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ABSTRACT

During the last two decades, the interest for computer aided modeling and simulation of
complex physical systems has witnessed a significant growth. The recent possibility to
create acausal models, using components from different domains (e.g., electrical, mechan-
ical, and hydraulic) enables new opportunities. Modelica is one of the most prominent
equation-based object-oriented (EOO) languages that support such capabilities, including
the ability to simulate both continuous- and discrete-time models, as well as mixed hybrid
models. However, there are still many remaining challenges when it comes to language
safety and simulation security. The problem area concerns detecting modeling errors at
an early stage, so that faults can be isolated and resolved. Furthermore, to give guarantees
for the absence of faults in models, the need for precise language specifications is vital,
both regarding type systems and dynamic semantics.

This thesis includes five papers related to these topics. The first paper describes the
informal concept of types in the Modelica language, and proposes a new concrete syntax
for more precise type definitions. The second paper provides a new approach for detecting
over- and under-constrained systems of equations in EOO languages, based on a concept
called structural constraint delta. That approach makes use of type checking and a type
inference algorithm. The third paper outlines a strategy for using abstract syntax as a
middle-way between a formal and informal language specification. The fourth paper
suggests and evaluates an approach for secure distributed co-simulation over wide area
networks. The final paper outlines a new formal operational semantics for describing
physical connections, which is based on the untyped lambda calculus. A kernel language
is defined, in which real physical models are constructed and simulated.

This research work was funded by CUGS (the National Graduate School in Computer
Science, Sweden), by SSF under the VISIMOD II project, and by Vinnova under the
NETPROG Safe and Secure Modeling and Simulation on the GRID project.
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Introduction
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1
Background

COMPUTER aided modeling and simulation of complex physical systems, using com-
ponents from several domains, such as electrical, mechanical, and hydraulic, have

in recent years witnessed a significant growth of interest. General-purpose simulation
tools, e.g., Simulink [53], using block diagrams and causal connections, have dominated
the area for many years. However, during the past two decades a new generation of lan-
guages has evolved. This language category is based on object-oriented concepts and
acausal modeling using equations. This enables better reuse of components resulting in
considerably reduced modeling effort [26]. One such language isModelica[61], which is
an attempt to unify concepts and notation from several research projects and industrial ini-
tiatives. Other examples of languages with similar modeling and simulation capabilities
are gPROMS [6, 68] and VHDL-AMS [18].

This thesis concerns different aspects of safety, security, and semantics of such lan-
guages and their development and simulation environments. The thesis is divided into
an introductionary part, where the background and principles of modeling and simulation
for these kind of languages are described. It is followed by the problem area descrip-
tion, research questions, research method, contributions, related work, and conclusions.
The second part of the thesis contains the main contributing material presented as four
published peer reviewed conference papers and one technical report1.

1.1 Modeling and Simulation

Modeling and the concept of models are today very active areas of research in computer
science as well as in most disciplines of engineering. The termmodel is used in various
settings meaning completely different things, which may unfortunately lead to confusion

1Due to copyright issues, the electronic version of this thesis published at Linköping Electronic Press does
not contain these articles. Instead, links to the published papers are supplied.

3



4 1 Background

and misunderstanding regarding the subject. During the last decades, modeling of soft-
ware has become very popular; especially in industry. One of the main driving forces is
the Model Driven Architecture (MDA) [55] initiative and the popular graphical modeling
framework of the Unified Modeling Language (UML) [66, 67].

This thesis does not concern modeling or languages used for modeling of software
or software systems. Instead, we are primarily interested in languages in whichphysical
systemscan be described as models. To be able to reason about the process of modeling
and simulation, some definitions of terms have to be clarified. The following definitions
are stated in [16], but have first been coined by different authors.

"A model (M) for a system (S) and an experiment (E) is anything to which E
can be applied in order to answer a question about S"

According to this definition, a model can be seen as an abstraction of the system, where
some details of the real system is left out. The definition does not imply that the model
has to be of a certain kind (e.g., a mathematical formula or computer program), only that
experiments should be possible to apply to it to answer questions about the system. A
simulation can be seen as a special experiment:

"A simulation is an experiment performed on a model"

Hence, when we are talking about modeling and simulation, we mean modeling of a
physical system (e.g., a car, an engine, or an electric circuit) resulting in an artifact: the
model. Then, by applying experiments, i.e., perform the simulation on the model, we can
answer certain questions about the physical system that the model describes.

There are many reasons why simulations are beneficial. For example:

• It is too expensiveto perform experiments on real systems.

• It is too dangerous.

• The systemmay not exist, i.e., the model is a prototype that is evaluated and tested
during development.

• Somevariables are not accessiblein the real system, but can be observed in a
simulation.

• It is easy to useand modify models, to change parameters and perform new exper-
iments (simulations).

However, as pointed out in both [16] and [30], the ease of use is also the main danger and
drawback with modeling and simulation. There is a risk to ignore the fact that the model
is only valid under certain conditions, and that the model is in fact an abstraction of the
reality and not the reality itself. Consequently, care must be taken for which simulations
that are suitable to apply on a model, so that the results reach the right level of accuracy.
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1.2 Equation-Based Object-Oriented Languages

In the 1960’s, the first object-oriented language was designed with the initial purpose of
discrete event-based modeling and simulation. This language, Simula [20], founded the
fundamental concepts of object-orientation languages. However, the fundamental prin-
ciples for equation-based object-orientedmodeling and simulation have been around
for about 30 years, starting with the pioneering work explored in two separate PhD
theses[17]: by Hilding Elmqvist[25] and Tom Runge.

Later in the 1990’s and forward, a number of languages for modeling and simulation
of complex physical systems have emerged. For example, Omola [4], Modelica [61],
gPROMS [6, 68],χ (Chi) [28, 88], and VHDL-AMS [18].

Several of these languages support language constructs which are commonly regarded
as parts of object-oriented languages. For example the class concept in Omola and Mod-
elica, and inheritance in Omola, Modelica, and gPROMS.χ and VHDL-AMS are not
object-oriented languages, but they have much in common when it comes to modeling
and simulation of dynamic physical systems.

All these languages are often regarded as modeling languages, which can be classi-
fied in several ways. For example, a widely used categorization is how states change
over time.Continuous-time (CT)languages model systems with infinite number of states
(finite number of state variables) where state variables change continuously over time,
discrete-time (DT)languages change state at discrete points in time, and the combination
CT/DT handles both continuous-time and discrete-time models. This latter category is
often referred to ashybrid languages, and the above mentioned languages are all such
languages. A more detailed categorization due to progress of states can be found in [89].

We think that the modeling part has another dimension for classification, especially
regarding the object-oriented view. The real physical world is naturally described by ob-
jects, where each object’s state progresses over time. Hence, the object-oriented view is a
natural choice when designing a modeling language for physical systems. However, the
needed language construct for such an object-oriented modeling language differs dras-
tically from general-purpose object-oriented languages such as C++ and Java. In these
main stream languages, concepts such as classes, objects, dynamic dispatch, methods,
message passing, inheritance, polymorphism, encapsulation, etc. are regarded as central.
There are many more concepts related to object-oriented languages and as shown in [5]
there is no clear consensus what actually defines the core concepts of OO languages.

However, several of these concepts are less important for modeling and simulation.
Conversely, other concepts that do not exist in general-purpose OO-languages are vital
for physical modeling.



6 1 Background

In this thesis we refer to this kind of languages asEquation-Based Object-Oriented (EOO)
languages2. To conclude, we define the concept of EOO language as follows:

Definition 1.2.1 (EOO language). Equation-Based Object-Oriented (EOO) languages
provide the following fundamental concepts:

• Equations - Equations capable of modeling continuous-time systems.

• Models (Classes)– A blueprint for creating instances.

• Objects– Model instances describing a system or sub-system. Composes equations
and other objects.

• Inheritance - Inheritance of behavior between models and/or objects.

• Polymorphism - Subtyping (inclusion) and/or parametric polymorphism.

• Acausal connections- Connections between objects, describing both potential and
flow connections.

The first concept,equationsfor describing continuous-time systems are, in all the men-
tioned languages applied by using differential algebraic equations (DAEs). The general
representation of a DAE can be formulated as

f
(
t, ẋ(t), x(t), y(t), u(t), p

)
= 0 where

t time

ẋ(t) vector of differentiated state variables

x(t) vector of state variables

y(t) vector of algebraic variables

u(t) vector of input variables

p vector of parameters and constants

Hence, according to this definition, we have chosen to have continuous-time modeling
as a mandatory feature for an EOO language, but letting discrete event capabilities be-
ing optional. The main rationale for this decision is that many physical systems can be
described without discrete events, while the opposite is not true.

The second and third conceptsmodelsandobjects, concern the composition of equa-
tions and other objects in a hierarchical fashion. Object-oriented languages can be clas-
sified intoclass-based languagesandobject-based languages[1]. In the former, classes
are used as blueprints for generating objects. In the latter, the class concept is absent and
instead there are specific constructs for creating objects. In the definition of EOO, we
are primarily using the termmodel in favour of class, since it gives a better analogy to
models of physical systems. Hence, the term model-based languages are used instead of
class-based. If an equation-based language lacks the concept of models, we refer to it

2The term was first publicly used at a poster session at the conference on programing language design and
implementation (PLDI) 2006 [9].
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as anequation-based object-basedlanguage. Models can be represented using functional
abstraction and object creation performed by function application. The latter approach is
actually the case that will be demonstrated in Paper E of this thesis.

The fourth concept,inheritance, means that behavior, primarily described using differ-
ential algebraic equations, can be reused from existing models or objects. If the language
is model-based, new models can be created statically by extending (sub-classing) exist-
ing models. This concept is used in e.g., Modelica. On the other hand, if the language
is object-based, new objects can be produced bycloning earlier created objects. This
approach is used in so-calledprototype-basedlanguages. A form of inheritance in such
languages can be achieved byembeddingobjects inside each other, or bydelegatingre-
sponsibility [1]3. Note that in this definition of EOO, both model-based and object-based
principles of inheritance are acceptable.

