

Extendable Physical Unit Checking with Understandable
Error Reporting

Peter Aronsson1 David Broman2

1MathCore Engineering AB, Teknikringen 1F

SE-58330 Linköping, Sweden, peter.aronsson@mathcore.com
2Dept. of Computer & Information Science, Linköping University, davbr@ida.liu.se

Abstract

Dimensional analysis and physical unit checking are
important tools for helping users to detect and cor-
rect mistakes in dynamic mathematical models. To
make tools useful in a broad range of domains, it is
important to also support other units than the SI
standard. For instance, such units are common in
biochemical or financial modeling. Furthermore, if
two or more units turn out be in conflict after check-
ing, it is vital that the reported unit information is
given in an understandable format for the user, e.g.,
“N.m” should preferably be shown instead of
“m2.kg.s-2”, even if they represent the same unit.
Presently, there is no standardized solution to handle
these problems for Modelica models. The contribu-
tion presented in this paper is twofold. Firstly, we
propose an extension to the Modelica language that
makes it possible for a library designer to define both
new base units and derived units within Modelica
models and packets. Today this information is im-
plicitly defined in the specification. Secondly, we
describe and analyze a solution to the problem of
presenting units to users in a more convenient way,
based on an algorithm using Mixed Integer Pro-
gramming (MIP). Both solutions are implemented,
tested, and illustrated with several examples.
Keywords: dimensional analysis, unit checking, di-
mensions, error reporting, language design

1 Introduction

Modelica is a full fledged object-oriented equation-
based modeling language. However, its expressive-
ness can sometimes lead to models containing errors
that are hard to detect and isolate[3].

One important area where modeling errors can
give devastating consequences is inconsistency of
physical units and dimensions within equations and

component connections. We have earlier proposed a
design and made a prototype implementation for di-
mensional inference and unit consistency check-
ing[1] in the MathModelica[7] and OpenModelica[9]
tools. Such checking will help the users by reporting
at compile time if they have made a unit inconsis-
tency error in their model. However, this becomes
less useful when modeling something that cannot be
expressed in the dimensions as defined by the SI
standard. This is a common scenario for biochemical
modeling based on the SBML standard[12]. Such
models frequently use the non-standard dimension
“Item” for counting, e.g., molecules. MathModelica
has a translator tool[2] for translating SBML models
into Modelica (and vice versa). To make the transla-
tion tool more robust, user defined units should be
considered in the dimensional analysis too. Another
example is in financial applications, where it is re-
quired to use the dimension “money”.

It is also a problem that the system of units (and
potential extensions) is not described in the Modelica
language standard, i.e., the language specification
only specifies how to parse unit expressions, not
what the units mean, or how the checking should be
performed. This may result in that tools from differ-
ent vendors are not compatible, where some tools
accept certain Modelica libraries, while others reject
them due to unit inconsistency.

Another problem is how to present the resulting
units (e.g. from unit inference) to the user, when one
or more units are inconsistent. For instance, present-
ing the unit “m2.kg.s-2A-1” to the user is not very
understandable. Instead, the tool should translate this
into a more appropriate derived unit (or combination
of derived units and base units), like “Wb” or per-
haps “V.s”. The preferred choice of these two might
be different depending on domain and context. For
instance, if this unit is reported in a domain of Mag-
netic models, “Wb” might be preferred, but if it is
reported in a context where only units “V”, “A” and

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20­22, 2009

© The Modelica Association, 2009 890 DOI: 10.3384/ecp09430027

“Ohm” are used it is probably more appropriate to
use “V.s”. The presentation should not only contain
standard SI units, but also extended units defined by
the user and these could also be selected by regard-
ing domain and context information.

In this paper we propose a solution to these prob-
lems by specifying both base units and derived units
in a generic way, so that new dimensions easily can
be added. We propose this as an extension to the
Modelica language so that different Modelica tools
can behave alike. At the same time, the library de-
veloper is also given a more powerful mechanism for
specifying nonstandard units in a uniform way. Sec-
tion 2 presents the proposed Modelica language ex-
tension that enables the model user to describe both
base units and derived units. In Section 3 we show a
new method of how a tool can interpret the dimen-
sional units inferred by the type checker and presents
unit errors to the user in a more readable form. This
is done by formulating a mixed integer programming
(MIP) problem that will select more appropriate
units depending on both context and potentially also
user preferences. We have made an implementation
and an evaluation in the MathModelica and Open-
Modelica tools, described in Section 4. Finally, Sec-
tion 5 contains related work and Section 6 concludes
the paper.

