
Strict Typed Functional Programming in OCaml

Lecture Notes

David Broman
Linköping University
david.broman@liu.se

May 4, 2010 (Updated)

david.broman@liu.se

Contents

1 Introduction 3
1.1 Solutions of Tasks . 3
1.2 Installation . 3
1.3 Resources . 4
1.4 Changes . 4

2 The Basics 5
2.1 Basic Types and Expressions . 5
2.2 Calling Functions and Basic IO 6
2.3 Defining Functions with Recursion 7
2.4 Lists and Pattern Matching . 9
2.5 Higher-Order Functions, Tuples, and Currying 10
2.6 Map, Filter, and Parametric Polymorphism 12
2.7 List Module and Pipe-Forward 13
2.8 Tail-Recursion, Accumulators, and Fold Left 14

3 Algebraic Data Types 16
3.1 Recursive Algebraic Data Types 16
3.2 Enumeration, Polymorphic Algebraic Types, and Options 18
3.3 Type Inference - Revisited . 20

4 Lambda Calculus 21
4.1 Small-step Interpreter . 21
4.2 Call-by-value . 23
4.3 Call-by-name and Confluence . 24
4.4 Call-by-need . 25
4.5 Programming in the Lambda Calculus 25

5 Modules and Abstract Data Types 28
5.1 Modules and Abstract Data Types 28
5.2 Functors . 30
5.3 Generic Containers . 32

6 Side Effects 35
6.1 References and Mutable Records 35
6.2 Hash tables and Exceptions . 36
6.3 Arrays . 38

1

7 Algorithm Implementation 39
7.1 Lossless data compression - LZW (Optional) 39

8 Conclusions 40

2

Chapter 1

Introduction

Welcome to the world of typed functional programming! During the first part of
the course we will introduce the fundamentals of typed functional programming
using the language OCaml. The teaching approach is learning by doing, i.e., we
will introduce new concepts using examples and then give tasks that you should
solve on your own. To be able to solve the task efficiently, it is important that
you read the recommended readings before solving the problem. It is allowed to
collaborate and discuss the problems, but each student should create their own
solution.

1.1 Solutions of Tasks

All solutions of the tasks, i.e., answers to questions and program code, should
be documented and submitted via email. Please create one PDF file with all
the answers of the exercises, clearly marked with section numbers. State also in
this document the file names of solution source code files, so that it is easy to
find the solutions to each problem. Further information about deadlines etc.,
can be found on the course website:

http://www.ida.liu.se/ ˜ davbr/edu/fp2010/

1.2 Installation

Installation guidelines can be found on page:
http://www.ida.liu.se/ ˜ davbr/ocaml/install.html

3

http://www.ida.liu.se/~davbr/edu/fp2010/
http://www.ida.liu.se/~davbr/ocaml/install.html

1.3 Resources

The main resources regarding the OCaml part are listed below. In the rest of
the notes, the reference tag within brackets, e.g., [mainref] will be used to refer
to the particular source.

• The Objective Caml system release 3.11 [main-ref]
http://caml.inria.fr/pub/docs/manual-ocaml/
The main reference resource, which includes tools and library descriptions.

• OCaml Quick Reference [quick-ref]
http://www.ida.liu.se/ ˜ davbr/ocaml/
A concise summary of some of the main concepts and constructs in OCaml.

• Developing Applications With Objective Caml [ocaml-book]
http://caml.inria.fr/pub/docs/oreilly-book/html/
Large On-line O’Reilly book. Many useful examples and explanations.

• Objective CAML Tutorial [ocaml-tutorial]
http://www.ocaml-tutorial.org/
A practically oriented tutorial.

Other articles and books that are used can be found in the reference list at the
end of the notes. Selected parts of these texts will be handed out during the
first lecture.

1.4 Changes

This document is updated and minor typos are removed since the first version.
The following list shows only major changes that effect the tasks:
Version 2010-05-03:

• Task 2.2. Should be a right angled triangle.

• Task 3.1. Removed the requirement of adding operators - and / .

• Task 3.2. The signature of the fold function has been changed to a
simpler form (the old one is still ok, but needs a different definition of the
tree type).

• Task 4.3 Made clear that confluence shall only be shown for a specific
term.

Version 2010-05-04:

• Task 4.1. Several hints have been added.

• Task 7.1 This task is from now on optional, i.e., you do not have to send
in a solution to pass the course.

4

http://caml.inria.fr/pub/docs/manual-ocaml/
http://www.ida.liu.se/~davbr/ocaml/
http://caml.inria.fr/pub/docs/oreilly-book/html/
http://www.ocaml-tutorial.org/

Chapter 2

The Basics

2.1 Basic Types and Expressions

OCaml is a strongly typed functional language. In this language, everything is
an expression, and each expression has a type. The objective of this section is to
get familiar with expressions, basic types, and the OCaml toplevel system.

Reading

• Read section “Primitive values, functions, and types” of chapter 2 in
[ocaml-book].

• Skim the definitions of “Basic types” and “Built-in operations/functions”
in [quick-ref].

Example

The OCaml toplevel system is a simple interactive shell where expressions
can be entered and evaluated. To start it, type ocaml in the unix shell1. For
example, to add two numbers, write

3 + 2;;

Note that the command must end with two semicolons. The system outputs
int = 5 , meaning that the result is value 5 with type integer.

Task

Play around in the interactive mode. Test and answer the following:

• Compute the result of the expression sin(1.21) ∗ 2.18.

• Why can we not write 23 + 11.21 ?

• Concatenate two strings.

• Evaluate the logical expression 4 > 2 ∧ true

1In Windows you can either run it in Cygwin, MSYS, or use the Windows application that

is available from program menu.

5

• Use the function print_endline to print a string. What is the type of
this expression?

Some hints:

• In OCaml (and most other functional languages) arguments supplied to a
function are separated by space and not comma, i.e., you write foo (x+1) 7
to call a function foo , which takes two arguments.

• Type #quit;; to quit the interactive session.

• You can also you toplevel directly in the interactive Tuareg mode in
Emacs.

2.2 Calling Functions and Basic IO

In this section, we will learn how to do basic input/output in a program, and
also learn how to call some standard functions.

Reading

• Read section “Value declarations” of chapter 2 in [ocaml-book].

• The Pervasives module, which can be found in [main-ref], Part IV un-
der the core library. All functions defined in the Pervasives module are
available without opening the module, i.e., they are available by default.

Example

The following program (examplebasicio.ml):

(* Simple demo of input/output *)
let main =

let _ = print_endline "What is your name?" in
let yourname = read_line() in
print_endline ("Hello " ˆ yourname);
print_endline "Good bye"

Some comments of the example

• The top declaration of main declares an expression, which is evalutated
directly.

• Local let -bindings of form let x=e1 in e2 evaluate first e1 to a value
and then binds this value to x . The value is then available in e2 under
name x .

• Local declarations can be named using a wildcard name _, which is used
when e.g., the result is discarded.

• A sequencing operator e1;e2 first evaluates e1 , then evaluates e2 , and
finally returns the value of e2 .

The program is easily compiled into byte-code using the following command:

ocamlbuild examplebasicio.byte --

The two dashes -- make the program to be executed directly after compilation.