Polymorphismis a very important feature to enable reuse and expressiveness in a
language. In traditional OO interpretation, polymorphism is often implicitly meaning
subtyping polymorphism. However, with the current definition, a language supporting
only parametric polymorphismand not subtyping polymorphism, would still be treated as
a valid EOO language. For a detailed discussion about different forms of polymorphism,
see Paper A [11] in this thesis.

Finally, the last concept of acausal (or non-causal) connections concerns the possibil-
ity to connect models using physically correct or non-physical connectors. These connec-
tions involvepotential (sometimes referred to asacross) variables, which for example is
the potential voltage in the electrical domain and an angle in the rotational mechanical
domain. The other kind of variables needed in a physical connection areflow (also called
through) variables. In the electrical domain it corresponds to Kirchhoff’s current law, i.e.,
that the current should sum to zero in a node. In the rotational mechanical domain, a flow
variable would model the torque.

Looking back at the definition, concepts one and six are special concepts not available
in ordinary general purpose languages. However, concepts two to five all correspond to
concepts that can be found in other programming languages. Other language features,
such as information hiding, can of course also be valuable, but we do not see these as
essential in describing models of physical systems.

Note especially that the behavior in a general purpose OO language is described by
method calls or message passing, while the main behavior in EOO languages is described
using differential algebraic equations.

1.3 Fundamentals of Modelica

EOO languages and especially Modelica are currently primarily used for modeling and
simulation (M&S). Nevertheless, there exist attempts to use them for other applications,
such as system identification and optimization [44].

The first part of this section describes the most fundamental concepts and constructs
available in many EOO languages when used for M&S. We will primarily use Modelica
as the target language for our discussion, since it is an open standard with a growing

3In fact, state of the art in design patterns [35] for object-oriented design states that object composition
should be favored over class inheritance.
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¨
model Circuit

Resistor R1(R=10);
Capacitor C(C=0.01);
Resistor R2(R=100);
Inductor L(L=0.1);
VsourceAC AC;
Ground G;

equation
connect (AC.p, R1.p);
connect (R1.n, C.p);
connect (C.n, AC.n);
connect (R1.p, R2.p);
connect (R2.n, L.p);
connect (L.n, C.n);
connect (AC.n, G.p);

end Circuit;
§ ¦

Figure 1.1: Modelica model of an electrical circuit.

and active community. Furthermore, since we will study the Modelica language in depth
in Paper A and Paper C, this short introduction aims at giving the reader a fundamental
overview of the language.

The second part of this section describes the compilation process, where a model is
taken as input and simulation data is the resulting output.

Language Concepts and Constructs

The Modelica language and its modeling environment consist of many fundamental con-
cepts and constructs. In the following listing, we briefly describe the most important
ones.

Graphical vs. Textual modeling. Consider the model of a simple electrical circuit given
in Figure 1.1. The model can have both a textual representation (left side) and a
graphical representation (right side). Tools, such as Dymola [24] and MathMod-
elica System Designer [52] make it possible to modify both these representations
concurrently and relatively consistently.
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connector Pin
Real v;
flow Real i;

end Pin;

model TwoPin
Pin p, n;
Voltage v;
Current i;

equation
v = p.v - n.v;
0 = p.i + n.i;
i = p.i;

end TwoPin;

model Inductor
extends TwoPin;
Real L = 0.1;

equation
L* der(i) = v;

end Inductor;

Figure 1.2: Source code of theInductor
model and its base classTwoPin .

Figure 1.3: The structure of a
Modelica compiler.

Hierarchical Composition. Instances of classes (in Modelica defined with the keyword
model ) can be hierarchically composed. For example in Figure 1.2, model
Inductor is defined, while in Figure 1.1 modelCircuit holds an element
namedL, which is an instance of classInductor .

Continuous-time vs. Discrete-time.If a model only has variables that evolve continu-
ously over time, it is said to be acontinuous-timemodel. These models are de-
scribed using DAEs. Conversely, if a model changes its values only at discrete
points in time, it is said to be adiscrete-timemodel. Moreover, if a model contains
both discrete- and continuous-time variables, it is said to be ahybrid model.

Causal vs. Acausal modeling.In a block oriented simulation environment, such as
Simulink [53], the interconnected blocks must be stated using a directed data flow
with input and outputs. However, thiscausalmodeling approach does not reflect
the topology of the physical system [26]. Using anacausal(sometimes referred to
as non-causal) modeling approach, the equations are instead stated in their natural
form as differential algebraic equations. With the latter approach, the direction of
the data flow is unspecified at the modeling stage.
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Connections and Flow variables.Connections between instances are stated by using
connect -equations; depicted in Figure 1.1. These equations connectports (in
Modelica called connectors), and represent several equations. For instance,
connect(L.n, C.n) represents two equations:L.n.v = C.n.v and
L.n.i + C.n.i = 0 . The first equation expresses that the voltage at the con-
nection ends are the same, whereas the second equation corresponds to Kirchhoff’s
current law saying that the currents sum to zero at a node. The latter concept is
achieved with theflow variableconcept, which is part of the Modelica semantics.

Inheritance and Modifications. Equations and elements in one class can be reused when
defining another class, using the concept of inheritance. For instance, in Figure 1.2,
theInductor inherits behaviour from modelTwoPin . Moreover, it is also possi-
ble to modify declaration equations, such asReal L=0.1 in modelInductor ,
or even replacing class instances. For example, if a large model of a car is created,
it is possible to replace the gearbox without affecting the other parts of the model.

Modelica is a large and complex language, consisting of many constructs, such as inner-
outer components, arrays, matrices, expandable connectors etc. For a more comprehen-
sive overview, see [30].

The Compilation Process

To be able to understand the research problem, we will first give a brief overview of the
compilation process.

A Modelica compiler can generally be divided into two parts; depicted in Figure 1.3.
In the first part, scanning and parsing results in an abstract syntax tree. The Abstract
Syntax Tree (AST) is then type-checked andelaboratedinto aflat system of equations4.
This gives us the following definitions:

Definition 1.3.1 (Flat system of equations).A flat system of equations is a set of de-
clared variables of primitive types together with a set of equations referencing these vari-
ables.

Definition 1.3.2 (Elaboration). Elaboration is the task of producing a flat system of
equations from the AST of a model.

In the second part, different symbolic manipulations and optimizations are performed on
the equation system. The symbolic transformation module then generates a program,
normally C code. This program is then linked together with a numerical solver, such as
DASSL [74], which is used for solving the equation system. Finally, this executable is
executed, producing the simulation result.

4also called a hybrid DAE, when zero-crossing functions for discrete-events are included.
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Problem Area

EQUATION-BASED OBJECT-ORIENTED modeling is a rapid way of modeling systems,
by reusing well defined components. If the components do not exist, they can be

created by using the declarative notation of equations. However, it is not always possible
to simulate an EOO model, since the model may be incorrectly specified. Furthermore,
even if a simulation result is generated, this does not imply that the result is correct.

We will in the first section outline the overall problems and challenges regarding safety
aspects of EOO languages and their environments, followed by a section describing secu-
rity issues in a distributed simulation environment.

2.1 Safety Aspects in EOO Languages and
Environments

By following the terminology defined in the IEEE Standard 100 [63], we define anerror
to be something that is made by human beings. As a consequence of an error, afault exists
in an artifact, such as an EOO model, source code or a language specification. Another
word for fault would be bug or defect. If a fault is executed, this results in afailure, i.e., it
is possible to detect that something went wrong.

People make mistakes, i.e., commit errors when modeling systems. This can result in
either incorrect simulation results, or no results at all. To produce products (e.g., aircraft,
cars, and factory machines) based on incorrect simulation results, can be very expensive
or even result in devastating consequences. Hence, it is of great importance to efficiently
handle errors in a safe manner.

11
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To mitigate the fact that people make errors, we see three major challenges regarding error
handling:

1. Detect the existence of an error early.If a simulation fails, it is trivial to detect
that an error must exist. However, if a simulation job takes 48 hours to complete, it
is not desirable to wait 46 hours before the error is detected. Furthermore, when a
simulation produces a result, how do we then know that this result is correct?

2. Isolate the fault implied by the error. If we have detected that an error must exist,
how do we then know where the actual fault is located? Is it located in the main
model, in some model library, or even in the simulation tool itself? For example, if
an engine is modeled, resulting after elaboration of an equation system containing
20000 equations and 20001 unknowns, it is trivial to detect that this is a fault.
However, it is a non-trivial task to isolate the fault so that the error can be resolved.

3. Guarantee that faults do not exist. If we can detect an error by using e.g.,testing
and then isolate the fault using some kind ofdebuggingtechnique, how do we know
that there do not exist any other errors? Consequently, would it be possible to give
guarantees that some kind of faults cannot exist in a model, e.g., that a specific type
of errors will always be detected?

There are many different sources of errors in an M&S environment. Consider Figure 2.1,
which outlines relations between sources of errors and faults.

The center box illustrates the simulation tool, which takes an EOO model as input (left
side) and produces asimulation resultif the simulation was successful, or asimulation
failure reportif an error occurs during simulation. In the model, there are three actors that
can produce errors that affect the tool’s output.

System Modeling Errors. A system modeling errorcan result in that the EOO model
contain anEOO model fault, which obviously affects the simulation result. Some
modeling errors can result in failures already in the elaboration phase (e.g., illegal
access of elements in objects), while other result in simulation failures during sim-
ulation (e.g., numerical singularities). Moreover, an engineer can make mistakes
while modeling a system, which still gives simulation result, but perhaps incorrect
values. One such area where errors easily are introduced is inconsistency with re-
spect to physical units and dimensions. For example, in September 1999, the NASA

Figure 2.1: Relations between possible errors and faults in a M&S-environment.
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Mars Climate Orbiter Mission lost contact with the spacecraft during the Mars orbit
maneuver. This failure was eventually traced back to a software flaw when convert-
ing between English and metric units [84].