2 Extendable Unit Definitions

The Modelica specification [10] includes a section
describing the syntax of unit expressions, i.e., how
for example an expression such as "kg.m/s2"
should be parsed. However, besides a reference to
ISO standard 31/0-1992, no information is given re-
garding the semantics of how to perform the actual
unit checking. This general openness of the specifi-
cation makes it possible for different tool vendors to
implement their own way of handling unit checking,
giving implementation freedom, but also limits the
possibility for models to be exchanged and treated in
the same way by different tools.

Instead of letting a reference to an ISO standard
define the meaning of base units (e.g. “V” and “s”)
and derived units (e.g. “N.m”), we propose in this
section that the definition should be stated directly in
the source code of Modelica classes. Possible bene-
fits with this approach are:

• Tools from different tool vendors use and inter-
pret exactly the same set of unit definitions.

• Besides the standard SI units, it is easy for users
and library developers to add both new base and
derived units for a particular library.

Our goal is that both this work with extendable unit
definition and our previous work on general unit
checking should form a foundation for a new seman-
tic description of units in the Modelica specification.
Even though we today have a running test implemen-
tation, the work is still at an early stage, and more
work on formalizing the semantics is required for
inclusion in the specification. Moreover, our inten-
sion is not that unit checking should be a core part of
the specification. Instead, we propose that such a
language feature should be defined as an optional
module in the specification, enabling tool vendors to
explicitly choose and officially state if the function-
ality of such a module is supported.

2.1 Requirements

We have during the design work of extendable unit
definitions for Modelica considered the following
requirements:

• Backwards compatibility. Models designed with
the earlier definitions where the meaning of units
was implicit, should also work in a new envi-
ronment where the units are defined by the li-
brary developer.

• Only library definitions. Both base units and de-
rived units should be able to be added by library
developers, i.e., the tools should not have any
prior knowledge about defined units.

• Declarative and easy to use. The new extension
for defining new units must be declarative in the
sense that the order of definitions should not
matter. It must also be easy to use, e.g., defined
units should be stated in a user friendly format
such as “N.m”; not using its unit vector format.

• Weights for different domains. It should be pos-
sible to prioritize certain units for a specific do-
main, to enable better error reporting.

• Prefixes are pre-defined. Prefixes, such as “m”
for milli and “k” for kilo are pre-defined in the
specification, i.e., these are not extendable.

Following these requirements, an overview of our
design proposal is outlined in the following three
subsections.

2.2 Informal Syntax

Adding new syntax to a language is the least interest-
ing and challenging issue from a language design
point of view, but results nevertheless often in large

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20­22, 2009

© The Modelica Association, 2009 891

debates at design meetings. Hence, the following
proposed syntax is only for presentation purpose and
can most likely be changed in a version that is ac-
cepted for inclusion in the Modelica specification.

We introduce a new keyword defineunit,
which is used both for defining new base units and
derived units. For example, to define the three first
base units of the SI-system, the following lines can
be added to an arbitrary Modelica class.
defineunit m;
defineunit kg;
defineunit s;

Derived units are defined by combining base units or
other derived units. For example, to define the de-
rived unit Newton, the following line is added.
defineunit N(exp="m.kg.s-2");

The expression consists here only of base units. The
syntax of the unit expression is the same as the syn-
tax specified in the current Modelica standard. How-
ever, it would be very inconvenient if the derived
units always must be defined using base units.
Hence, we allow expressions also to include other
derived units. For example, this line would define the
derived unit Pascal:
defineunit Pa(exp="N/m2");

Note that both a derived unit (N) and a base unit (m)
are used in the unit expression.

There is also an optional parameter weight that
can be used for specifying how important an unit is
in the domain. This is used by the algorithm pre-
sented in Section 3 for better error reporting. If no
weight argument is specified, a default value of 1 is
used. The weight can also be specified explicitly by
using a named parameter. For example
defineunit Pa(exp="N/m2", weight=2);

states that Pascal is a unit that is more important in
this library and will therefore have higher priority
when used in error reporting.

2.3 Formal Syntax

The defineunit extension can be defined in the
EBNF grammar of the Modelica specification, by
adding the following production:
unit_clause :
 defineunit IDENT

["(" named_arguments ")"]

The unit_clause is then used inside the element
production as follows:

element :
 unit_clause |
 ...