6

Task

Create a program that reads in the length of two sides of a right angled triangle
(using standard input), computes the length of the third side, and prints out the
result. Use the sequencing operator ; instead of let with wildcards2. Questions
to be answered:

• What are the types of the operands of the sequence operator e1;e2 ?
What is the difference of using let with wildcard?

• Why are function calls sometimes useful, even if we do not always use
their return value? What is this called?

2.3 Defining Functions with Recursion

In the previous sections, we have called functions, but not defined our own func-
tions. Moreover, since OCaml is a statically strongly typed language, meaning
that type errors are discovered at compile time, it might come as a surprise that
we do not need to specify any types in the programs. The reason for the latter
is called type inference.

Readings

• Skim the API for the Numlibrary in [main-ref] under Part IV.

• Take a look at the API for module Printf , in Part IV in [main-ref]. The
module is located under heading The standard library.

Example

Consider the following example (examplefunction.ml):

open Printf
open Num

let pow x = x * x

let rec fact n =
if n = 0 then 1 else n * (fact (n - 1))

let rec factbig n =
if n =/ Int 0 then Int 1 else n * / (factbig (n -/ Int 1))

let main =
let x = read_int() in
printf "%dˆ2 = %d\n" x (pow x);
printf "%d! = %d\n" x (fact x);
printf "Bigint: %d! = %s\n" x (string_of_num (factbig (Int x)))

• The open construct can be used to open up (i.e., import) module defini-
tions. In this case, we make use of the printf module, which is a type
safe variant of C-style printf.

2You may of course use the let construct for binding variables in your program

7

• We define a function pow, which has one parameter x . Functions are
defined using the let -construct.

• If a function is assumed to be recursive, i.e., to be able to call itself,
the function is defined using construct let rec . The factorial function
exemplifies the recursive definition.

• if -expressions have the form: if expr1 then expr2 else expr3.

• Note that no types are given. The OCaml compiler infers the types of the
functions and the parameters. For example, the fact function has type
int -> int , meaning that it takes an integer as input and returns an
integer.

• Numbers quickly become too big (test e.g. fact 100). In the definition
factbig we are using arbitrary-precision numbers using the Numlibrary.
Note, for example, that integers must be converted to the num type, e.g.,
expression Int 1 in the true branch in factint constructs an integer
number. See the documentation for details.

To compile the example, the Numlibrary must be given as input to ocamlbuild :

ocamlbuild -libs nums examplefunction.byte --

Task

Create a program containing two variants of the general power function, which
computes xn, where both x and n are inputs to the function. In the first power
function called power_naive , x should be multiplied n times.

In the second version, power_fast , a much more efficient variant should
be implemented, by using a divide-and-conquer approach. For example 39 needs
9 multiplications with the naive approach, but only 4 multiplications using an
efficient variant. Consider the formula 3 ⋆ ((3 ⋆ 3) ⋆ (3 ∗ 3)) ⋆ ((3 ∗ 3) ∗ (3 ∗ 3)).
Only the ⋆ multiplications need to be computed, since the other results can be
reused.

Finally, implement a test function which tests that the two functions are
semantically equal, by executing them with x = 2 and for all values of n between
0 and 1000. Test also to compile and run a native version, using command

ocamlbuild yourprogram.native --

Some hints:

• Define separate square and even functions.

• Test the naive function first with normal integers and then with the Num
type.

• Use the Num library for arbitrary sized integers. Note that you need to
use comparison functions etc. from the Numlibrary.

• If you are using Emacs and the Tuareg mode (recommended), you can
evaluate a region in the toplevel mode by command (C-c C-r). The output
both displays value and types.

8

• Note that mod_numis a function, i.e., it is used with prefix notation and
not infix.

Questions:

• How much faster is power_fast compared to power_naive ?

• How much faster is the native version, compared to the byte compiled?

2.4 Lists and Pattern Matching

The list data structure is one of the most useful constructs in functional lan-
guages. They are both fast and flexible to use.

Readings

• Section Type declarations and pattern matching in [ocaml-book], chapter
2.

Example

Consider the following example (examplelist.ml):

open Printf

let rec mullist lst n =
match lst with

| x::xs -> x * n::(mullist xs n)
| [] -> []

let rec list2str lst =
match lst with

| x::xs -> sprintf "%d\n%s" x (list2str xs)
| [] -> ""

let main =
print_endline (list2str (mullist [10;3;5;23;99] 10))

Some comments:

• Lists are constructed using a brackets, e.g. [2;4;7] is a list of integers.

• The type of a list is elemtype list , where elemtype is the type of the
element in the list. For example, an integer list has type int list and
the type of a floating point list is float list .

• The mullist function uses pattern matching to deconstruct the list lst ,
bind pattern variables x and xs , multiply with n, and then recreate the
list recursively.

• The infix operator :: is the cons construct. For example, in expression
l::ls , l is the first element of the list and ls the rest of the list. Hence,
list [2;4;7] is actually an abbreviation for 2::4::7::[] , where [] is
the empty list.

9

• Function list2str uses sprintf to create a string representation, which
is finally returned.

Task

Create a program that defines two functions:

• mklist which takes a list of integers as input, multiplies each value with
10 and then filters out the values which are larger than 100.

• strlst which takes a list of integers as input and returns a pretty printed
string as a formatted list, where all elements are enclosed within parenthe-
ses and each element separated by a comma. For example (3,23,12,99) .

Use the following line of code as the main function:

let main =
print_endline (strlst (mklist [3;11;55;8;23;88;6]))

Hint:

• Add an extra boolean parameter for handling the printing of the first
comma in strlst .

Question:

• What are the types of the elements of a cons expression?

• What is the associativity of cons?

• What are the types of the two functions you defined?

• Are these functions flexible and reusable?

2.5 Higher-Order Functions, Tuples, and

Currying

In this section, we will introduce some of the key concepts of functional pro-
gramming languages: higher-order functions, lambdas, currying, and partial
application:

Example

Functions in functional programming languages are first class, i.e., they can be
passed around as any other value. Higher-order functions are functions that
can take functions as input and/or create and return new functions.

Tuples is the simplest form of compound type (also called product type),
containing a fixed number of ordered values, where each value can have a dif-
ferent type. For example, the tuple (21,"str",false) has three elements.
The type of this tuple is int * string * bool . The star notation (*) of
the tuple type is analogous to the set-theoretical style where * denotes the
cartesian product. For example triple (x, y, z) ∈ Z × R × Z can in OCaml be
written as tuple (x,y,z) with type int * float * int , where float is
an approximation of R.

10

Anonymous functions (also called lambda abstractions) are expressions and
have no given names. For example, the anonymous function fun x -> x + 1 ,
has a parameter x , a body x + 1 , and a type int -> int , where the left hand
side of the arrow is the type of the parameter, and the right hand side the type
of the return value.

A function fun (a,b) -> a * b takes a tuple as input and multiplies
its elements. Using lambda abstractions, such a function can be written in so
called curried form:

fun a -> fun b -> a * b

which is equivalent to

fun a -> (fun b -> a * b)

Such a function, can be partially applied, meaning that only the first argument
is supplied, and a new function with the remaining parameter is returned. E.g.,
the expression

(fun a -> fun b -> a * b) 5

is reduced to a new function

fun b -> 5 * b

which is a function and therefore also a value. Lambdas (anonymous functions),
currying, and partial applications are some of the key concepts that make func-
tional programming expressive and useful.

