_3, \dot{v} \mapsto f_4,$$

$$\ddot{x} \mapsto f_8, \ddot{y} \mapsto f_9\}$$

$$C = \{f_6, \dot{x}, f_1, \dot{y}, f_2\}$$



Part I DAE Basics Part II Matching Part III BLT Sorting Part IV Pantelides

```
Pantelides (G, vmap, eqmap)
      assign \leftarrow \emptyset
  2
      for each e \in G.F
  3
          do f \leftarrow e
  4
               repeat
  5
                         C \leftarrow \emptyset
  6
                         match \leftarrow \text{MATCH-EQUATION}(G, f, \underline{C}, assign, vmap)
  7
                         if not match
                            then for each v \in C where v \in G.V
  8
                                       do let v' be a vertex, such that v' \notin G.V
  9
 10
                                            vmap[v] \leftarrow v'
                                            G.V \leftarrow G.V \cup \{v'\}
 11
                                   for each f \in C where f \in G.F
 12
                                       do let f' be a vertex, such that f' \notin G.F
 13
                                            eqmap[f] \leftarrow f'
 14
                                            G.F \leftarrow G.F \cup \{f'\}
 15
                                            for each v \in G.V where (f, v) \in G.E
 16
                                                \textbf{do} \ G.E \leftarrow G.E \cup \{(f',v), (f',vmap[v])\}
 17
 18
                                   for each v \in C where v \in G.V
 19
                                        do assign[vmap[v]] \leftarrow eqmap[assign[v]]
 20
                                   f \leftarrow eqmap[f]
                                                                        Repeat again with second differentiated
 21
                  until match
                                                                        version of equation five.
 22
     return assign
         Part I
                               Part II
                                                   Part III
                                                                        Part IV
                                                                                            Part V
          DAE Basics
                               Matching
                                                   BLT Sorting
                                                                        Pantelides
                                                                                            Dummy Derivatives
```

Pendulum

52

broman@eecs.berkeley.edu

Before matching

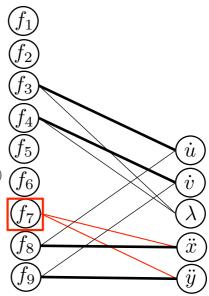
```
vmap = \{x \mapsto \dot{x}, y \mapsto \dot{y}, u \mapsto \dot{u}, v \mapsto \dot{v}, \dot{x} \mapsto \ddot{x}, \dot{y} \mapsto \ddot{y}\}
    eqmap = \{f_5 \mapsto f_6, f_6 \mapsto f_7, f_1 \mapsto f_8, f_2 \mapsto f_9\}
    assign = \{\dot{x} \mapsto f_1, \dot{y} \mapsto f_2, \dot{u} \mapsto f_3, \dot{v} \mapsto f_4,
                  \ddot{x} \mapsto f_8, \ddot{y} \mapsto f_9
MATCH-EQUATION(G, f, \underline{C}, assign, vmap)
       C \leftarrow C \cup \{f\}
                                                                                                                                                            v
      if there exits a v \in G.V such that (f, v) \in G.E
            and assign[v] = NIL and vmap[v] = NIL
  3
                                                                                                                                                            \dot{x}
  4
           then assign[v] \leftarrow f
  5
                    return TRUE
  6
           else for each v where (f, v) \in G.E and v \notin C
  7
                     and vmap[v] = NIL
                                                                                                                                                            \dot{u}
                         do C \leftarrow C \cup \{v\}
  8
                              \textbf{if} \ \operatorname{MATCH-EQUATION}(G, assign[v], \underline{C}, \underline{assign}, vmap)
  9
                                                                                                                                                            \dot{v}
 10
                                  then assign[v] \leftarrow f
 11
                                           return TRUE
 12
       return FALSE
       For clarity: view variables and edges where
       vmap[v] = NIL
```