Where ... mean the rest of the right side of the
original element production.

2.4 Informal Semantics Overview

The semantics of the extendable unit definition is not
intended to be described in detail here. Instead, the
intent is to give a brief overview of how a compiler
can treat the unit definitions. A more complete and
formalized description is postponed as future work in
conjunction with a language extension proposal for
the Modelica language design group.

From the syntax description, it is clear that unit
definitions can be placed anywhere in the element
section of a class. Hence, units can be defined within
any restricted class, e.g., packages, models, and
functions. When checking equations and/or state-
ments within a model, two passes are performed. In
the first pass, all components and sub-components of
the model are traversed and unit definitions col-
lected. This includes searching both the components’
scope and their parents’ scope. In the second pass,
the ordinary instantiation/elaboration takes place.
During this elaboration, equations and statements are
checked for unit consistency using the unit defini-
tions collected in the first pass.

The order of how the unit definitions are collected
in the first pass is not important. If the set of unit
definitions contains several elements with the same
unit name, it is an error if their respective unit ex-
pressions are different. For example, if Newton (N)
is defined more than once, each definition must have
the same expression, i.e., "m.kg.s-2". After
elimination of identical unit definitions, the resulting
set of unit definitions is used to generate an internal
normalized representation of units. Following the
approach outlined in our previous work [1], each unit
is then represented in a vector format. To be able to
generate this normalized form, it is required that all
definitions and dependences between derived units
and base units form a directed acyclic graph (DAG).
Hence, derived units are not allowed to be defined so
that they form cyclic structures. If such a cyclic
structure is detected, an error should be reported. For
example, the following definitions should be re-
jected:
defineunit U1(exp="m.U2");
defineunit U2(exp="U3/s");
defineunit U3(exp="U1.kg");

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20­22, 2009

© The Modelica Association, 2009 892

If several unit definitions exist with the same
name and expression, but with different weights,
these weights are used later in pass two for better
error reporting. The weights for unit definitions with
the same unit name are multiplied together, forming
the new weight. For example, if the following defini-
tions of Pascal exist:
defineunit Pa(exp="N/m2", weight=1.5);
defineunit Pa(exp="N/m2", weight=2);

The resulting unit definition is:
defineunit Pa(exp="N/m2", weight=3);

In the current implementation a library must redefine
all types that should be treated with a different
weight factor. For example, if a library would like to
have higher weights on Pascal, types that are using
Pa, such as Pressure, must be redefined in the
library. The main rationale for this design choice is
better performance of the instantiation/elaboration
process of the compiler.

3 Reporting Units

The unit checker described in previous work[1] uses
a vector of seven rational numbers; one for each di-
mension. The reason for using rational numbers is to
be able to handle a sqrt function or exponents of
arbitrary rational numbers, e.g., x^(2/3), which is
very commonly used in engineering equations. In
this work, the length of this vector is determined by
the number of dimensions added to the system. The
library developer adds all definitions of base units
and derived units to the standard library, including
the standard SI units (see Section 2). Every unit is
thus described by a vector of at least 7 elements. For
instance, the unit Watt (“W”) corresponding to the
base units “m2.kg.s-3” is described by the vector
(2,1,-3,0,0,0,0). The problem is, given a sought unit
with dimension vector dimt (the target unit), to find a
linear combination of units (both derived and base)
that matches the dimension vector dimt. But, in order
to select more appropriate units we should prefer
units that are close to the target unit. Also, we should
prefer to use derived units instead of base units, as
this will probably be closer to what an engineer ex-
pects.

As a first attempt, we can formulate the problem as:
For a target unit, t, that has dimensional vector dimt

)dim)dim(1(1 where

minimize

1
t

j
j

NU

j
jj j

w
pxp −+=

=

t

NU

j
jxj dim)dim(subject to

1
=

=

Where
• NU is the number of units (base and derived)
• wj is a real number > 0
• dim(j) is the dimensional vector for the j:th

unit
• xj is the sought exponent for each unit
• |v| is the L2 norm of vector v

This formulation works fine as long as xj is a posi-
tive integer value. If negative values were allowed
those would contribute negatively to the objective,
and thus favor negative exponents over positive
ones. So, to allow negative exponents in units we
must handle them separately. This can be done by
instead setting up the problem as:

NUjjNUj
NUjww

j
w

p

xp

jNUj

t
j

j

NU

j
jj

<<−=+

<<=

−+=

+

=


1,)dim()dim(
1,

)dim)dim(1(1
 where

 minimize
2

1

t

NU

j
jxj dim)dim(subject to

2

1
=

=

With the formulation above we double the problem
size and represent negative exponents with a set of
separate variables. The weights for the newly intro-
duced variables are identical to its positive corre-
spondent exponent, and the dimensional vector is
negated.