Task

Consider the following code (exampleho.ml):

let foo1 (x,y) = x + (int_of_string y)

let foo2 x y = x + (int_of_string y)

let foo3 x = fun y -> x + (int_of_string y)

let foo4 x = fun y -> x + (int_of_string y)

let foo5 = fun (x,y) -> x + (int_of_string y)

let foo6 = fun x y -> (x + (int_of_string y), y, x)

let foo7 f x = f x

let foo8 g f = fun x -> g (f x)

Questions and tasks for the above:

• Which of the above definitions are in curried form and which are not?

• Which are the types of the expressions above?

• Which of the above definitions are equivalent?

• Are function types right or left associative? Why?

11

• One of the above definitions defines mathematical function composition.
Create a new function that composes the result of partially applying the
built-in function (+) to the argument 100 and the function string_of_int .
What is the resulting type of the new function?

Hint:

• Use the interactive toplevel functionality in the Tuareg mode in Emacs.

2.6 Map, Filter, and Parametric Polymorphism

In Section 2.4 we defined two simple functions over lists. However, these were
specific to certain types and thus not very reusable. In this section, we shall
develop two generic reusable functions for handling lists: map and filter .

Example

Consider the following example:

let main =
let lst = [3;11;55;8;23;88;6] in
let newlst = filter (fun x -> x > 100)

(map (fun x -> x * 10) lst) in
print_endline (strlst newlst)

Here we assume that we have two functions, map and filter . The expression
map f l returns a new list, where the function f is applied to each element
in list l . The expression filter f l returns all elements of the list l , that
satisfies the predicate function f . This example shows how the reusable higher-
order functions map and filter are applied to anonymous functions (lambda
functions). The example performs the same operation as in Section 2.4. Now,
consider the following example:

let swap (x,y) = (y,x)

The function swap has one parameter, which is a tuple. It returns a new
tuple, where the two elements of the tuple are swapped. What are the types of
variables x and y? The type of swap is as follows:

’a * ’b -> ’b * ’a

This type is inferred by the OCaml compiler. It shows that swap is a function
from a tuple to a tuple, and that the elements’ types are ’a and ’b . Identifiers
starting with an apostrophe ’ are called type variables, meaning that they can
be bound to any type. Hence, the swap function is said to be polymorphic, (poly
= many). The opposite is called monomorphic. Hence, swap can be used with
different types, in different setting. For example, all these three expressions are
valid:

swap(12,79)
swap("hello",32.1)
swap((false,8),[21;43;99])

This kind of polymorphism is called parametric polymorphism. A different kind
of polymorphism, used in object-oriented languages, is called subtype polymor-

phism.

12

Task

Implement functions mapand filter and test the example above. Also, answer
the following questions:

• What are the types of the two functions?

• Why are these functions polymorphic? Compare with the types in Sec-
tion 2.4. Explain by giving examples where polymorphism is used.

2.7 List Module and Pipe-Forward

Fortunately, we do not have to implement all these standard higher-order func-
tions ourselves; they are available in standard libraries. However, nesting these
functions as in Section 2.6 can give code that is hard to read. In the language
F#, there is a beautiful solution called the pipe-forward operator, which is not
available in OCaml by default, but can easily be defined.

Reading

Skim the APIs for modules List and String , in Part IV in [main-ref]. The
modules are located under heading The standard library.

Example

The pipe-forward operator can be defined as follows:

let (|>) x f = f x

It can then later be used as an infix operator, e.g., e1 |> e2 , where e1 and
e2 are expressions.

Task

Implement the example in Section 2.6 using the pipe-forward operator, anony-
mous functions, and only standard functions available in the List -module, e.g.,
function strlst should not be used. Hints:

• A function in a module can be called without opening the module, e.g.
List.map f l calls the map function in the List -module.

• Use a higher-order function available in the String module to provide
parts of the functionality of strlst .

Questions:

• Why is it not a good idea to write open List at the beginning of the
program?

• What requirement must be fulfilled by functions for them to be useful
with the pipe-forward operator?

• What is the associativity of the pipe-forward operator? Explain by giving
an example.

13

2.8 Tail-Recursion, Accumulators, and Fold Left

Standard recursion is generally very efficient, but if data structures are large
recursion can be both inefficient and require huge amounts of memory. The
solution to this problem is called tail-recursion.

Example

Consider the following function that sums a list of integers:

let rec sum lst =
match lst with

| x::xs -> x+(sum xs)
| [] -> 0

This straight-forward implementation is easy to understand, but will for large
lists consume so much memory that the execution of the program will generate
a stack-overflow error. The problem is that the recursive call is not the last call
before recursion, since we add the integers together when the call returns.

If the recursive call is the last evaluated call in each branch, the function
is called tail recursive. In that case, the compiler will optimize the call to be
iterative internally and the recursion will not consume any extra memory.

A function can be converted into a tail-recursive variant by using an accu-

mulator. Consider the following tail-recursive variant of the sum function:

let rec tsum lst acc =
match lst with

| x::xs -> tsum xs (x+acc)
| [] -> acc

Note how tsum is the last evaluated call3 and that the result is instead accu-
mulated in the new parameter acc . When the end of the list is reached, the
final accumulated result acc is returned.

Task

This task is divided into four sub-tasks:

1. Implement a higher-order list generator function, that generates a list of
length n by calling a function f with the index number of the element of
the list. This function must be tail-recursive. The type of the function
should be:

(int -> ’a) -> int -> ’a list

2. Use the list generator function and test both the sum and tsum functions.
Approximately, at what size does the sum function fail?

3. In the List module, there is a higher-order function called fold_left .
Use this function to sum the values, without defining a recursive function.

3The expression x+acc is an argument to the function call, and since OCaml has a call-

by-value evaluation strategy, this expression is evaluated before function tsum is applied to

its arguments.

14

4. The map function defined in Section 2.6 is not tail-recursive. Neither is
the map function in the standard library. Implement a new tail-recursive
map function called tmap using an accumulator. What inherent behaviour
will this tail-recursive function have if implemented with an accumulator?
Implement a countermeasure for this behaviour, so that map and tmap
behave the same.

Hint:

• For sub-task 3, use the sum function (+) .

15

Chapter 3

Algebraic Data Types

In this chapter, we will explore the concept of algebraic data types. Together
with higher-order functions, this is one of the essential concepts that make typed
functional programming useful in practice.

3.1 Recursive Algebraic Data Types

Tuples and records form product types, which correspond to Cartesian products.
By contrast, variants, a generalization of sum types (also referred to as disjoint

unions) can be used to hold variants of data, that can later be deconstructed
using pattern matching.

Reading

• Read the section “Type declaration and pattern matching” of chapter 2
in [ocaml-book].

Example

The following example can be found in the file examplevariants.ml . An
algebraic data type (a variant) of an expression can be defined as follows:

type expr =
| Float of float
| Add of expr * expr
| Mul of expr * expr
| Pow2 of expr

The keyword type defines a new algebraic type named expr . Each constructor,
e.g., Float is followed by an optional sequence of type declarations. Construc-
tor names must always start with a capital letter and they must be unique in
a file. The type is recursively defined, since each node refer to itself, e.g., Add
refers to expr , which refers to Add.