Language Design and Specification Errors.Almost all commonly used languages
evolve over time, resulting in high demands on the language design effort and the
work to produce precise, consistent, and error free language specifications. The
Modelica language is no exception, which has resulted in a large and complex lan-
guage with an informal specification [60] using plain text. This fact can lead to
language design errors, since it is hard to grasp the semantics of the language.
Moreover, if the language design effort intends to give guarantees that a certain
kind of modeling error should be detected, it is obviously necessary that the speci-
fication is precise and easy to reason about. Hence, one of the main challenges is to
be able to define this kind of languages in a precise way, using formal semantics.

Tool Implementation Errors. In addition, language specification faults and unclear se-
mantics may lead totool implementation errors. If only one tool exists for the
language, the importance of implementation errors compared to the specification
might be ignorable. However, if there exist several tools, tool implementation er-
rors may lead to incompatible models or even non-deterministic simulation results.

While all different sources of errors may affect the output results from a tool, it is obvi-
ously even more challenging to detect and isolate the faults during the tool and language
development life-cycles.

2.2 Security Aspects of Modeling and Simulation

Safety aspects of EOO languages and environments concern handling of errors in a sound
manner, so that simulations can be produced correctly and are reliable compared to the
behavior of the real system being simulated.

Secure modeling and simulation on the other hand, concerns three fundamental con-
cepts of information security:

• Confidentiality: protection against unauthorized disclosure of information.

• Integrity: protection against unauthorized creation, modification, or deletion of in-
formation.

• Availability : the assurance that authorized entities have access to correct informa-
tion when needed.

Within a modeling and simulation environment, there are different types of information
that need to be handled in a secure manner. In many companies, the models describe
the organizations primary know-how and can therefore be seen as critical business assets.
Hence, the model information itself is an important information to be protected.
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Larger enterprises are often divided into several departments, modeling different parts
of a system. There may exist different confidentiality levels within the organization or be-
tween companies. Furthermore, control over how models can be accessed and modified
need to be controlled in a need-to-know basis. Since different parts of the organization
may be located in different parts of the world, the challenge is how to model and simu-
late different models together in a distributed environment. The problem concerns both
secure handling regarding confidentiality and integrity aspects of the models, as well as
availability and performance concerns of the total simulation time.



3
Paper Overview

THIS thesis consists of four peer reviewed published conference papers and one tech-
nical report. In the following chapter the overall research questions and problems

related to these papers will be outlined. The different research methods used are described
and an overview of related work is given. Finally, the main contributions of the work are
stated.

3.1 Research Questions

From the problem area in Chapter 2, a number of research questions are formulated below.

3.1.1 Semantics of the Modelica Language

The primary EOO language studied in this thesis is the Modelica language. A common
way of detecting and isolating errors statically in a language is to use type checking.
However, in Modelica, the concept of types is only implicitly described using informal
natural language. Hence, our first question in the study concerns Modelica types.

Research Question 1.What is the actual meaning of types in Modelica and how does it
compare to the class concept in the language?

Both the dynamic and static semantics of the Modelica language are informally described
using natural language. Since the language has grown to be very large and complex, it is
hard in the short term to define a formal semantics for the complete language; leading to
the following question:

Research Question 2.How can an informal language specification be restructured to be
less ambiguous and still understandable for a general audience?

15
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Research question 1 is primarily covered in Paper A, while question 2 is discussed in
Paper C.

3.1.2 Early Detection of Constraint Errors

If a model is incorrectly described and contains more equations than unknowns (over-
determined) or fewer equations than unknown (under-determined), it is easy to detect the
error after elaboration by just counting the equations and variables. However, it is much
harder to isolate the error to a specific model instance. Earlier approaches have tried to
analyze the flat system of equation after elaboration, and then tracing back the faults to
the original models [13], leading to the following question:

Research Question 3.Is it possible to define an approach to detect under- and over-
constrained errors at the model levelbeforeelaboration, enabling the user to isolate the
fault to a certain model instance?

Research question 3 is covered in Paper B.

3.1.3 Formal Operational Semantics of EOO languages

To be able to guarantee the absence of errors statically, in this case without elaborating
the model, it is needed to prove properties such as type safety on the language semantics.
Hence, a formal definition of the language semantics is needed to prove such propositions.
Since the Modelica language is informally described, the fundamental concept of the
language needs to be described formally. Hence, the following question concerns the
future possibility of proving properties about the language.

Research Question 4.How can the elaboration semantics of an EOO language be for-
mally defined using operational semantics?

Question 4 is handled in the technical report, Paper E.

3.1.4 Secure Simulation

The previous questions are concerned with language safety issues of EOO languages in
general and the Modelica language in particular. The final question for this thesis relates
to secure simulation.

Research Question 5.How can we perform simulations in a secure manner, using models
defined in different tools at different locations over the globe?

The last question 5 is discussed and evaluated in Paper D.
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3.2 List of Papers

The research results are presented in the five papers given in Part II of the thesis. The
papers are as follows:

Paper A: Types in the Modelica Language

David Broman, Peter Fritzson, and Sébastien Furic. Types in the Modelica
Language. InProceedings of the Fifth International Modelica Conference.
pages 303-315. Vienna, Austria. 2006.

Paper B: Determining Over- and Under-Constrained Systems of
Equations using Structural Constraint Delta

David Broman, Kaj Nyström, and Peter Fritzson. Determining Over- and
Under-Constrained Systems of Equations using Structural Constraint Delta.
In Proceedings of the Fifth International Conference on Generative Program-
ming and Component Engineering (GPCE’06). pages 151-160. Portland,
Oregon, USA. ACM Press. 2006.

Paper C: Abstract Syntax Can Make the Definition of Modelica
Less Abstract

David Broman and Peter Fritzson. Abstract Syntax Can Make the Definition
of Modelica Less Abstract. InProceedings of the 1st International Workshop
on Equation-Based Object-Oriented Languages and Tools. pages 111-126.
Berlin, Germany. Linköping University Electronic Press. 2007.

Paper D: Secure Distributed Co-Simulation over Wide Area
Networks

Kristoffer Norling, David Broman, Peter Fritzson, Alexander Siemers, and
Dag Fritzson. Secure Distributed Co-Simulation over Wide Area Networks.
In Proceedings of the 48th Conference on Simulation and Modelling (SIMS’07).
Göteborg, Sweden, Linköping University Electronic Press. 2007.

Paper E: Flow Lambda Calculus for Declarative Physical
Connection Semantics

David Broman. Flow Lambda Calculus for Declarative Physical Connection
Semantics. Technical Reports in Computer and Information Science No. 1,
Linköping University Electronic Press. 2007.
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3.3 Research Methods

There are several different paradigms on how to perform research within computer en-
gineering and computer science. The ACM Task Force on thecore of computer science
suggests three different paradigms for conducting research within the discipline of com-
puting [19]:

1. Theory. In this paradigm, the discipline is rooted in mathematics, where the ob-
jects of study are defined, hypotheses (the theorems) are stated, and proofs of the
theorems are given. Finally, the result is interpreted.

2. Abstraction (modeling).The second paradigm is rooted in experimental scientific
methods. First, a hypothesis is formulated, followed by construction of a model
and/or an experiment from which data is collected. Finally the result is analyzed.

3. Design.The third paradigm is rooted in engineering and consist of stating require-
ments, defining the specification, designing and implementation of the system, and
finally testing the system. The purpose of constructing the system is to solve a given
problem.

The theory is the fundamental paradigm in mathematical science, the abstraction para-
digm in natural science, and design in the discipline of engineering. We agree with the
statement that is pointed out in [19], that all three paradigms are equally important and
that computer science and engineering consist of a mixture of all three paradigms. In this
work, we have used different paradigms for the different papers.

In Paper A,Types in the Modelica Language, the type concept of Modelica is ana-
lyzed and interpreted and concrete syntax of types in Modelica is described. The closest
paradigm used in this work is design, where the designed artifact is the grammar for types
and the interpreted prefix definitions. The correctness of the grammar is tested using the
parser generator tool ANTLR [70]. In this case, the Modelica specification itself can be
seen as the requirements specification. However, due to the fact that the produced artifact
is an interpretation of the specification, testing is not applicable.

Paper BDetermining Over- and Under-Constrained Systems of Equations using Struc-
tural Constraint Deltadefines a new approach and an algorithm for determining over- and
under-constrained systems of equations. This research can be assigned to both the theory
and the design paradigms. From the theory point of view, if a theorem was formulated for
the correctness of the algorithm, a proof would justify the correctness of the algorithm.
On the other hand, from a design point of view, the requirement of detecting and isolating
the error before elaboration can be seen as a specification, and an implementation of the
algorithm as the system. Since Modelica’s semantics is not formally defined, it is not
possible to conduct any proof for the correctness of the algorithm in relation to the elab-
oration semantics. Hence, as described in the paper, a test procedure takes place where
the correctness of the algorithm is tested using different complex test models, where the
model is executed in a commercial Modelica tool, and compared to the type inference
algorithm implementation. We should note that this test only checks the correctness of
the algorithm, and does not verify that the approach of structural constraint delta actually
helps the user to detect the error and isolate the fault.
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Paper CAbstract Syntax Can Make the Definition of Modelica Less Abstractdis-
cusses the problem of finding a middle-way alternative inbetween a totally informal se-
mantics and a formal one. This work is more of a discussion article, where different
alternatives are presented and analyzed. Hence, the work does not directly fall into any
of the three paradigms, even if the design alternative is probably the closest one. How-
ever, since the article describes a suggested approach, no testing of the feasibility of the
approach is conducted.