If the dimensional units only were described with
Integers (e.g. as done in Dymola v.7 [5]), this formu-
lation would be sufficient. However, because we al-
low Rational numbers as exponents and because it is
most likely that derived units should be expressed
only by integers, we need to reformulate the prob-
lem. We let the variables of base units be of type
Real (or preferably rational) and the derived units be
of type integer, thus leading to a mixed integer pro-
gramming problem.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20­22, 2009

© The Modelica Association, 2009 893

3.1 Example

Let us consider an example. For simplicity we limit
the example to use three base units (m,s,kg) and de-
fine four derived units according to Table 1 below.
Unit Vector representation
m (1,0,0)
kg (0,1,0)
s (0,0,1)
N (1,1,-2)
Pa (-1,1,-2)
J (2,1,-2)
W (2,1,-3)

Table 1. A subset of the SI units.

Suppose that a unit of a certain term is inferred to
“m.kg2.s-3”, corresponding to the vector representa-
tion (1,2,-3).. If we use (1,1,1,1,1,1,1) as weight vec-
tor the problem becomes:

 x p minimize

tm dim x subject to =

















−−−−−

−−−−−

−−−−−

=

32221003222100
11110101111010
22110012211001

m

()63433438319172361211113

1+=p

()3,2,1dim −=t

The m matrix sets up the constraints for the dimen-
sions, the first seven columns corresponds to the val-
ues in Table 1 above, and the seven last columns are
their negated values. The criteria vector p gives the
weight for each variable as the distance of the di-
mension vector of that dimension to the target di-
mension plus one. The reason for adding one to the
distance is to be able to control that even selecting a
perfect match can be avoided by using weights. For
instance, the first element has a value of 131+
since the distance (norm) from (1,0,0) to (1,2,-3) plus
one is

131+ (1+ 222)30()20()11(−−+−+−).

When solving this problem it will give the values:
(0,1,0,1,0,0,0,0,0,1,0,0,0,0)
which correspond to the unit “kg.s-1.N”.
By adjusting the weight vector different results are
obtained. For instance, if we increase the weight only
for “Pa” the results instead become:
(0,0,1,0,1,1,0,0,0,0,0,0,0,0)

which correspond to unit “s.Pa.J”, i.e. it prefers to
use unit “Pa” in the result.

3.2 Use of Rational Numbers

So far we have not used any rational numbers in our
examples. So how does rational numbers affect the
proposed solution?

Since we formulated the problem as a MIP (Mixed
Integer Programming), it can allow both integer vari-
ables and real variables. The idea is to limit the de-
rived units to integer values, so that units like “W-
(1/3)” are not produced. Otherwise it will be hard for
the user to find out what is missing to correct the
error, since the user himself has to translate the de-
rived units into base units and then apply the expo-
nent.

As an example we will take the unit “W(1/2)”,
which corresponds to the unit vector (1,1/2,-
3/2,0,0,0,0) The solution when derived units are in-
tegers and base units are reals becomes: “kg-
(1/2).s(1/2).N”. If the problem is solved with all
variables as real values1 the solution is instead:
“N(1/2).Gy(1/4)” which is much harder for a user to
interpret.

An alternative formulation could be to instead for-
mulate the linear programming problem using only
integers, by multiplying the base unit vector by the
greatest common divisor among the rational num-
bers, and then solve the corresponding integer linear
programming (ILP) problem. The solution must then
be divided by the greatest common divisor. The
problem with this formulation is that it can not guar-
antee that derived units are only expressed in integer
exponents. For example, given the unit vector
(5/2,3/2,-9/2,0,0,0,0), the corresponding MIP solu-
tion becomes “m-1/2.kg-1/2.s-1/2.N.J”. However,
transforming to ILP gives “Pa.J.W.Gy”, which re-
sults in “Pa(1/2).J(1/2).W(1/2).Gy(1/2)”, which is
hard for a user to understand.