16

A pretty print function for an expression can be defined as follows:

let rec pprint e =
match e with

| Float(v) -> sprintf "%2.2f" v
| Add(e1,e2) -> pprint e1 ˆ "+" ˆ pprint e2
| Mul(e1,e2) -> pprint e1 ˆ " * " ˆ pprint e2
| Pow2(e) -> pprint e ˆ "ˆ2"

A function can be defined that eliminates a power node and replaces it with
multiplication nodes:

let rec elimpow e =
match e with

| Float(v) -> Float(v)
| Add(e1,e2) -> Add(elimpow e1,elimpow e2)
| Mul(e1,e2) -> Mul(elimpow e1,elimpow e2)
| Pow2(e) -> Mul(elimpow e,elimpow e)

One can define an evaluation function that evaluates an expression1:

let rec eval e =
match e with

| Float(v) -> v
| Add(e1,e2) -> eval e1 +. eval e2
| Mul(e1,e2) -> eval e1 * . eval e2

Finally, a main function can output some examples:

let main =
let e = Mul(Add(Float(12.),Float(7.4)),Pow2(Float(5.))) in
e |> pprint |> print_endline;
e |> elimpow |> eval |> printf "%2.2f\n"

Tasks

The above example contains a number of problems. Your tasks are to eliminate
these problems and to extend the example in the following way:

• The example outputs a warning message. Why is this kind of message
extremely useful? Add code that eliminates the warning.

• The pretty-printer function does not output a correct formatting since the
operator precedence is not printed. Add code that corrects this problem.
The pretty-printing must not introduce more parenthesis than necessary.

• Modify the power node to handle xe instead of just x2, where e is an
expression.

• Assume that operator ˆ is right associative and the other operators are
left associative. Assume also that operators ˆ has highest precedence,
followed by * . Operator + has the lowest precedence.

• You may delete elimpow function in this exercise.

1Recall that +. and * . are float addition and multiplication respectively.

17

• Show in your test program that the implementation handles at least the
following three OCaml expressions correct (both regarding pretty printing
and evaluation of the result).

(3. +. 4.) * . 5. ** 4. * . 2.
9. ** (8. +. 3.)
(2. ** 3.) ** 4.

Some hints:

• It is easier to formulate the expression if you define operators for your
constructors, e.g., define (+:) etc.

• You need to handle both associativity and precedence in the pretty-printing.

3.2 Enumeration, Polymorphic Algebraic Types,
and Options

Reading

• Skim the comparison definitions available in the Pervasives module. It
is available in [main-ref] under the core library in Part IV.

Example

Enumeration types are useful when defining a finite set of possible values. This
is defined in OCaml by using algebraic data types without any extra fields. For
example:

type month = January | February | March | April | May | June | July |
August | September | October | November | December

Using the methodology given in the previous chapter, it is easy to define a tree
data structure for storing months:

type monthtree =
| MNode of month * monthtree * monthtree
| MLeaf

This example shows a binary tree of months. For example, the following ex-
pression is a value of type monthtree :

MNode(February,MLeaf,MNode(April,MLeaf,MLeaf))

However, this tree just works for storing values of type month . Would it not be
possible to create a polymorphic tree, which can store values of any type? Yes,
it is indeed possible. Here is an example:

type ’a tree =
| Node of ’a * ’a tree * ’a tree
| Leaf

Similar to type variables used in parametric polymorphism for functions, the
variant type is parameterized by a type. The type variable ’a is bound to a
concrete type when a value is created. For example, the generic tree can be
used with the month type

18

Node(February,Leaf,Node(April,Leaf,Leaf))

or with integers

Node(81,Node(10,Leaf,Leaf),Node(33,Leaf,Leaf))

but not with a mixture of both

Node(81,Node(10,Leaf,Leaf),Node(November,Leaf,Leaf))

Finally, by default, there is an option type available in the OCaml language.
It is defined with the following type definition

type ’a option = Some of ’a | None

option types are useful for example if a function should either return a result
value, e.g. Some v where v is a value, or None, if there were no value to be
returned.

Task

Create an implementation of a binary search tree. The tree should be able
to store key value pairs of arbitrary type. The following functions should be
implemented:

• empty() , returns an empty tree.

• insert k v t , which inserts a key k and a value v into the tree t . If
the key already exists, it should be replaced. Returns the new tree.

• search k t , which returns Some v if the key is found and otherwise
None.

• fold f t a , which walks the tree using in-order traversal. The function
fold should perform a right fold, similar to List.fold_right , but
where both the key and the value are parameters in function f . I.e.,
function fold shall have type

(’a -> ’b -> ’c -> ’c) -> (’a * ’b) tree -> ’c -> ’c

Demonstrate how you can

• Insert the following list into a tree

let mylist = [(32,"functional");(3,"I");(821,"fun");
(442,"is");(8,"think");(99,"programming")]

• Map each element in the list [3;77;821] to a string using List.map .
The higher-order function that is supplied to List.map should use func-
tion search to find the key in the tree that you created in the item above,
and then return the value associated with the key. If no key was found,
string "am" should be returned. Finally, print out the list.

• Use function fold to create a list of all the values (excluding the keys).
Print this list of string values.

Hints:

• The tree does not need to be balanced.

• Use the polymorphic comparison functions available in the Pervasives
module.

19

3.3 Type Inference - Revisited

Parametric polymorphism as available in most modern functional languages
(e.g. OCaml and Haskell) is called let-polymorphism or Hindley-Milner, or
Damas-Milner polymorphism. As we have seen, it is capable of inferring the
types of terms, including function parameters. This is called an implicitly typed

language. In other languages, e.g., Java, types of function parameters must be
explicitly given. Hence, such languages are explicitly typed.

All the above languages have static type checking, meaning that type check-
ing takes place at compile time2. In other languages, all checking takes place at
run time, when the corresponding code is executed. For example, LISP, Python,
and Ruby all have dynamic checking.

Task

Answer and solve the following questions/problems:

• With let -polymorphism, if the type checker returns an inferred type, this
type is called the principal type or the most general type. Give an example
of a function where the most general type is inferred by the type checker.
Also, annotate one of the function’s parameters so that a less general type
is inferred. Hint: A parameter in a let expression can be given a type
using the syntax (x:type) , where x is the parameter name.

• Explain by giving an example the difference between omitting types in
a statically typed language with type inference, and a language with dy-
namic checking. Which pros and cons can you see?

2However, certain checks are still performed at run-time, e.g., array-out-of-bound checks

20

Chapter 4

Lambda Calculus

The lambda calculus is the fundamental mathematical theory behind functional
languages. It was invented by Alonzo Church in the 1930s and numerous texts
have been written about it.

In this chapter, we will investigate the fundamentals of the lambda calculus
by implementing a small-step semantics interpreter for the untyped lambda
calculus.

Reading

Before proceeding it is recommended that the following texts are read:

• Chapter 2.1-2.3 in Simon L. Peyton Jones’ text The implementation of

functional programming languages [3].

• Section 5.1 and 5.3 in Benjamin C. Pierce’s book Types in Programming

Languages [4].

Note that there is a direct correspondence between lambda terms in the lambda
calculus, and anonymous functions in OCaml. For example, the identity lambda
abstraction λx.x is equivalent to the OCaml expression fun x -> x .

4.1 Small-step Interpreter

The call-by-value evaluation strategy is the most common evaluation strategy in
modern programming languages. Examples of languages that have call-by-value
as the default evaluation strategy are Standard ML, OCaml, C/C++, and Java.