In Paper DSecure Distributed Co-Simulation over Wide Area Networksan approach
is described (the hypothesis) for performing secure distributed co-simulation. An experi-
ment is conducted and the results discussed and analyzed. Hence, this research is clearly
performed within the paradigm of abstraction. The conclusions are drawn using an induc-
tive approach, where experimental data was created in both a simulated environment, and
in a real environment.

The final Paper EFlow Lambda Calculus for Declarative Physical Connection Seman-
tics, the research method follows a similar approach as in Paper B, where both the theory
and the design paradigm are applicable.

A final note should also be made that the level of description of the scientific methods
in the papers are adapted to fit the policy for the conference in question.

3.4 Contributions

Each paper states the main contribution of each work. To summarize, the following are
the main contributions of this thesis:

• Paper A:A description and interpretation of the type concept in Modelica as well
as a new definition of the concrete syntax for types of the language.

• Paper B:The novel concept ofstructural constraint delta, denotedC∆. The ap-
proach makes use of static type checking and consists of a type inference algorithm,
which determines if a model is under- or over-constrained without elaborating its
subcomponents.

• Paper C:The described approach of using abstract syntax as a middle-way strategy
to define the Modelica language less ambiguously.

• Paper D:The discussed and verified approach of secure distributed co-simulation
over long distances, which is demonstrated to be both practical and possible in the
real world test case.

• Paper E:The novel design of the operational semantics for declaratively handling
physical flow connections in a correct manner.
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3.5 Related Work

Related work for the different areas of research are described in each paper respectively.
Hence, this information will not be repeated here. However, certain new related work has
been developed since the papers were published, and other earlier related work has come
to the authors knowledge.

Structural Constraint Delta and Modelica Specification 3.0

In September 2007, a new version 3.0 [61] of the Modelica specification was released. In
this version, the intention was to improve the readability of the language and to simplify
it. The readablity of the specification has increased dramatically, by using a new structure
and better descriptions. However, the specification is still informally described and the
amount of text has increased since the last version.

The largest change in the language is the new constraint that all models in the Model-
ica language must be balanced to be valid, i.e., that the number of equations and unknowns
should be equal. Furthermore, the language is restricted to have balanced connections,
i.e., that the number of potential and flow variables must be equal in a connector and
connection. These concepts are basically equivalent to the suggested approach given in
Paper B about structural constraint delta. Balanced models would in that case require the
constraint delta to be zero. The concept of balanced connectors corresponds to that the
effect delta is zero. However, even if the approaches are similar, there are some distinct
differences.

• The balanced model concept in the Modelica specification has taken a "top-down"
approach and defines its solution for the whole Modelica language. The constraint
delta approach is given for a small subset of the Modelica language, with the pur-
pose of explaining the core concept in a sound manner.

• The Modelica specification requires models to bealwayslocally balanced, with the
exception of partial classes. The constraint delta concept as explained in the article
is more relaxed, and accepts locally over and under-determined models, as long as
the global model has constraint delta zero.

• The Modelica specification approach detects the model constraint by elaborating
the models. The constraint delta approach uses the model types to annotate the
constraint information.

Both of these approaches are justified by examples and tests, but due to the absence of
formal semantics it is impossible to prove correctness.

It should also be noted that the idea of using these approaches were developed in
parallel within Dynasim and by the author during year 2006. At the time of the pub-
lication of [12], the constraint delta approach was shown at the Modelica Association
design meeting. During the late 2006 and early 2007, further interaction and discussions
have occurred between the author of this thesis, Dynasim, and members of the Modelica
Association.

Finally, it should also be noted that there is a paper [64] from 2002, where the idea to
incorporate information about the balance between equations and unknowns into the type
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system is stated. However, no information or strategy on how this should be conducted is
presented.

3.6 Paper Errata

A few typos and errors have been corrected in the papers attached to this thesis, compared
to the original published versions.

• In Paper A, Figure 4, the names of the constructors in classes Resistor2 and Inductor
have been corrected.

• In Paper A, in Footnote 1, it is clarified that the Modelica language can only be
regarded as a safe language, if the tool unconditionally detects all errors and termi-
nates the execution with an error message.

• Paper B has been updated with an error correction of the type inference algorithm.
Changes has been made to Algorithm 2 and in the last bullet item on page 69.
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4
Concluding Remarks

IN this section, the conclusions of the thesis are summarized and some direction for
future research are proposed.

4.1 Conclusions

In this thesis we have discussed and suggested different approaches related to language
safety and secure simulation for equation-based object-oriented languages.

Two of the research questions given for the work concern the semantics and specifi-
cation of the Modelica language. We have seen that it is very hard to formally specify the
Modelica language, due to its size and complex semantics. The type concept in relation
to the class concept has been discussed in detail, and it has been shown that the current
status of the language is to a high degree open for interpretation. Moreover, a strategy
for improving the informal specification using abstract syntax was outlined. Since the
papers regarding this area were published, a new version 3.0 of the specification has been
released. This specification has a clearer description, but the semantics is still described
using natural language.

A new approach for detecting over- and under-constrained systems of equations at the
model level has been proposed and demonstrated for a subset of the Modelica language.
Compared to earlier attempts at static debugging techniques, this approach makes use of
a static type system and detects the errors before elaboration to a flat equation system.
Furthermore, the new version of the Modelica specification has now also incorporated a
similar idea as presented in this thesis, where models are always forced to be balanced
with the same number of equations as unknowns.

To enable future guarantees of static properties, such as physical unit checking or
constraint errors, a formal operational semantics for the physical connection semantics
has been developed within the context of the untyped lambda calculus. We believe that
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this work can be useful for future languages, wishing to rely on the sound basis of lambda
calculus, and still incorporate acausal aspects of EOO languages.

Finally, one of the papers did not concern language safety and semantics, but secu-
rity aspects of distributed co-simulation. A suggested approach using co-simulation with
transmission line modeling (TLM) was given and tested in both a simulated wide area
network (WAN) and between sites over the world separated by long distances.

4.2 Future Research

EOO languages can still be seen as a very young area, where most of the research has been
conducted from the engineering side, with focus on the back-end numerical and symbolic
solver solutions. However, new opportunities and problems appear when state of the art
results from computer science and programming language theory is introduced.

The following list shows some very interesting areas of future research.

• Structural dynamics for acausal modeling languages.In state of the art EOO lan-
guages, e.g., Modelica, the models are elaborated down to an equation-system,
which is then solved by a simulation engine. This means that model instances or
objects are only created once, before simulation. In contrary, in a structural dy-
namic system, objects can be created and deletedduring the simulation. There is
currently active research in this area [64, 91].

• Structural constraint delta with well-constrained models.The concept of structural
constraint delta only requires that the number of equations and variables are equal.
However, there are systems where this is true, but the system is structurally singular,
meaning that there are no permutations of the incidence matrix that can form a non-
zero diagonal. An open question is if this is possible to detect at the type level,
without deducing any further information from the content of the term.

• Type-safty proofs of EOO languages based on the lambda calculus. Since we have
defined a flow-lambda calculus where physical connection semantics is possible, a
natural next step is to define a type system for the untyped semantics, that includes
the concept of constraint delta. However, to be able to guarantee the absense of
errors, a next relevant step would be to prove type safety for the new language.

• Define model transformation and solution methods within the language itself. Many
so called meta-modeling tasks are today performed with current EOO tools using
different forms of scripting languages, i.e., languages that are separate from the
modeling language. Furthermore, the post-processing routines such as numerical
solvers and symbolic manipulation routines are today implemented in the tools.
An interesting alternative worth exploring is to extend the core of the modeling
language to be Turing complete, so that these back-end algorithms can be defined
as libraries within the same language as the models were defined. In such a way,
the flexibility to change and prototype new methods and algorithms can potentially
be increased significantly.
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• Detecting and isolating unit errors and faults.One area for static checking of phys-
ical models is unit checking. This area of research is far from a new. Many library-
based approaches exist for imperative programming languages, such as a package
approach for Ada [38] and a template approach in C++ [87]. In Kennedy’s PhD
thesis [46], an extension of a core calculus of ML with support for type inference
over dimension types is given. Lately, dimension and unit checking has also been
addressed in a nominally typed object-oriented language [3]. Besides the work on
gPROMS [71, 77], few attempts have been tried to incorporate dimensional and / or
unit checking in EOO languages. In addition, even though Modelica today supports
syntax for stating units of variables, no sound solution exists that guarantees the ab-
sence of unit errors. This kind of guarantee must be performed using mathematical
proofs, where the formal semantics of the language we are proving must exist.

• Other domains than simulation.There are several more related domains which
can be beneficially used in the context of an EOO language. The new PhD thesis
[44] by Johan Åkesson explains several alternative application areas, with focus on
optimization.
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Abstract

Modelica is an object-oriented language designed for modeling and simula-
tion of complex physical systems. To enable the possibility for an engineer
to discover errors in a model, languages and compilers are making use of the
concept of types and type checking. This paper gives an overview of the con-
cept of types in the context of the Modelica language. Furthermore, a new
concrete syntax for describing Modelica types is given as a starting point to
formalize types in Modelica. Finally, it is concluded that the current state of
the Modelica language specification is too informal and should in the long
term be augmented by a formal definition.
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1 Introduction

One long term goal of modeling and simulation languages is to give engineers the pos-
sibility to discover modeling errors at an early stage, i.e., to discover problems in the
model during design and not after simulation. This kind of verification is traditionally
accomplished by the use oftypesin the language, where the process of checking for such
errors by the compiler is calledtype checking. However, the concept of types is often
not very well understood outside parts of the computer science community, which may
result in misunderstandings when designing new languages. Why is then types impor-
tant? Types in programming languages serve several important purposes such as naming
of concepts, providing the compiler with information to ensure correct data manipulation,
and enabling data abstraction. Almost all programming or modeling languages provide
some kind of types. However, few language specifications include precise and formal
definitions of types and type systems. This may result in incompatible compilers and
unexpected behavior when using the language.