3.3 Adjusting Weights According to Context

As illustrated by the example above, the weights for
each unit can be modified to control the solution.
This can be used to guide the solver into selecting
units that are preferred for a given context. For in-
stance, let us consider a simple equation for calculat-
ing the power:

2RIP =

1 The real values are ”Rationalized” before presentation
by approximation to rational numbers with small integers.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20­22, 2009

© The Modelica Association, 2009 894

Suppose the variables P and I have defined units of
“W” and “A” respectively. The resistance is inferred
to “m2.kg.s-2.A-2” elsewhere (i.e. missing a s-1 to
be “Ohm”). If this problem is solved it will regard-
less of weights result in “Wb”, since that will result
in a perfect match, giving the lowest cost (since the
distance is zero, the cost will be1/wj). However, a
user might be more familiar if units closer to “W”
and “A” is used. By adjusting the weights (increas-
ing “W” and “A”, and decreasing the weight of the
rest of the derived units so they are smaller than
weights of base units), the result instead becomes:
“s-1.A-2.W”. Of course, if it instead is evident from
the context that Ohm is the preferred unit, we could
decrease its weight and increase the rest of the de-
rived units, resulting in: “s-1.Ohm”.

In conclusion, the resulting unit can be controlled
by modifying the weights of derived units. To find
out the weights one could look at the current context
the unit is defined in. For instance, in an electrical
component that does not have any units from the
magnetic domain declared, the weights of the units
“Wb”,”T” and “H” could be decreased.

The possibility we have chosen is to let the library
developers themselves define the weights according
to their preferred units. This is the suggested ap-
proach described in Section 2.

3.4 Minimizing the Number of Used Derived
Units

One problem with the proposed solution is that the
same minimal value can be obtained by either select-
ing a mixture of several derived units or by selecting
multiples of only one derived unit. For example, let
us consider the unit vector for “Ohm3”, which corre-
sponds to the vector (6,3,-9,-6,0,0,0). With ones as
weight, the result becomes “F-1.Ohm.H”; this is not
preferable. If weights of units are adjusted according
to previous section this might be avoided, but it is
not always the case that a context of units may help
(the context may be empty).

An alternative is to make an automated adjustment
on the units to try to minimize the use of derived
units. This can be expressed by the following algo-
rithm:

1. Run the MIP problem with standard weights
(or user preferred weights).

2. If several derived units are reported, increase
weight on one of them and rerun MIP prob-
lem. If less derived units are reported, keep
the adjusted weight and repeat 2, otherwise

try next derived unit. Repeat until all derived
units reported has been tried.

Let us try this idea on our example. As stated above
the first run of the problem gave “F-1.Ohm.H” as
result. We first increase the weight of “F” and rerun.
This gives “Ohm3” as we expect. Same result is also
given if we increase weight for “H”. However, if we
increase the weight of “Ohm”, the result becomes
“F-1.S-1.H”, which is clearly not a good choice.

4 Implementation and Evaluation

A prototype for reporting units has been imple-
mented in Mathematica and a full implementation is
now completed in the MathModelica/OpenModelica
frontend.

4.1 Testing the Modelica Standard Library

The unit checking and error reporting functionality
have been tested in MathModelica on the Modelica
Standard library v 2.2.1, which is the latest version
where unit checking corrections (based on Dymola
version 7.0 unit checking functionality) of the library
have not been performed. The unit checker reported
the same problems as Dymola did on version 2.2.1
and after applying the corrections made in version
2.2.2, the affected models passed the unit check. This
gives an indication of that both tools behave cor-
rectly, or at least they behave in the same manner.

However, there are some cases in the standard li-
brary where Dymola does not report unit errors, but
MathModelica and OpenModelica does. One such
case is the use of the built-in exp function, which is
used in e.g. Semiconductor models in the Electrical
package. The problem can be illustrated with this
simple model:
model UnitProblem

 Real i(unit="A");

 Real v(unit="V") = 2.4;

equation

 i = exp(v);

end UnitProblem;

Dymola does not report any errors for this model,
even though the exp function should have a dimen-
sionless argument and give a dimensionless return
value. Thus, since the MSL is primarily developed
with Dymola, the unit conversion corrections that are
done for other models are not done for models con-
taining exp, log, and other dimensionless built-in

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20­22, 2009

© The Modelica Association, 2009 895

functions. This is also reflected in the Modelica.
Math library where these functions are declared as
unspecified unit with e.g., input Real x; in-
stead of dimensionless, using input
Real x(unit=”1”);
To correct these defects we propose to make the ex-
ponent function, logarithm function, and others, that
are dimensionless to be declared with unit “1” in the
MSL, and that the usage of these functions in the
library are corrected so a dimensionless unit is
passed and returned from these functions.