In this section you shall implement a small interpreter. The purpose of this
exercise is both to get a fundamental understanding of the lambda calculus and
to learn how to extend an already existing OCaml program.

Task

Implement a call-by-value small step interpreter according to the semantics
from [4] on page 72. Base the implementation on the partial implementation
lambda.ml available in the example bundle. The implementation should have
the following properties:

21

• Create a pretty printer function that takes a term as input and returns
a pretty printed string of the term. For example, the identity lambda
abstraction can be printed as (lam x.x) .

• Implement the substitution function [x 7→ s]t. The substitution function
does not need to be capture-avoiding, but it must halt and printout an
error message if a name would be captured. Hence, a “capture-disallowing-
substitution” function should be implemented.

• Implement a function that returns the set of free variables of a term. This
function must be used in the substitution function above.

• Implement the evaluation step relation t −→ t′ as a function called step ,
which takes a term as input and returns Some t if the term was reduced,
else None.

• Implement a function isvalue which returns true if a term is a value.

• Implement an eval function, that reduces a term until it cannot be re-
duced any more.

• The final term should be printed to standard out and it shall also be
printed if the output is value, or if the term is stuck.

• Add a program command flag --steps which should print out each eval-
uation step if enabled.

The main files in the current existing project are:

• File lambda.ml - the main file.

• File lexer.mll - the definitions of the lexical analysis. The file ending
.mll indicates that this is special lexer file (see [main-ref], Part III “Lexer
and parser generators”).

• File parser.mly - the grammar for parsing lambda expressions. File
ending .mly is a special file for describing grammars for parsing.

• File ast.ml - the abstract syntax definition, i.e., the term data type.

• File info.ml - types for the info data structure, which is used for giving
good error messages (row and line positons).

• File msg.ml - file for handling error messages, e.g., lexical errors, parse
errors, and run-time errors.

• Files ustring.mli 1 and ustring.ml - a unicode string module used
for parsing unicode files.
See http://www.ida.liu.se/ ˜ davbr/ocaml/ustring for more in-
formation. Note that information for sub module String.Op is available
on a separate page in the documentation.

• File test.lam is an example input file to the lambda program.

1File ending .mli is the interface file of a module. Details about modules will be given in

Chapter 5.

22

http://www.ida.liu.se/~davbr/ocaml/ustring

Hints:

• Program arguments are accessible from Sys.argv . See standard library
module Sys for more information. See also standard library module
Array for handling the program arguments.

• Use pipe-forward in the evalprog function.

• Pattern guards with syntax | pat when guard -> exp can be used to give
a condition when a pattern should match. For example

match t with
| Intval(x) when x > 10 -> x

matches when x is a value larger than 10.

• Patterns can be both nested and bound to new names using the as con-
struct. For example, in

match tm with
| TmApp(fi,(TmLam(_,x,t) as tt),s) -> ...

the pattern variable tt will be bound to the matching value of pattern
TmLam(_,x,t) . Note also how the pattern for constructor TmLamis
nested within TmApp.

• If nested match cases are used, the inner most match case must be enclosed
within parentheses. Otherwise type error messages that are really hard to
understand will be reported.

• When a variable is captured, an exception can be raised. An exception
Runtime_error is defined in lambda.ml and can be raised using the
following expression:
raise (Runtime_error (VARIABLE_CAPTURED,ERROR,fi,[y]))
where fi is the info structure carried around in the terms and y has type
ustring and is the name of the captured variable. The details about
exception handling is given in Section 6.2.

• When implementing the interpreter, use the partial definition at the top
of page 71 in Pierce book [4], instead of the total function definition at
the bottom of the page. The reason is that you are not implementing
α-conversion.

4.2 Call-by-value

In the following section, different lambda terms shall be investigated.

Task

Evaluate the following terms by hand on paper and then verify your solution in
the interpreter.

1. (λx. x y)(λz. z)

23

2. (λx. λy. z x)((λz. z)(λx. y x))

3. (λy. λx. x y)(λz. λx. x)(λz. z)

4. (λx. x x)((λy. λz. y z)(λz. z)(λy. y y))

5. (λx. λy. x y (λv. λw. w))(λv. λw. v)(λv. λw. w)

For each of the terms above, answer the following:

• Which of the following lambda terms get (i) stuck, (ii) name-captured, or
(iii) is a value? If a name gets captured, which variable in such a case?

• Does the resulting term have free variables?

• Does any term result in an unexpected behaviour? If so, what happened?

• Which terms are α-equivalent, i.e., are equivalent after evaluation to nor-
mal form and α-conversion?

4.3 Call-by-name and Confluence

Another evaluation strategy is call-by-name, where the beta reduction occurs
without reducing the argument of an application term.

Confluence

The so called Church-Rosser Theorem I holds for the lambda calculus (see [3]
Section 2.3.1 for a description). This theorem coincide with a property called
confluence [1]:

Lemma 1 (Confluence) If t −→
∗ t1 and t −→

∗ t2 then it exists a t3 such

that t1 −→
∗ t3 and t2 −→

∗ t3.

Note that relation −→
∗ denotes the reflexive transitive closure of evaluation

relation −→, i.e., that the evaluation can take 0 to n steps.

Task

Extend the interpreter by giving the option of having a call-by-name evaluation
strategy instead. Make this extension optional by adding a program switch
--cbn to enable call-by-name. After that the implementation is completed,
answer/solve the following for term (λx.λy.x)((λz.z)(λx.λy.x))

• What is the reduction sequence using call-by-name?

• What is the reduction sequence using call-by-value?

• Are call-by-name and call-by-value evaluation giving the same final result?

• Justify that the term (λx.λy.x)((λz.z)(λx.λy.x)) is confluent under eval-
uation strategy full beta-reduction, i.e., that any redex can be reduced at
any time. Hint: Show all possible evaluation sequences.

24

4.4 Call-by-need

Languages that implement a lazy evaluation strategy evaluates terms similar to
call-by-name, i.e., terms are substituted without first evaluating the argument.
However, to avoid that the same argument is evaluated many times, so called
call-by-need evaluation only evaluate the same term once. Run-time implemen-
tations require sharing between terms, to avoid re-computation. A language
that supports lazy evaluation and call-by-need is Haskell.

Task

Give a lambda term that would result in re-evaluation of terms in the call-
by-name setting, but not in call-by-value. Show the reduction steps in both
cases.

4.5 Programming in the Lambda Calculus

The untyped lambda calculus is Turing complete, meaning that the evaluation
rules are enough to compute anything that is possible to compute on a computer.
In this section, we will show a number of different Church encodings, including
Church numbers, which enable to program directly in the lambda calculus!2.

Reading

• Section “Recursion” on pages 65-67 in [4].

• Section Lexer and parser generators in Part III of [main-ref].