The purpose of this paper is twofold. The first part gives an overview of the concept of
types, states concrete definitions, and explains how this relates to the Modelica language.
Hence, the first goal is to augment the computer science perspective of language design
among the individuals involved in the Modelica language design. The long-term objec-
tive of this work is to provide aids for further design considerations when developing, en-
hancing and simplifying the Modelica language. The intended audience is consequently
engineers and computer scientists interested in the foundation of the Modelica language.

The second purpose and likewise the main contribution of this work is the definition
of a concrete syntax for describing Modelica types. This syntax together with rules of its
usage can be seen as a starting point to more formally describe the type concept in the
Modelica language. To the best of our knowledge, no work has previously been done to
formalize the type concept of the Modelica language.

The paper is structured as follows: Section 2 outlines the concept of types, subtypes,
type systems and inheritance, and how these concepts are used in Modelica and other
mainstream languages. Section 3 gives an overview of the three main forms of poly-
morphism, and how these concepts correlate with each other and the Modelica language.
The language concepts and definitions introduced in Section 2 and 3 are necessary to un-
derstand the rest of the paper. Section 4 introduces the type concept of Modelica more
formally, where we give a concrete syntax for expressing Modelica types. Finally, Section
5 state concluding remarks and propose future work in the area.

2 Types, Subtyping and Inheritance

There exist several models of representing types, where theideal model[15] is one of
the most well-known. In this model, there is a universeV of all values, containing all
values of integers, real numbers, strings and data structures such as tuples, records and
functions. Here, types are defined as sets of elements of the universeV . There is infinite
number of types, but all types are not legal types in a programming language. All legal
types holding some specific property, such as being an unsigned integer, are calledideals.
Figure 1 gives an example of the universeV and two ideals: real type and function type,
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where the latter has thedomainof integer andcodomainof boolean.
In most mainstream languages, such as Java and C++, types areexplicitly typedby stating
information in the syntax. In other languages, such as Standard ML and Haskell, a large
portion of types can beinferred by the compiler, i.e., the compiler deduces the type from
the context. This process is referred to astype inferenceand such a language is said to be
implicitly typed. Modelica is an explicitly typed language.

Figure 1: Schematic illustration of UniverseV and two ideals.

2.1 Language Safety and Type Systems

When a program is executed, or in the Modelica case: during simulation, different kinds
of execution errors can take place. It is practical to distinguish between the following two
types of runtime errors [14].

• Untrapped errorsare errors that can go unnoticed and later cause arbitrary behavior
of the system. For example, writing data out of bound of an array might not result
in an immediate error, but the program might crash later during execution.

• Trapped errorsare errors that force the computation to stop immediately; for exam-
ple division by zero. The error can then be handled by the run-time system or by a
language construct, such as exception handling.

A programming language is said to besafe if no untrapped errors are allowed to occur.
These checks can be performed ascompile-time checks, also calledstatic checks, where
the compiler finds the potential errors and reports them to the programmer. Some errors,
such as array out of bound errors are hard to resolve statically. Therefore, most languages
are also usingrun-time checks, also calleddynamic checking. However, note that the
distinction between compile-time and run-time becomes vaguer when the language is
intended for interpretation.

Typed languages can enforce language safety by making sure thatwell-typed pro-
grams cannot cause type errors. Such a language is often calledtype safeor strongly
typed. This checking process is calledtype checkingand can be carried out both at run-
time and compile-time.

The behavior of the types in a language is expressed in atype system. A type system
can be described informally using plain English text, or formally usingtype rules. The
Modelica language specification is using the former informal approach. Formal type rules
have much in common with logical inference rules, and might at first glance seem com-
plex, but are fairly straightforward once the basic concepts are understood. Consider the
following:
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Γ ` e1 : bool Γ ` e2 : T Γ ` e3 : T
(t-if)

Γ ` if e1 thene2 elsee3 : T

which illustrates a type rule for the following Modelicaif -expression:

if e1 then e2 else e3

A type rule is written using a number ofpremiseslocated above the horizontal line and
a conclusionbelow the line. Thetyping judgementΓ ` e : T means that expressione
has typeT with respect to a static typing environmentΓ. Hence, the rule (t-if) states that
guard e1 must have the type of a boolean and thate2 ande3 must have the same type,
which is also the resulting type of theif -expression after evaluation. This resulting type
is stated in the last part of the conclusion, i.e.,: T .

If the language is described formally, we can attempt to prove thetype soundness the-
orem[90]. If the theorem holds, the type system is said to besoundand the languagetype
safeor or justsafe. The concept of type safety can be illustrated by Robin Milner’s famous
statement "Well-typed programs cannot go wrong"[56]. Modern type soundness proofs
are based on Wright and Felleisen’s approach where type systems are proven correct to-
gether with the language’s operational semantics [90]. Using this technique, informally
stated, type safety hold if and only if the following two statements holds:

• Preservation- If an expressione has a typeT ande evaluates to a valuev, thenv
also has typeT .

• Progress- If an expressione has a typeT then eithere evaluates to a new expression
e′ or e is a value. This means that a well typed program never gets "stuck", i.e., it
cannot go into a undefined state where no further evaluations are possible.

Note that the above properties of type safety corresponds to our previous description
of absence of untrapped errors. For example, if a division by zero error occurs, and
the semantics for such event is undefined, the progress property will not hold, i.e., the
evaluation gets "stuck", or enters an undefined state. However, if dynamic semantics
are defined for throwing an exception when the division by zero operation occurs, the
progress property holds.

For the imperative and functional parts of the Modelica language, the safety concept
corresponds to the same methodology as other languages, such as Standard ML. However,
for the instantiation process of models, the correspondence to the progress and preserva-
tion properties are not obvious.

Table 1 lists a number of programming languages and their properties of being type
safe [58][14]. The table indicates if the languages are primarily designed to be checked
statically at compile-time or dynamically at run-time. However, the languages stated to
be statically type checked typically still perform some checking at runtime.

Although many of the languages are commonly believed to be safe, few have been
formally proven to be so. Currently, ML [56] and subsets of the Java language [86] [41]
has been proven to be safe.
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Language Type Safe Checking
Standard ML yes static
Java yes static
Common LISP yes dynamic
Modelica yes static1

Pascal almost static
C/C++ no static
Assembler no -

Table 1: Believed type safety of selected languages.

2.2 Subtyping

Subtyping is a fundamental language concept used in most modern programming lan-
guages. It means that if a typeS has all the properties of another typeT , thenS can
be safely used in all contexts where typeT is expected. This view of subtyping is often
calledthe principle of safe substitution[75]. In this case,S is said to be a subtype ofT ,
which is written as

S <: T (1)

This relation can be described using the following important type rule called therule of
subsumption.

Γ ` t : S S <: T
(t-sub)

Γ ` t : T

The rule states that ifS <: T , then everyterm2 t of typeS is also a term of typeT .
This shows a special form ofpolymorphism, which we will further explore in Section 3.

2.3 Inheritance

Inheritanceis a fundamental language concept found in basically all class basedObject-
Oriented (OO)languages. From an existingbase class, a newsubclasscan be created
by extendingfrom the base class, resulting in the subclassinheriting all properties from
the base class. One of the main purposes with inheritance is to save programming and
maintenance efforts of duplicating and reading duplicates of code. Inheritance can in
principle be seen as an implicit code duplication which in some circumstances implies
that the subclass becomes a subtype of the type of the base class.

1One can argue whether Modelica is statically or dynamically checked, depending on how the terms compile-
time and run-time are defined. Furthermore, since no exception handling is currently part of the language,
semantics for handling dynamic errors such as array out of bound is not defined in the language and is therefore
considered a compiler implementation issue. Hence, the Modelica language canonly be regarded to be safe if
the tool unconditionally detects all errors and terminates the computation with an error message.

2The wordterm is commonly used in the literature as an interchangeable name for expression.
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Figure 2 shows an example3 where inheritance is used in Modelica. Amodel called
Resistor extends from a base classTwoPin , which includes two elementsv for volt-
age andi for current. Furthermore, two instancesp andn of connectorPin are public
elements ofTwoPin . SinceResistor extends fromTwoPin , all elementsv , i , p and
n are "copied" to classResistor . In this case, the type ofResistor will also be a
subtype ofTwoPin ’s type.
¨

connector Pin
SI.Voltage v;
flow SI.Current i;

end Pin;

partial model TwoPin
SI.Voltage v;
SI.Current i;
Pin p, n;

equation
v = p.v - n.v;
0 = p.i + n.i;
i = p.i;

end TwoPin;

model Resistor
extends TwoPin;
parameter SI.Resistance R=100;

equation
R* i = v;

end Resistor;
§ ¦

Figure 2: Example of inheritance in Modelica, where a new subclassResistor is
created by extending the base classTwoPin .

However, a common misunderstanding is that subtyping and inheritance is the same con-
cept [58]. A simple informal distinction is to say that "subtyping is a relation on in-
terfaces", but "inheritance is a relation on implementations". In the resistor example,
not only the public elementsv , i , p andn will be part of classResistor , but also
the meaning of this class, i.e, the equationsv = p.v - n.v , 0 = p.i + n.i and
i = p.i .

A famous example, originally stated by Alan Snyder [80], illustrates the difference
between subtyping and inheritance. Three commonabstract data typesfor storing data
objects arequeue, stackanddequeue. A queue normally has two operations,insert and
delete, which stores and returns object in afirst-in-first-out (FIFO)manner. A stack has
the same operations, but are using alast-in-first out (LIFO)principle. A dequeue can
operate as both a stack and a queue, and is normally implemented as a list, which allows
inserts and removals at both the front and the end of the list.