Part I DAE Basics Part II Matching Part III BLT Sorting Part IV
Pantelides

Before matching

```
vmap = \{x \mapsto \dot{x}, y \mapsto \dot{y}, u \mapsto \dot{u}, v \mapsto \dot{v}, \dot{x} \mapsto \ddot{x}, \dot{y} \mapsto \ddot{y}\}
eqmap = \{f_5 \mapsto f_6, f_6 \mapsto f_7, f_1 \mapsto f_8, f_2 \mapsto f_9\}
assign = \{\dot{x} \mapsto f_1, \dot{y} \mapsto f_2, \dot{u} \mapsto f_3, \dot{v} \mapsto f_4,
\ddot{x} \mapsto f_8, \ddot{y} \mapsto f_9\}
```

```
MATCH-EQUATION(G, f, \underline{C}, assign, vmap)
  1 C \leftarrow C \cup \{f\}
    if there exits a v \in G.V such that (f, v) \in G.E
         and assign[v] = NIL and vmap[v] = NIL
  3
        then assign[v] \leftarrow f
  4
               return TRUE
  5
        else for each v where (f, v) \in G.E and v \notin C
  6
  7
                and vmap[v] = NIL
                   do C \leftarrow C \cup \{v\}
  8
                       if Match-Equation(G, assign[v], \underline{C}, assign, vmap)
  9
 10
                          then assign[v] \leftarrow f
 11
                                 return TRUE
 12 return FALSE
```



Part I DAE Basics Part II Matching Part III BLT Sorting Part IV
Pantelides

Part V
Dummy Derivatives

Pendulum

broman@eecs.berkeley.edu

54

Before matching

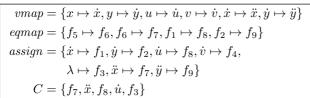
$$vmap = \{x \mapsto \dot{x}, y \mapsto \dot{y}, u \mapsto \dot{u}, v \mapsto \dot{v}, \dot{x} \mapsto \ddot{x}, \dot{y} \mapsto \ddot{y}\}$$

$$eqmap = \{f_5 \mapsto f_6, f_6 \mapsto f_7, f_1 \mapsto f_8, f_2 \mapsto f_9\}$$

$$assign = \{\dot{x} \mapsto f_1, \dot{y} \mapsto f_2, \dot{u} \mapsto f_3, \dot{v} \mapsto f_4,$$

$$\ddot{x} \mapsto f_8, \ddot{y} \mapsto f_9\}$$

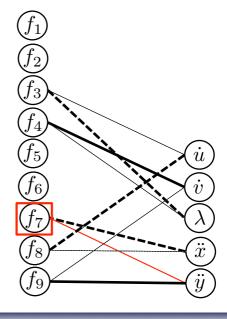
```
\overline{\text{Match-Equation}}(G, f, \underline{C}, assign, vmap)
  1 C \leftarrow C \cup \{f\}
  2 if there exits a v \in G.V such that (f, v) \in G.E
  3
          and assign[v] = \text{NIL} and vmap[v] = \text{NIL}
  4
         then assign[v] \leftarrow f
                 return TRUE
  5
         else for each v where (f, v) \in G.E and v \notin C
  6
  7
                  and vmap[v] = NIL
                      do C \leftarrow C \cup \{v\}
  8
                          \textbf{if} \ \operatorname{Match-Equation}(G, assign[v], \underline{C}, assign, vmap)
  9
10
                             then assign[v] \leftarrow f
11
                                     return TRUE
```



Part I DAE Basics Part II Matching Part III BLT Sorting Part IV
Pantelides

Part V
Dummy Derivatives

Successful match!



```
Pantelides (G, vmap, eqmap)
      assign \leftarrow \emptyset
                                                        Last equation and successful match.
      for each e \in G.F_{\checkmark}
  2
                                                        Algorithm terminates.
  3
          do f \leftarrow e
  4
               repeat
  5
  6
                         match \leftarrow \text{MATCH-EQUATION}(G, f, \underline{C}, assign, vmap)
  7
                         if not match
                           then for each v \in C where v \in G.V
  8
                                       do let v' be a vertex, such that v' \notin G.V
  9
 10
                                           vmap[v] \leftarrow v'
                                           G.V \leftarrow G.V \cup \{v'\}
 11
                                   for each f \in C where f \in G.F
 12
                                       do let f' be a vertex, such that f' \notin G.F
 13
                                           eqmap[f] \leftarrow f'
 14
                                           G.F \leftarrow G.F \cup \{f'\}
 15
                                           for each v \in G.V where (f, v) \in G.E
 16
                                               do G.E \leftarrow G.E \cup \{(f', v), (f', vmap[v])\}
 17
 18
                                   for each v \in C where v \in G.V
 19
                                       do assign[vmap[v]] \leftarrow eqmap[assign[v]]
 20
                                   f \leftarrow eqmap[f]
 21
                 until match
 22 return assign
```