Example

We will in the following section list a number of encodings that will later be
used in the task. The syntax used means that to the left of the equal sign we
have the definition name, and to the right we have the lambda expression. We
will also use already defined names on the right hand side. Church booleans
can be defined as follows:

true = λt. λf. t

false = λt. λf. f

A conditional if-expression

if = λb. λv. λw. b v w

where if b v w reduces to v if b is true and w if b is false. Some boolean operators
and comparison

and = λb. λc. b c false

or = λp. λq. p p q

2Note that this computation is highly inefficient and is only useful from a theoretical point

of view of what is computable in the lambda calculus. Modern functional languages represent

these encodings in completely different ways

25

Tuples can be defined using pair and elements extracted using a first (fst) and
second (snd) functions

pair = λx. λy. λz. z x y

fst = λp. p (λx. λy. x)

snd = λp. p (λx. λy. y)

Church numbers for numbers 0-5 are as follows:

c0 = λs. λz. z

c1 = λs. λz. s z

c2 = λs. λz. s (s z)

c3 = λs. λz. s (s (s z))

c4 = λs. λz. s (s (s (s z)))

c5 = λs. λz. s (s (s (s (s z))))

The following expressions operate on church numbers

add = λm. λn. λs. λz. m s (n s z)

succ = λn. λs. λz. s (n s z)

pred = λx. fst(x (λp. pair (snd p)(add c1(snd p)))(pair c0 c0))

sub = λm. λn. n pred m

mul = λm. λn. m (add n) c0

iszero = λm. m (λx. false) true

leq = λm. λn. (iszero (sub m n)

equal = λx. λy. and (leq x y)(leq y x)

Finally, the fixed-point combinator for call-by-value

fixv = λf. (λx. f (λy. x x y)) (λx. f (λy. x x y))

and for call-by-name

fixn = λf. (λx. f (x x)) (λx. f (x x))

Task

Play around and test different expressions, e.g. pairs, boolean formulas, integer
operations etc. Attach these tests in your solution. Also, compute the factorial
expression 4! using Church numbers with the call-by-name evaluation strategy.
How many evaluation steps were required? Some hints:

• Extend the implementation with a let construct. The let construct can
be constructed using a syntactic sugar consisting of a lambda abstraction
and an application term. Add the let syntactic sugar in Parser.mly
in term production.

• You might want to consider turning off the check of free variables due to
performance reason.

26

• Note that the church numbers do not get a normal form if you do not use
normal order evaluation. In the call-by-value or call-by-name setting, it is
enough to check that the expected result is correct, e.g. to use the equal
definition.

27

Chapter 5

Modules and Abstract Data
Types

Good programming design separates source code into well defined modules.
Modules should have high cohesion, i.e., functions within a module should be
strongly related. At the same time, good design also emphasizes low coupling,
i.e., that there should be few dependencies between modules and that existing
dependencies should be acyclic.

Another reason for dividing programs into separate modules is that this
enables separate compilation, that each module can be compiled independently
and only if necessary due to source code changes. The tool ocamlbuild makes
this process both smooth and fast, by only compiling modules where the source
code has been changed since the last time, and by compiling several modules in
parallel.

In this chapter, we will introduce both how to use and how to write modules
in OCaml. Moreover, we will introduce the concept of functors, which enables
generic and reusable libraries.

Recommended reading for this chapter is as follows:

• Section The module system in Part I of [main-ref].

• Section Modules in [ocaml-tutorial].

5.1 Modules and Abstract Data Types

In this section, we will introduce how to write simple modules and to make use
of abstract data types.

Example

Consider the following implementation of a simple stack (myintstack.ml):

type t = int list

let create() = []

let push element stack = element::stack

28

let pop stack =
match stack with

| x::xs -> xs
| [] -> []

let top stack =
match stack with

| x::xs -> Some x
| [] -> None

let length stack = List.length stack

let empty stack = length stack == 0

The data type for representing the stack is a standard integer list. The rest of
the implementation should be straight forward to understand and without any
surprises. However, note that the stack is pure functional, i.e., there are no side

effects involved. Both push and pop return new data structures.
The stack can be used as follows (examplemodule.ml):

open Printf
open Utils
open Myintstack

let rec printstack s =
match top s with

| Some e -> printf "%d\n" e; printstack (pop s)
| None -> ()

let main =
create() |> push 4 |> push 2 |> push 8 |> printstack

Note how we here open up Myintstack using the open construct. We have
now created a simple module called Myintstack , but the problem is that we
have also exposed the internal representation of the stack, i.e., that we are
using a list for storing the stack. It is good practice to encapsulate such internal
information and to hide such details from the user of the module. The technique
to solve this problem is to define an abstract data type. Consider the following
file (myintstack.mli):

(** A simple implementation of an integer stack *)

type t
(** Abstract type of the stack *)

val create : unit -> t
(** [create ()] returns a new empty stack. *)

val push : int -> t -> t
(** [push e s] pushes an element [e] to the top of stack [s] and

returns the new stack *)

val pop : t -> t
(** [pop s] removes the top element from stack [s] and returns the new

29

stack. If stack [s] is empty, an empty stack is returned. *)

val top : t -> int option
(** [top s] return the top element of stack [s] as [Some e]. If

stack [s] is empty, [None] is returned. *)

val empty : t -> bool
(** [empty s] returns true if stack [s] is empty, else false. *)

An .mli file specifies the interface of a module, while the .ml file with the
same name, specifies the implementation. The following main observations can
be made in the example:

• The type definition type t has not been given any concrete type defini-
tion. This makes the stack type abstract for the outside world, and hides
the details of the actual representation of t .

• The interface specifies the signature of the module, stating both which
values that are available to the outside of the module and which types
these values have. Note that for example the function length is not
available in the inteface and is therefore only accessible inside the module.

• Special comments starting with (** are used for documenting the func-
tions. Using OCaml tool ocamldoc html documentation for modules can
be automatically generated.

Task

Create an abstract data type for a Integer Queue (first in-first out). Implement
at least functions create that creates an empty queue, enqueue which adds
an element to the queue, dequeue that removes the first element in the queue,
peek which returns the first element, and length that returns the number of
elements in the queue. The implementation should be pure functional. What is
the complexity of your implementation?

5.2 Functors

We have in previous chapters seen several usages of modules, e.g., the List
and Printf module. One of the main goals for a module is to be reusable in
different contexts and at the same time efficient. For example, our integer stack
defined in the last section was efficient (constant time operations), but not very
flexible since it can only handle stacks of integers. Is it not possible to create
modules that can be defined to use arbitrary type? Yes, indeed, and the concept
is called functor1 and is basically “functions” from modules to modules, i.e. a
module parameterized by another module.

1Note that the term functor can have different meanings in different contexts. E.g., in

category theory, it is a mapping from one category to another. In Haskell, it is a name of

a type class. In these notes, the term functor refers only to the functor concept available in

OCaml.

30

Example

Consider the following example (exampleset1.ml):

open Utils
open Printf
module StrSet = Set.Make(String)

let main =
let s1 = StrSet.empty |> StrSet.add "hello" |> StrSet.add "ther e" in
let s2 = StrSet.empty |> StrSet.add "we" |> StrSet.add "live" in
let s3 = StrSet.union s1 s2 in
StrSet.iter (printf "%s\n") s3

In the third line, the functor Make that is available in module Set is applied to
argument String . Since String is a module, the functor is applied to another
module. The resulting module is named StrSet , which is the one that is used
in the main function. In the example, we create two sets s1 and s2 , takes the
union of the two sets, and prints all elements.