4.2 Unit Extendibility

The unit extendibility has been tested and evaluated
by adding unit definitions (defineunit) for all SI
base units and derived units according to [5]. These
definitions have been added to SIunits.mo in the
Modelica standard library. Preliminary tests show
that this approach is backwards compatible com-
pared to having these definitions built-in, i.e., unit
checking works as expected even if the SI units are
defined in the standard library. Models have also
been tested, where additional base units (e.g. a cur-
rency base unit of “USD”) were added.

4.3 Usability of Error Reporting

Preliminary tests have been conducted for evaluating
the usability and readability of errors when different
weights are used in different libraries. However, fur-
ther more comprehensive tests must be performed in
the future to verify that the reported units are indeed
understandable.

5 Related Work

Unit checking exists in several Modelica tools, such
as Dymola[9] and Simulation X[6]. There are also
unit checking and dimensional analysis in other non
Modelica related tools and languages. See the “Fu-
ture work” section in previous paper [1] for these
references.

To our knowledge, no earlier work has been pub-
lished on how to select units for presentation. Tools
with unit checking have for certain some way of se-
lecting which units to present to the user but the
method of how this is done is not clearly stated, and
the user can not affect the outcome as is suggested in
this paper.

6 Conclusions

We have showed a new method of solving the prob-
lem of presenting inferred and inconsistent units by
the unit checker in a format that is more understand-
able for the user. The method is based on forming a
mixed integer programming (MIP) problem to decide
which base units and derived units to use in the
communication with the user. We have also pro-
posed an extension to the Modelica language, where
unit definitions can be stated within any restricted
class, making it possible to define new user defined
units that are not part of the standard SI units.

A prototype has been implemented in Mathe-
matica, followed by a complete implementation in
MathModelica and OpenModelica. The same unit
errors on the Modelica standard library that Dymola
have detected were also reported by our tool, but we
also detected more inconsistent units, and proposed
further corrections of the standard library.

7 Acknowledgements

This research was funded by CUGS (National
Graduate School in Computer Science), MathCore
Engineering, the Swedish Research Council (VR),
and the Biobridge project supported by the European
Commission in the sixth framework programme.

References

[1] D. Broman, P. Aronsson, P. Fritzson, “De-
sign Considerations for Dimensional Infer-
ence and Unit Consistency Checking in
Modelica”, 6Th International Modelica Con-
ference, March 3-4, 2008, Bielefeld, Ger-
many.

[2] J. Brugård et. Al, “Creating a Bridge between
Modelica and the Systems Biology Commu-
nity”, 7th International Modelica Conference,
Como, Italy, 2009.

[3] Peter Bunus, “Debugging Techniques for
Equation-Based Languages”. Ph.D. Thesis.
Department of Computer and Information
Science. Linköping University. 2004.

[4] Bureau international des poids et mesures
(BIPM). Le Système international d’unités,
The International System of Units. Organisa-
tion intergouvermentale de la Convention du
Mètre, 8th Edition.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20­22, 2009

© The Modelica Association, 2009 896

[5] Dynasim. Dymola version 7.0
http://www.dynasim.com [Last access: Au-
gust 23, 2009].

[6] ITI. SimulationX. http://www.iti.de/
 [Last access: August 20, 2009].

[7] MathCore. MathModelica
http://www.mathcore.com [Last access: Au-
gust 23, 2009].

[8] Mathematica. Wolfram Research Inc.
http://www.wolfram.com. [Last access: Au-
gust 23, 2009]

[9] S.-E. Mattson, H. Elmqvist, “Unit Checking
and Quantity Conservation”, 6Th International
Modelica Conference, March 3-4, 2008,
Bielefeld, Germany.

[10] Modelica Association. “Modelica - A Uni-
fied Object-Oriented Language for Physical
Systems Modeling Language Specification
Version 3.1” 2009. Available from
http://www.modelica.org.

[11] The OpenModelica Project. Available from:
http://www.openmodelica.org

[12] Systems Biology Markup Language
(SBML), Available from:
http://www.sbml.org

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20­22, 2009

© The Modelica Association, 2009 897