3These classes are available in the Modelica Standard Library 2.2, but are slightly modified for reasons of
readability.
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Figure 3 shows two C++ classes modeling the properties of a dequeue and a stack.
Since classDequeue implements the properties also needed for a stack, it seems natural
to create a subclassStack that inherits the implementation fromDequeue . In C++,
it is possible to use so calledprivate inheritanceto model inheritance with anexclude
operation, i.e., to inherit some, but not all properties of a base class. In the example, the
public methodsinsFront , delFront , anddelRear in classDequeue are inherited
to be private in the subclassStack . However, by adding new methodsinsFront and
delFront in classStack , we have created a subclass, which has the property of a stack
by excluding the methoddelRear . Stack is obviously a subclass ofDequeue , but is

¨
class Dequeue{
public :

void insFront( int e);
int delFront();
int delRear();

};

class Stack : private Dequeue{
public :

void insFront( int e)
{Dequeue::insFront(e);}

int delFront()
{ return Dequeue::delFront();}

};
§ ¦

Figure 3: C++ example, where inheritance does not imply a subtype relationship.

it a subtype? The answer is no, since an instance ofStack cannot be safely used when
Dequeue is expected. In fact, the opposite is true, i.e.,Dequeue is a subtype ofStack
and not the other way around. However, in the following section we will see that C++
does not treat such a subtype relationship as valid, but the type system of Modelica would
do so.

2.4 Structural and Nominal Type Systems

During type checking, regardless if it takes place at compile-time or run-time, the type
checking algorithm must control the relations between types to see if they are correct or
not. Two of the most fundamental relations aresubtypingandtype equivalence.

Checking of type equivalence is the single most common operation during type check-
ing. For example, in Modelica it is required that the left and right side of the equality in
an equation have the same type, which is shown in the following type rule.

Γ ` e1 : T Γ ` e2 : T
(t-equ)

Γ ` e1= e2 : Unit

Note that type equivalence has nothing to do with equivalence of values, e.g., equation
4 = 10 is type correct, since integers 4 and 10 are type equivalent. However, this is of
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course not a valid equation, since the values on the right and left side are not the same.
TheUnit type (not to confuse with physical units), shown as the resulting type of the

equation, is often used as a type for uninteresting result values.
A closely related concept to type equivalence istype declaration, i.e., when a type

is declared as a specificnameor identifier. For example, the following Modelica record
declaration

record Person
String name;
Integer age;

end Person;

declares a type with namePerson . Some languages would treat this as a new unique
type that is not equal to any other type. This is calledopaquetype declaration. In other
languages, this declaration would simply mean that an alternative name is given to this
type. However, the type can also be expressed by other names or without any name. This
latter concept is commonly referred astransparenttype declaration.

In a purenominal type system, types are compared (subtyping and type equivalence)
by using thenamesof the declared types, i.e., opaque type declarations are used. Type
equivalence is controlled by checking that the same declared name is used. Furthermore,
the subtype relation in OO languages is checked by validating the inheritance order be-
tween classes. The C++ language is mainly using a nominal type system, even if parts of
the language does not obey the strict nominal structure.

Consider the listing in Figure 4, which illustrates a C++ model similar to the resistor
example earlier given as Modelica code in Figure 2. In this case,Resistor is a sub-
class ofTwoPin and the type ofResistor is therefore also a subtype ofTwoPin ’s
type. However, the type ofInductor is not a subtype to the type ofTwoPin , since
Inductor does not inherit fromTwoPin . Moreover,Resistor2 is not type equiva-
lent toResistor even if they have the same structure and inherits from the same base
class, since they are opaquely declared.

In a structural type system[75], declarations are introducing new names for type
expressions, but no new types are created. Type equivalence and subtype relationship is
only decided depending on the structure of the type, not the naming.

The Modelica language is inspired by the type system described by Abadi and Cardelli
in [1] and is using transparent type declarations, i.e., Modelica has a structural type sys-
tem. Consider theResistor example given in Figure 2 and the two complementary
modelsInductor andResistor2 in Figure 5. Here, the same relations holds between
TwoPin andResistor , i.e., that the type ofResistor is a subtype ofTwoPin ’s
type. The same holds betweenTwoPin andResistor2 . However, nowResistor
andResistor2 are type equivalent, since they have the same structure and naming of
their public elements. Furthermore, the type ofInductor is now a valid subtype of
TwoPin ’s type, sinceInductor contains all public elements (type and name) of the
one available inTwoPin .

It is important to stress thatclassesandtypes in a structural type system arenot the
same thing, which also holds for Modelica. The type of a class represents the interface of
the class relevant to the language’s type rules. The type does not include implementation
details, such as equations and algorithms.



2 Types, Subtyping and Inheritance 39

¨
class Pin{
public :

float v, i;
};

class TwoPin{
public :

TwoPin() : v(0),i(0){};
float v, i;
Pin p, n;

};

class Resistor : public TwoPin{
public :

Resistor() : r(100) {};
float r;

};

class Resistor2 : public TwoPin{
public :

Resistor2() : r(200) {};
float r;

};

class Inductor{
public :

Inductor() : v(0),i(0){};
float v, i;
Pin p, n;
const float L;

};
§ ¦

Figure 4: Resistor inheritance example in C++.

Note that a nominal type system is more restrictive than a structural type system, i.e.,
two types that have a structured subtype relation can always have a subtype relation by
names (if the language’s semantics allows it). However, the opposite is not always true.
Recall theDequeue example listed in Figure 3. The classStack has a subclass relation
to Dequeue , but a subtype relation cannot be enforced, due to the structure of the class.
The converse could be true, but the type system of C++ would not allow it, since it is
nominal and subtype relationships are based on names. Hence, a structural type system
can be seen as moreexpressiveandflexible compared to a nominal one, even if both gives
the same level of language type safety.
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¨
model Resistor2

extends TwoPin;
parameter SI.Resistance R=200;

equation
R* i = v;

end Resistor;

model Inductor
Pin p, n;
SI.Voltage v;
SI.Current i;
parameter SI.Inductance L=1;

equation
L* der(i) = v;

end Inductor;
§ ¦

Figure 5: ComplementaryInductor andResistor2 models to the example in
Figure 2.

3 Polymorphism

A type system can bemonomorphicin which each value can belong to at most one type.
A type system, as illustrated in Figure 1, consisting of the distinct types function, integer,
real, and boolean is a monomorphic type system. Conversely, in apolymorphictype sys-
tem, each value can belong to many different types. Languages supporting polymorphism
are in general more expressive compared to languages only supporting monomorphic
types. The concept of polymorphism can be handled in various forms and have differ-
ent naming depending on the paradigm where it is used. Following John C. Mitchell’s
categorization, polymorphism can be divided into the following three main categories
[58]:

• Subtype Polymorphism

• Parametric Polymorphism

• Ad-hoc Polymorphism

There are other similar categorizations, such as Cardelli and Wegner’s [15], where the
ad-hoc category is divided intooverloadingandcoercionat the top level of categories.

3.1 Subtype Polymorphism

Subtyping is an obvious way that gives polymorphic behavior in a language. For example,
an instance ofResistor can be represented both as anTwoPin type and aResistor
type. This statement can also be shown according to the rule of subsumption (t-sub)
described in Section 2.2.
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When a value is changed from one type to some supertype, it is said to be anup-cast.
Up-casts can be viewed as a form ofabstractionor information hiding, where parts of the
value becomes invisible to the context. For example, an up-cast fromResistor ’s type
to TwoPin ’s type hides the parameterR. Up-casts are always type safe, i.e., the run-time
behavior cannot change due to the upcast.

However, for subtype polymorphism to be useful, typically types should be possible
to down-cast, i.e., to change to a subtype of a type’s value. Consider functionFoo

function Foo
input TwoPin x;
output TwoPin y;

end Foo;

where we assume that down-casting is allowed4. It is in this case valid to pass either a
value of typeTwoPin (type equivalence) or a subtype to the type ofTwoPin . Regardless
if a value ofTwoPin ’s or Inductor ’s type is sent as input to the function, a value of
TwoPin ’s type will be returned. It is not possible for the static type system to know if this
is aTwoPin , Resistor or aInductor type. However, for the user of the function, it
might be crucial to handle it as anInductor , which is why a down-cast is necessary.

Down-casting is however not a safe operation, since it might cast down to the wrong
subtype. In Java, before version 1.5 whengenericswere introduced, this safety issue was
handled using dynamic checks and raising dynamic exceptions if an illegal down-cast was
made. Subtype polymorphism is sometimes called "poor-man’s polymorphism", since it
enables polymorphic behavior, but the safety of down-casts must be handled dynamically
[75].

The Modelica language supports subtyping as explained previously, but does not have
any operation for down-cast. Since the language does not include this unsafe operation,
only a limited form of subtype polymorphism can be used with functions. For example, a
function can operate on a polymorphic type as input, such asTwoPin , but it only makes
sense to return values of a type that can be instantly used by the caller.

However, subtype polymorphism is more extensively used when reusing and replacing
components in models, i.e., by using theredeclare keyword.

3.2 Parametric Polymorphism

The termparametric polymorphismmeans that functions or classes can havetype para-
meters, to which types ortype expressionscan be supplied. The term parametric polymor-
phism is often used in functional language communities, while people related to object-
oriented languages tend to use the termgenerics.

The C++ templatemechanism is an example ofexplicit parametric polymorphism,
where the type parameter must be explicitly declared. Consider for example Figure 6,
where a template functionswap is implemented. The type parameterT must be explicitly
stated when declaring the function. However, the type argument is not needed when call-
ing the function, e.g., bothint x,y; swap(x,y); andfloat i,j; swap(i,j)
are valid usage of the function.

4This function type or example is not valid in the current Modelica standard. It is used only for the purpose
of demonstrating subtype polymorphism.
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¨
template <typename T>
void swap(T& x, T& y){

T tmp = x;
x = y;
y = tmp;

}
§ ¦

Figure 6: Explicit parametric polymorphism in C++.

Standard ML on the other hand is making use ofimplicit parametric polymorphism, where
the type parameters do not need to be explicitly stated when declaring the function. In-
stead, thetype inference algorithmcomputes when type parameters are needed.