Part I **DAE Basics** Part II Matching Part III **BLT Sorting** Part IV **Pantelides** Part V **Dummy Derivatives**

Result of Pantelides on Pendulum

broman@eecs.berkeley.edu

 \dot{v}

56

```
vmap = \{x \mapsto \dot{x}, y \mapsto \dot{y}, u \mapsto \dot{u}, v \mapsto \dot{v}, \dot{x} \mapsto \ddot{x}, \dot{y} \mapsto \ddot{y}\}
eqmap = \{f_5 \mapsto f_6, f_6 \mapsto f_7, f_1 \mapsto f_8, f_2 \mapsto f_9\}
assign = \{\dot{x} \mapsto f_1, \dot{y} \mapsto f_2, \dot{u} \mapsto f_8, \dot{v} \mapsto f_4,
                    \lambda \mapsto f_3, \ddot{x} \mapsto f_7, \ddot{y} \mapsto f_9
```


$$f_1(\dot{x}, u) = 0$$

(2)
$$\dot{y} = v$$

$$f_2(\dot{y}, v) = 0$$

(3)
$$\dot{u} = \lambda \cdot x$$

$$f_3(\dot{u},\lambda,x)=0$$

$$(4) \ \dot{v} = \lambda \cdot y - g$$

$$f_4(\dot{v}, \lambda, y) = 0$$

(5)
$$x^2 + y^2 = L$$

$$f_5(x,y) = 0$$

$$(6) 2x\dot{x} + 2y\dot{y} = 0$$

$$f_6(x, \dot{x}, y, \dot{y}) = 0$$

(7)
$$2x\ddot{x} + 2\dot{x}^2 + 2y\ddot{y} + 2\dot{y}^2 = 0$$

$$f_7(x, \dot{x}, \ddot{x}, y, \dot{y}, \ddot{y}) = 0$$

(8)
$$\ddot{x} = \dot{u}$$

$$f_8(\ddot{x}, \dot{u}) = 0$$

(9)
$$\ddot{y} = \dot{v}$$

$$f_9(\ddot{y}, \dot{v}) = 0$$

Part III

BLT Sorting

$$|G.F| = 9$$
 $|G.V| = 11$

Two variables out of the set G.V can be given arbitrary initialization values, as long as all constraints above are satisfied.

Result of Pantelides on Pendulum

broman@eecs.berkeley.edu

$$vmap = \{x \mapsto \dot{x}, y \mapsto \dot{y}, u \mapsto \dot{u}, v \mapsto \dot{v}, \dot{x} \mapsto \ddot{x}, \dot{y} \mapsto \ddot{y}\}$$

$$eqmap = \{f_5 \mapsto f_6, f_6 \mapsto f_7, f_1 \mapsto f_8, f_2 \mapsto f_9\}$$

$$assign = \{\dot{x} \mapsto f_1, \dot{y} \mapsto f_2, \dot{u} \mapsto f_8, \dot{v} \mapsto f_4,$$

$$\lambda \mapsto f_3, \ddot{x} \mapsto f_7, \ddot{y} \mapsto f_9\}$$

Is the system of equations solvable if we replace the old equations with their differentiated version?

- (1) $\dot{x} = u$
- (2) $\dot{y} = v$
- (3) $\dot{u} = \lambda \cdot x$
- $(4) \quad \dot{v} = \lambda \cdot y g$ $(5) \quad x^2 + y^2 = L$
- $(6) 2x\dot{x} + 2y\dot{y} = 0$
- $(7) 2x\ddot{x} + 2\dot{x}^2 + 2y\ddot{y} + 2\dot{y}^2 = 0$
- $(8) \ \ddot{x} = \dot{u}$
- $(9) \quad \ddot{y} = \dot{v}$

By substituting (8) and (9) we have

 $\ddot{x} = \lambda \cdot x$

 $\ddot{y} = \lambda \cdot y - g$

 $2x\ddot{x} + 2\dot{x}^2 + 2y\ddot{y} + 2\dot{y}^2 = 0$

Which is solvable for highest derivative

$$\begin{array}{cccc}
\lambda & \ddot{y} & \ddot{x} \\
f_1 & 1 & 0 & 1 \\
f_2 & 1 & 1 & 0 \\
f_3 & 0 & 1 & 1
\end{array}$$

Same result if converted into order one equation

Part I **DAE Basics** Part II Matching Part III **BLT Sorting** Part IV Pantelides Part V **Dummy Derivatives**

Termination of Pantelides

58

broman@eecs.berkeley.edu

Does Pantelides algorithm terminate?