If one considers the interface of the Set module (take a look [main-ref]
now!), there are three sub-modules defined

module type OrderedType = sig type t
val compare : t -> t -> int

end

module type S = sig .. end

module Make:
functor (Ord : OrderedType) -> S with type elt = Ord.t

where sig .. end means that the actual signature of the sub-module is not
shown here. Consider the last functor Make. It takes a module as input that
should correspond to module type OrderedType . This is the signature describ-
ing both the type of the element that should be used in the set type t and the
comparison function that compares two elements of type t . The comparison
function should return 0 if the two elements are equal, a negative integer if the
first element is less than the second, and a positive integer if the opposite.

The second module type is S, which is the module type of the output from
functor Make. Hence, this is the signature of the actual set that is defined (in
our example above StrSet).

Since we created StrSet by applying functor Set.Make to module String ,
we know that the signature of String conforms to OrderedType . Finally, the
with construct at the end of the functor declaration states that element type
elt in signature S is equal to type t of OrderedType .

The example above uses a set of elements, where the type of the element
already has a defined module for module type OrderedType . Consider the
next example (exampleset3.ml):

open Utils
open Printf

type person = {name:string; age:int}

module OrderedPerson =

31

struct
type t = person
let compare x y = compare x y

end

module PersonSet = Set.Make(OrderedPerson)

let main =
PersonSet.singleton {name="John"; age=33}

|> PersonSet.add {name="Anna"; age=57}
|> PersonSet.add {name="John"; age=10}
|> PersonSet.iter

(fun p -> printf "name=%s, age=%d\n" p.name p.age)

In this example, we have first defined a standard OCaml record, with two fields
name and age . Our goal is to use elements of type Person to be put into a set.
Hence, we define a new module OrderedPerson which conforms to module
type OrderedType . The comparison function is using the standard polymor-
phic comparison function compare , which is available in the Pervasives
module. The rest is similar to the previous example. When running the pro-
gram, all three elements were printed to standard output. What if we want
to make the person with a certain name unique, i.e., that the name “John”
would only exist once in the set? If we switch the definition of compare in
OrderedPerson to the following

let compare x y = compare x.name y.name

we get the desired result (see exampleset3.ml).

Task

The task is divided into two sub-tasks:

• Use the data structure defined in the module Map to achieve the same
effect as in the last example, i.e., define a map from string to integer
(name to age). Test your program with several data elements.

• Define a new module TeamSet which is a new set, where each element
has the type of the person to age map; defined in previous sub-task.

Hint:

• Note that the type of an element in a module PersonMap is ’a t , where
’a is the type variable of the parmeterized type t . Hence, in this case, a
map created by PersonMap and used in a context where the co-domain
of the map is int , would be int PersonMap.t .

5.3 Generic Containers

In Section 5.1 we created an abstract data type for an integer stack. Can we
make it more generic using functors? Actually, functors is overkill in this case.
It is enough to make the abstract type parametrized.

32

Example

In this last section of the chapter about modules, we shall take a look at
how to define generic modules. Consider the new generic implementation of
mystack.ml :

type ’a t = ’a list

let create() = []

let push element stack = element::stack

let pop stack =
match stack with

| x::xs -> xs
| [] -> []

let top stack =
match stack with

| x::xs -> Some x
| [] -> None

let length stack = List.length stack

let empty stack = length stack == 0

The only difference compared to myintstack.ml is that type t now is pa-
rameterized and have a defined type variable ’a . The following listing shows
the interface (mystack.mli):

(** A simple implementation of a generic stack *)

type ’a t
(** Abstract type of the stack *)

val create : unit -> ’a t
(** [create ()] returns a new empty stack. *)

val push : ’a -> ’a t -> ’a t
(** [push e s] pushes an element [e] to the top of stack [s] and

returns the new stack *)

val pop : ’a t -> ’a t
(** [pop s] removes the top element from stack [s] and returns the new

stack. If stack [s] is empty, an empty stack is returned. *)

val top : ’a t -> ’a option
(** [top s] return the top element of stack [s] as [Some e]. If

stack [s] is empty, [None] is returned. *)

val empty : ’a t -> bool
(** [empty s] returns true if stack [s] is empty, else false. *)

Type t is here changed to be parametrized and all function types now include
the type variables. Note also that the places where it was stated int before,

33

not have the type variable. Note also that it was only the interface that needed
to be changed, since the implementation’s types was inferred.

Finally, the stack can now easily be used with different data types:

open Printf
open Utils
open Mystack

let rec printstack prn s =
match top s with

| Some e -> print_endline (prn e); printstack prn (pop s)
| None -> ()

let main =
create() |> push 4 |> push 2 |> push 8 |> printstack string_of_ int;
create() |> push "my" |> push "name" |> push "is"

|> printstack (fun x->x)

Note that we do not have to create a specific module depending on if the stack
should contain integers or strings. As long as the type checker can infer the
types, the type parameter is implicitly substituted when it is used.

Task

Implement a new generic queue, corresponding to the one implemented in Sec-
tion 5.1, with the difference that this implementation should be able to take any
element. Try also this time to implement a more efficient version of the queue,
where all of the operations have a better amortized cost than O(n), where n is
the number of elements in the queue. You do not need to analyze the complexity.
Hint: Use two lists. Question:

• Why could we create these generic containers without using functors?
Why is a functor necessary for the Set module? What is the difference?

34

Chapter 6

Side Effects

OCaml is part of the meta language (ML) family. These languages are functional
languages, but not pure functional languages. In contrast to Haskell or Clean,
allows OCaml side effects. Recommended reading:

• Chapter 3 “Imperative Programming” in [ocaml-book].

• API for Hashtbl in [main-ref].

6.1 References and Mutable Records

So far, we have been programming in a pure functional way; with the exception
of input/output, e.g., use of printf and sequencing of commands using ; . In
imperative languages, e.g., Java or C, mutable variables are the foundation of all
computation. However, in a pure functional style, we do not have any mutable
cells - variables can only be bound once. This is what we have been doing until
now.

Example

A mutable variable is created using a ref v expression, where v is the initial
value of the mutable variable. For example

let x = ref 0
let y = ref ["my";"name"]

where the type of x is int ref and the type of y is string list ref .
References are as they sounds a reference to a value, a “pointer”. They can be
passed around as any value. To be able to use the value that the reference is
pointing to, the reference must be explicitly dereferenced. Dereferencing is done
with the exclamation mark !r , where r is the reference. For example, to print
x it must first be dereferenced.

let _ = printf "%d\n" !x

Finally, the third operation that uses references is to modify values that ref-
erences are pointing to. This is done with an assignment expression x := v
where x is a reference and v is a value. After that the assignment expression
has been evaluated, x will point to value v . For example

35

let z = x
x := 3;
printf "%d,%d\n" !x !z

will print out 3,3 , since z and x are pointing to the same value. This is an
example where referential transparency is lost, since evaluating x := 3 changed
the meaning of the program. The assignment has a side effect; it is not the value
of the expression itself that is of interest (the value of an assignment is always
()). It is the side effect that is the purpose of the assignment.

Finally, records that were introduced in previous sections, are by default
immutable. However, single fields can be defined to be mutable, e.g.

type person = {name : string; mutable age : int}
let p1 = {name = "Anders"; age = 66}

The field can then later be destructively updated

p1.age <- 30

Task

Implement once again the generic queue, this time using references. Make the
complexity for all functions O(1). Question:

• Is the semantics of the module the same as the implementation in Sec-
tion 5.3? In what way is it different (if it is different)?