A notable difference of parametric and subtype polymorphism is that all type checking
of parametric polymorphism can take place at compile-time and no unsafe down-cast
operation is needed.

Standard ML and and C++ are internally handling parametric polymorphism quite
differently. In C++ templates, instantiation to compiled code of a function is done at link
time. If for example functionswap is called both usingint andfloat , different code
of the function is generated for the two function calls. Standard ML on the other hand
is usinguniform data representation, where all data objects are represented internally as
pointers/references to objects. Therefore, there is no need to create different copies of
code for different types of arguments.

Modelica can be seen to support a limited version of parametric polymorphism, by
using theredeclareconstruct on local class declarations.

3.3 Ad-hoc Polymorphism

In parametric polymorphism the purpose is to declare one implementation that can be
used with different types of arguments.Ad-hoc polymorphism, by contrast, allows a
polymorphic value to be used differently depending on which type the value is viewed to
have.

There are several language concepts that fall under the concept of ad-hoc polymor-
phism [15], whereOverloadingandCoercionare most notable. Other related concepts
that also fall under this category are Java’sinstanceOf concept and different form of
pattern matching[75].

Overloading

A symbol isoverloadedif it has two or more meanings, which are distinguished by using
types. That is, a single function symbol or identifier is associated with several implemen-
tations.

An example of overloading that exists in many programming languages isoperator
overloadingfor built in types. For example, the symbol+ is using infix notation and have
two operands associated with it. The type of these operands decide how the operation
should be carried out, i.e., which implementation that should be used.
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Overloading can take place at either compile-time or at run-time. Overloading used at
run-time is often referred to asdynamic lookup[58], dynamic dispatchor multi-method
dispatch. In most cases, the single term overloading refers to static overloading taking
place at compile-time. The distinction becomes of course vague, if the language isinter-
pretedand not compiled.

Another form of overloading available in some languages is user-definedfunction
overloading, where a function identifier can represent several implementations for dif-
ferent type arguments. Modelica is currently not supporting any form of user defined
overloading.

Coercion

Another form of ad-hoc polymorphism iscoercionor implicit type conversion, which is
run-time conversion between types, typically performed by code automatically inserted
by the compiler. The distinction between overloading and type coercion is not always
clear, and the two concepts are strongly related. Consider the following four expressions
of multiplication [15]:

7 * 9 //Integer * Integer
6.0 * 9.1 //Real * Real
6 * 5.2 //Integer * Real
6.0 * 8 //Real * Integer

All four of these expressions are valid Modelica expressions, but they can in the context
of coercion and overloading be interpreted in three different ways:

• The multiplication operator is overloaded four times, one for each of the four ex-
pressions.

• The operator is overloaded twice; one for each of the the first two expressions. If
the arguments have different types, i.e., one isReal and the other oneInteger ,
type coercion is first performed to convert the arguments toReal .

• Arguments are always implicitly converted toReal , and the operator is only de-
fined forReal s.

Type conversions can also be madeexplicit, i.e., code is inserted manually by the pro-
grammer that converts the expression to the correct type.

In Modelica, implicit type conversion is used when converting fromInteger to
Real . Of the three different cases listed above, the second one applies to the current
Modelica 2.2 standard.

4 Modelica Types

In the previous sections we described different aspects of types for various languages. In
this section we will present a concrete syntax for describing Modelica types, followed by
rules stating legal type expressions for the language.

The current Modelica language specification [60] specifies a formal syntax of the
language, but the semantics including the type system are given informally using plain
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English. There is no explicit definition of the type system, but an implicit description
can be derived by reading the text describing relations between types and classes in the
Modelica specification. This kind of implicit specification makes the actual specification
open for interpretation, which may result in incompatible compilers; both between each
other, but also to the specification itself. Our work in this section should be seen as
a first step to formalize what a type in Modelica actually is. Previous work has been
performed to formally specify the semantics of the language [48], but without the aim to
more precisely define the exact meaning of a type in the language.

Why is it then so important to have a precise definition of the types in a language?
As we have described earlier, a type can be seen as an interface to a class or an object.
The concept of interfaces forms the basis for the widely accepted approach of separating
specificationfrom implementation, which is particularly important in large scale devel-
opment projects. To put it in a Modelica modeling context, let us consider a modeling
project of a car, where different modeling teams are working on the wheels, gearbox and
the engine. Each team has committed to provide a set of specific attributes for their com-
ponent, which specifies the interface. The contract between the teams is not violated, as
long as the individual teams are following this commitment of interface (the specification)
by adding / removing equations (the implementation). Since the types state the interfaces
in a language with a structural type system, such as Modelica, it is obviously decisive that
they have a precise definition.

Our aim here is to define a precise notation of types for a subset of the Modelica
language, which can then further be extended to the whole language. Since the Model-
ica language specification is open for interpretation, the presented type definition is our
interpretation of the specification.

4.1 Concrete Syntax of Types

Now, let us study the types of some concrete Modelica models. Consider the following
modelB, which is rather uninteresting from a physical point of view, but demonstrates
some key concepts regarding types.

model B
parameter Real s=-0.5;
connector C

flow Real p;
Real q;

end C;
protected

Real x(start=1);
equation

der(x) = s * x;
end B;

What is the type of modelB? Furthermore, ifB was used and instantiated as a com-
ponent in another model, e.g.,B b; , what would the resulting type for elementb be?
Would the type forB andb be the same? The answer to the last question is definitely no.
Consider the following listing, which illustrates the type of modelB.

model classtype //Class type of model B
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public parameter Real objtype s;
public connector classtype

flow Real objtype p;
nonflow Real objtype q;

end C;
protected Real objtype x;

end

This type listing follows the grammar syntax listed in Figure 7. The first thing to
notice is that the name of modelB is not visible in the type. Recall that Modelica is
using a structural type system, where the types are determined by the structure and not
the names, i.e., the type of modelB has nothing to do with the nameB. However, the
names of theelementsin a type are part of the type, as we can see for parameters and
variablex .

The second thing to observe is that the equation part of the model is missing in the
type definition. The reason for this is that equations and algorithms are part of the imple-
mentation and not the model interface. Moreover, all elementss , C andx are preserved
in the type, but the keywordsmodel , connector and basic typeReal are followed
by new keywordsclasstype or objtype . This is one of the most important obser-
vations to make regarding types in a class based system using structural subtyping and
type equivalence. As we can see in the example, the type of modelB is aclass type, but
parameters is anobject type. Simply stated: A class type is the type of one of Modelica’s
restricted classes, such asmodel , connector , record etc., but anobject typeis the
type of an instance of a class, i.e., an object. Now, the following shows the object type of
b, whereb represents an instance of modelB:

model objtype //Object type of b
parameter Real objtype s;

end

Obviously, both the type of connectorC and variablex have been removed from the
type of b. The reason is that an object is a run-time entity, where neither local classes
(connectorC) nor protected elements (variablex ) are accessible from outside the instance.
However, note that this is not the same as that variablex does not exist in a instance ofB;
it only means that it is not visible to the outside world.

Now, the following basic distinctions can be made betweenclass typesandobject
types:

• Classes can inherit (using extends) from class types, i.e., the type that is bound to
the name used in anextends clause must be a class type and not an object type.

• Class types can contain both object types and class types, but object types can only
hold other object types.

• Class types can contain types of protected elements; object types cannot.

• Class types are used for compile time evaluation, such as inheritance and redecla-
rations.
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type ::= (model | record | connector |
block | function | package )

kindoftype

{{prefix} type identifier ; } end

| (Real | Integer | Boolean |
String ) kindoftype

| enumeration kindoftype

enumlist

kindoftype ::= classtype | objtype

prefix ::= access | causality |
flowprefix |modifiability |
variability | outerinner

enumlist ::= ( identifier {, identifier} )

access ::= public | protected

causality ::= input | output |
inputoutput

flowprefix ::= flow | nonflow

modifiability ::= replaceable | modifiable |
final

variability ::= constant | parameter |
discrete | continuous

outerinner ::= outer | inner |
notouterinner

Figure 7: Concrete syntax of partial Modelica types.

Let us now take a closer look at the grammar listed in Figure 7. The root non-terminal
of the grammar istype, which can form a class or object type of the restricted classes
or the built in typesReal , Integer , Boolean , String , or enumeration . The
grammar is given using a variant ofExtended Backus-Naur Form(EBNF), where terms
enclosed in brackets{} denote zero, one or more repetitions. Keywords appearing in the
concrete syntax are given in bold font. All prefixes, such aspublic , flow , outer etc.
can be given infinitely many times. The correct usage of these prefixes is not enforced
by the grammar, and must therefore be handled later in the semantic analysis. We will
give guidelines for default prefixes and restrictions of the usage of prefixes in the next
subsection.

Now, let us introduce another modelA, which extends from modelB:

model A
extends B(s=4);
C c1;
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equation
c1.q = -10 * der(x);

end A;

The question is now what the type of modelA is and if it is instantiated to an object,
i.e.,A a; , what is then the type ofa? The following shows the type of modelA.

model classtype //Class type of A
public parameter Real objtype s;
public connector classtype

flow Real objtype p;
nonflow Real objtype q;

end C;
public connector objtype

flow Real objtype p;
nonflow Real objtype q;

end c1;
protected Real objtype x;

end

First of all, we see that the type of modelA does not include anyextends keyword
referring to the inherited modelB. Since Modelica has a structural type system, it is
the structure that is interesting, and thus a type only contains the collapsed structure of
inherited elements. Furthermore, we can see that the protected elements fromB are still
available, i.e., inheritance preserves the protected element after inheritance. Moreover,
since modelA contains an instance of connectorC, this is now available as an object type
for elementc1 in the class type ofA. Finally, consider the type of an instancea of class
A:

model objtype //Object type of a
parameter Real objtype s;
connector objtype

flow Real objtype p;
nonflow Real objtype q;

end c1;
end

The protected element is now gone, along with the elements representing class types.
A careful reader might have noticed that each type definition ends without a semi-colon,
but elements defined inside a type such asmodel classtype ends with a semi-colon.
A closer look at the grammar should make it clear that types themselves do not have
names, but when part of an element definition, the type is followed by a name and a semi-
colon. If type expressions were to be ended with a semi-colon, this recursive form of
defining concrete types would not be possible.