Depends on the input graph.

Before Pantelides, check that matching can be found on a matrix where variables do not distinguish if they appear differentiated or not.

$$\dot{x} = u$$

$$\dot{y} = v$$

$$\dot{u} = \lambda \cdot x$$

$$\dot{v} = \lambda \cdot v - \epsilon$$

$$\dot{u} = \lambda \cdot x$$

$$\dot{v} = \lambda \cdot y - g$$

$$x^{2} + y^{2} = L$$

Matrix to check

Yes, match was found. Hence the problem is not structurally singular.

DAE Basics

Part II Matching Part III **BLT Sorting**

Part IV **Pantelides**

Dummy Derivatives

Part IV

Dummy Derivatives

Part I DAE Basics Part II Matching Part III BLT Sorting Part IV Pantelides ▶ Part V Dummy Derivatives

Index Reduction

60

broman@eecs.berkeley.edu

Should differentiated equations from Pantelides be used for index reduction?

$$\ddot{x} = \lambda \cdot x$$

$$\ddot{y} = \lambda \cdot y - g$$

$$2x\ddot{x} + 2\dot{x}^2 + 2y\ddot{y} + 2\dot{y}^2 = 0$$

The reduced problem (index-1) is mathematically correct, but since equation

$$x^2 + y^2 = L$$

is not present, numerical approximation gives a "drifting problem". In our example, the pendulum's length will grow...

Part I DAE Basics Part II Matching Part III BLT Sorting Part IV Pantelides

Dummy Derivative

Basic Idea:

- Include all differentiated equations
- For each equation, introduce a "dummy derivative" variable.

$$\ddot{x} = \lambda \cdot x$$

$$y'' = \lambda \cdot y - g$$

$$x^2 + y^2 = L$$

$$2x\dot{x} + 2yy' = 0$$

$$2x\ddot{x} + 2\dot{x}^2 + 2yy'' + 2y'^2 = 0$$

All constraints are present and the number of equations and unknowns match.

The actual algorithm is presented by Mattson and Söderlind (1993)

Part IPart IIIPart IVPart VDAE BasicsMatchingBLT SortingPantelidesDummy Derivatives

References and Further Reading

62

broman@eecs.berkeley.edu

- lain S. Duff. On Algorithms for Obtaining a Maximum Transversal. ACM Transactions on Mathematical Software, 7(3):315–330, 1981.
- Iain S. Duff and John K. Reid. An Implementation of Tarjan's Algorithm for the Block Triangularization of a Matrix. ACM Transactions on Mathe- matical Software, 4(2):137–147, 1978.
- S. E. Mattsson, H. Olsson, and H. Elmqvist. Dynamic selection of states in fymola. In Proceedings of the Modelica Workshop, pages 61–67, 2000.
- S. E. Mattsson and G. Söderlind. Index reduction in differential-algebraic equations using dummy derivatives. SIAM Journal on Scientific Computing, 14(3):677–692, 1993.
- C. C. Pantelides. The Consistent Initialization of Differential-Algebraic Systems. SIAM Journal on Scientific and Statistical Computing, 9(2):213–231, 1988.
- R. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on Computing, 1(2):146–160, 1972.

Matching

Finds a mapping between variables and equations. Used both in BLT sorting and Pantelides algorithm

BLT Sorting

Sort blocks of equation, where each block represents an algebraic loop. Uses matching and Tarjan's algorithm

Pantelides

Determine the subset of equations that needs to be differentiated.

Dummy Derivative

Method that uses Pantelides to perform correct index reduction.

Thank you for listening!

Part I	Part II	Part III	Part IV	Part V
DAE Basics	Matching	BLT Sorting	Pantelides	Dummy Derivatives