Hint:

• Define a pointer type

type ’a pointer = Null | Pointer of ’a ref

and make use of mutable fields in records.

6.2 Hash tables and Exceptions

The Mapmodule is a pure functional way for fast lookup (complexity O(log n))
of key/value pairs. Hash tables can be even more efficient, e.g., the hash ta-
ble lookup can be expected to take O(1) time. The drawback is that module
Hashtbl have in-place modification, i.e., it is not side effect free.

Another kind of effect is exception. Exceptions are used for handling and
signaling exceptional conditions or general purpose error messages. Exceptions
are commonly used in the standard library.

Reading

• Library documentation for module Hashtbl in the standard library [main-
ref].

• Definition of standard exceptions in the core library [main-ref].

36

Example

Consider the following example (examplehashtable.ml)

exception My_exception

let translate dict word =
try Hashtbl.find dict word
with Not_found -> "[word not found]"

let main =
let dict = Hashtbl.create 4096 in
Hashtbl.add dict "school" "skola";
Hashtbl.add dict "semester" "termin";
Hashtbl.add dict "ice cream" "glass";
print_endline (translate dict "semester");
print_endline (translate dict "tennis");
print_endline (translate dict "school");
raise My_exception

The first line of the main function creates a new empty hash table with the initial
internal size 4096 elements. If more elements are added later, the dictionary will
automatically expand. However, for best performance, this value should be as
close to the expected size of the table as possible.

Contrary to the Mapmodule, it is not necessary to create a new module using
the Make functor. Both the key and the value of the table are polymorphic and
their types decided using type inference. The reason this example compiles is
that the lines that performs the operation add constrain the keys and the values
to be of type string . If this cannot be solved by type inference, the types can
be explicitly stated when the hash table is created, e.g.

let (dict : (string,string) Hashtbl.t) = Hashtbl.create 4096

In the function translate the lookup of words take place by calling function
find . This function can raise an exception Not_found if the key was not
found. In this example, we catch the example using the try with construct.
If the exception was caught, an error string is returned.

Finally, exceptions can also be user defined and raised when suitable. In the
example, we define a new exception called My_exception . At the end of the
main function we raise it (throw the exception) using syntax raise e where
e is the exception. This exception is never caught and is of course only for
demonstration purpose.

Task

When writing compilers it is a common task to have symbol tables, where it
should be possible to add symbols and to lookup symbols. These symbols are
typically represented as strings and then often mapped to integers, which are
much cheaper to use. Your task is to design and implement a symbol table
module, which maps strings to integers using hash tables. Moreover, it should
also be possible to do the reverse, i.e., to look up the symbol for a specific
integer. Hence, there should be a one-to-one correspondence between strings
and integers. Design the module to raise standard exceptions when necessary.
Implement the module using two hash tables.

37

6.3 Arrays

Arrays are mutable fixed size data structures with fast random access. A number
of functions for arrays are defined in the Array module in the standard library.

Example

Consider the following example (part of examplearray.ml)

let v1 = [|1.;4.;9.|]
let v2 = [|3.;5.;10.|]
let v3 = v1

where two arrays (also called vectors) v1 and v2 are defined. Arrays are muta-
ble, and therefore

v1.(1) <- v2.(2);
Array.iter (printf "%2.2f,") v3;

prints out 1.0,10.0,9.0 . Hence, each element is mutable and let v3 = v1
is just sharing the same mutable array. Most higher order functions (e.g. iter ,
fold_left , map etc.) are also defined for arrays.

It is possible to pattern match directly over arrays, for example

let cross a b =
match (a,b) with

| ([|a1;a2;a3|],[|b1;b2;b3|]) ->
[|a2 * .b3 -. a3 * .b2;

a3* .b1 -. a1 * .b3;
a1* .b2 -. a2 * .b1|]

| _ -> assert false

defines the cross product (also called vector product) for a vector. It is also
possible to create matrices, by defining arrays of arrays, e.g.

let m33 = [|[|3;2;1|]; [|4;2;9|]; [|9;2;8|]|]

which has type int array array .

Task

Implement a new version of the symbol table from Section 6.2. Instead of a
hash table, use an array for the mapping between integers and strings. Let the
array grow by doubling its size when it becomes full. Question:

• When and why would you favour lists over arrays and vice versa?

38

Chapter 7

Algorithm Implementation

7.1 Lossless data compression - LZW (Optional)

In this section, we shall implement lossless data compression using the Lempel-
Ziv-Welch (LZW) algorithm, first published in 1984. It is one of the most famous
data compression algorithms in the dictionary-based compression family and is
e.g., used as the compression algorithm in GIF-files.

In this part, the aim is to learn how to implement an algorithm with bit-
manipulation in a partially functional style in combination with standard data
structures.

Reading

• A good tutorial of the LZW algorithm can be found here[2].

Task (Optional)

Implement a utility that compresses/decrompresses a single file using the LZW
algorithm. Your solution must be tail-recursive and implemented over lists of
bytes (integers). Use hash-tables and arrays for fast string/code lookup. Test
your algorithm on several large files (both binary and text). Hints:

• Unix command hexdump -C file is a good tool to view the hex data.

• Separate your implementation into several modules, e.g., one module for
the LZW algorithms and one for pack/unpack data bits to byte lists.

Questions:

• In the exercise you use data types with side effects (hash table and ar-
rays). Suggest alternative data structures that could have been used for
a pure functional implementation. What are the pros and cons with the
alternatives?

• Give some pros and cons of operating over lists using fold, compared to
using for-constructs in imperative languages.

39

Chapter 8

Conclusions

This short course gave a quick overview of different techniques that can be used
in typed functional programming in general and in OCaml in particular. There
is a lot to explore and the next part about Haskell will introduce new and more
advanced concepts that are useful in pure functional programing.

40

Bibliography

[1] Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge
University Press, New York, USA, 1998.

[2] Mark Nelson. LZW Data Compression.
Dr.Dobb’s Journal, (10), 1989. Available from:
http://marknelson.us/1989/10/01/lzw-data-compressio n/ .

[3] Simon Peyton Jones. The Implementation of Functional Programming Lan-

guages. Prentice Hall, 1987.

[4] Benjamin C. Pierce. Types and Programming Languages. The MIT Press,
2002.

41

http://marknelson.us/1989/10/01/lzw-data-compression/

	Introduction
	Solutions of Tasks
	Installation
	Resources
	Changes

	The Basics
	Basic Types and Expressions
	Calling Functions and Basic IO
	Defining Functions with Recursion
	Lists and Pattern Matching
	Higher-Order Functions, Tuples, and Currying
	Map, Filter, and Parametric Polymorphism
	List Module and Pipe-Forward
	Tail-Recursion, Accumulators, and Fold Left

	Algebraic Data Types
	Recursive Algebraic Data Types
	Enumeration, Polymorphic Algebraic Types, and Options
	Type Inference - Revisited

	Lambda Calculus
	Small-step Interpreter
	Call-by-value
	Call-by-name and Confluence
	Call-by-need
	Programming in the Lambda Calculus

	Modules and Abstract Data Types
	Modules and Abstract Data Types
	Functors
	Generic Containers

	Side Effects
	References and Mutable Records
	Hash tables and Exceptions
	Arrays

	Algorithm Implementation
	Lossless data compression - LZW (Optional)

	Conclusions