4.2 Prefixes in Types

Elements of a Modelica class can be prefixed with different notations, such aspublic ,
outer or replaceable . We do not intend to describe the semantics of these prefixes
here, instead we refer to the specification [60] and to the more accessible description in
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[30]. Most of the languages prefixes have been introduced in the grammar in Figure 7.
However, not all prefixes are allowed or have any semantic meaning in all contexts.

In this subsection, we present a partial definition of when different prefixes are allowed
to appear in a type. In currently available tools for Modelica, such as Dymola [24] and
OpenModelica [32], the enforcement of these restrictions is sparse. The reason for this
can both be the difficulties to extract this information from the specification and the fact
that the rules for the type prefixes are very complex.

M= model
R = record
C = connector
B = block
F = function
P = package
X = Integer , Boolean ,

enumeration , String
Y = Real
a = {public , protected } Access
a′ = {public }
c = {input , output , Causality

inputoutput }
c′ = {input , output }
f = {flow , nonflow } Flowprefix
m = {replaceable , Modifiability

modifiable , final }
m′= {modifiable , final }
v = {constant , parameter Variability

discrete , continuous }
v′ = {constant , parameter

discrete }
v′′= {constant }
o = {outer , inner , Outerinner

notouterinner }

Figure 8: Abbreviation for describing allowed prefixes. Default prefixes are under-
lined.

In Figure 8 several abbreviations are listed. The lower case abbreviationsa, c, c′

etc. define sets of prefixes. The uppercase abbreviationsM , R etc. together with a
subscription ofc for class type ando for object type, represents the type of an element
part of another type. For exampleMc is a model class type, andRo is a record object
type.

Now, consider the rules for allowed prefixes of elements shown in the tables given in
Figure 9, Figure 10, and Figure 11.

In Figure 9 the intersection between the column (the type of an element) and the row
(the type that contains this element) states the allowed prefixes for this particular element.
This table shows which prefixes that are allowed for a class type that is part of another
class type. For example, recall the connectorC in modelA. When looking at the type
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Mc Rc Cc Bc Fc Pc Xc Yc
Mc amo amo amo amo amo . amo amo
Rc . . . . . . . .
Cc . . . . . . . .
Bc amo amo amo amo amo . amo amo
Fc . am . . am . am am
Pc am amv′′ am am am a′m am am

Figure 9: Prefixes allowed for elements of class type (columns) inside a class type
(rows).

Mo Ro Co Bo Fo Po Xo Yo
Mc amo acmo acmo amo amo . acmv′o acmvo
Rc . mo . . . . mv′o mvo
Cc . mo mo . . . m mcfvo
Bc amo ac′mo ac′mo amo amo . ac′mv′o ac′mvo
Fc . ac′m . . am . ac′mv′ ac′mv
Pc . amv′′ . . . . amv′′ amv′′

Figure 10: Prefixes allowed for elements of object type (columns) inside a class type
(rows).

Mo Ro Co Bo Fo Po Xo Yo
Mo o cm′o co o o . cm′v′o cm′vo
Ro . m′o . . . . m′v′o m′vo
Co . m′o o . . . . cfm′vo
Bo o c′o c′o o o . c′m′v′o c′m′vo
Fo . c′ . . . . m′v′ m′v
Po . . . . . . . .

Figure 11: Prefixes allowed for elements of object type (columns) inside an object
type (rows).

of A, we have a class type (the model class type) that contains another class type (the
connector class type), i.e., the allowed prefixes are given in the intersection of row 1 and
column 3. In this case,accessprefixespublic andprotected , modifiability prefixes
replaceable , modifiable , andfinal , andouter/innerprefixesouter , inner
andnotouterinner are allowed.

We have introduced a number of new prefixes:inputoutput , notouterinner ,
nonflow , modifiable , andcontinuous . These new prefixes are introduced to
enable a complete type definition, e.g., it should be possible to explicitly specify that a
variable in a connector is not a flow variable by giving anonflow prefix. However, for
simplicity, sometimes it is more convenient to leave out some of the prefixes, and instead
use default prefixes. The defined default prefixes are show underlined in Figure 8. If no
underlined prefix exists in a specific set, this implies that the prefix must be explicitly
stated.

Analogous to the description of Figure 9, Figure 10 shows the allowed prefixes for
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elements of object types contained in a class type and Figure 11 shows object types con-
tained in object types. There are no tables given for class types contained in object types
for the simple reason that object types are not allowed to contain class types.

In some of the cells in the tables described above, a dot symbol is shown. This means
that the specific type of element inside a certain type is not allowed. Hence, such a
combination should not be allowed by the compiler at compile-time.

Now, let us observe some general trends between the allowed attributes. First of all,
object types cannot contain class types, which is why there are only 3 tables. Secondly,
access prefixes (public , protected ) are only allowed in class types, which is why
Figure 11 does not contain any abbreviationa. Thirdly, thereplaceable prefix does
not make sense in object types, since redeclarations may only occur during object cre-
ation or inheritance, i.e., compile-time evaluation. Then when an object exists, the type
information for replaceable is of no interest any more. Finally, we can see that package
class types can hold any other class types, but no other class type can hold package types.

Note that several aspects described here are our design suggestions for simplifying
and making the language more stringent from a type perspective. Currently, there are no
limitations for any class to contain packages in the Modelica specification. Furthermore,
there are no strict distinctions between object- and class types, since elaboration and type
checking are not clearly distinguished. Hence, redeclaration of elements in an object are
in fact possible according to the current specification, even if it does not make sense in a
class based type perspective.

4.3 Completeness of the Type Syntax

One might ask if this type definition is complete and includes all aspects of the Modelica
language and the answer to that question is no. There are several aspects, such as arrays,
partial and encapsulated classes, units, constrained types, conditional components and
external functions that are left out on purpose.

The main reason for this work is to pinpoint the main structure of types in Modelica,
not to formulate a complete type definition. As we can see from the previous sections,
the type concept in the language is very complex and hard to define, due to the large
number of exceptions and the informal description of the semantics and type system in
the language specification.

The completeness and correctness of the allowed type prefixes described in the pre-
vious section depend on how the specification is interpreted. However, the notation and
structure of the concrete type syntax should be consistent and is intended to form the basis
for incorporating this improved type concept tighter into the language.

Finally, we would like to stress that defining types of a language should be done in
parallel with the definition of precise semantic and type rules. Since the latter information
is currently not available, the precise type definition is obviously not possible to validate.

5 Conclusion

We have in this paper given a brief overview of the concept of types and how they relate
to the Modelica language. The first part of the paper described types in general, and the
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latter sections detailed a syntax definition of how types can be expressed for the Modelica
language.

The current Modelica specification usesExtended Backus-Naur Form(EBNF) for
specifying the syntax, but the semantics and the type system are informally described.
Moreover, the Modelica language has become difficult to reason about, since it has grown
to be fairly large and complex. By giving the types for part of the language we have
illustrated that the type concept is complex in the Modelica language, and that it is non-
trivial to extract this information from the language specification.

Consequently, we think that it is important to augment the language specification by
using more formal techniques to describe the semantics and the type system. We therefore
propose that a subset of Modelica should be defined, which models the core concepts of
the language. This subset should be describe using operational semantics including formal
type rules. For some time, denotational semantics has been used as the semantic language
of choice, however it has been shown to be less cumbersome to prove type soundness
using operational semantics [90].

In the short term, this proposed core language is supposed to be used as basic data
for better design decision-making, not as an alternative or replacement of the official
Modelica specification. However, the long term goal should, in our option, be to describe
the entire Modelica language formally.
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Abstract

Computer aided modeling and simulation of complex physical systems, using
components from multiple application domains, such as electrical, mechan-
ical, and hydraulic, have in recent years witnessed a significant growth of
interest. In the last decade, equation-based object-oriented (EOO) modeling
languages, (e.g. Modelica, gPROMS, and VHDL-AMS) based on acausal
modeling using Differential Algebraic Equations (DAEs), have appeared.
With such languages, it is possible to model physical systems at a high level
of abstraction by using reusable components.

A model in an EOO language needs to have the same number of equations
as unknowns. A previously unsolved problem concerning this property is
the efficient detection of over- or under-constrained models in the case of
separately compiled models.

This paper describes a novel technique to determine over- and under-constrained
systems of equations in models, based on a concept called structural con-
straint delta. In many cases it is also possible to locate the source of the
constraint-problem. Our approach makes use of static type checking and
consists of a type inference algorithm. We have implemented it for a subset
of the Modelica language, and successfully validated it on several examples.

Keywords: Equation-based, modeling, object-oriented, separate compilation, type check-
ing, over-constrained, under-constrained.
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1 Introduction

Computer aided modeling and simulation have for years provided engineers in all dis-
ciplines with powerful tools to design and test complex systems in a faster and more
cost-efficient way than physical prototyping. Computerized models also give the advan-
tage of easy extraction of measurements from the model, even those that would be hard
or even impossible to get from a physical system.
Historically, imperative implementation languages like Fortran and C have to some extent
been replaced by specialized modeling platforms such as Simulink [53]. In recent years,
new kinds of modeling languages have emerged, which combine the concept of object-
orientation with specification of models using Differential Algebraic Equations (DAEs).
We call these languages Equation-based Object-Oriented languages, or EOO languages
for short. Modelica [30, 60] is an example of such a language. Other examples are
gPROMS [68],χ [28], and VHDL-AMS [18].

While EOO languages provide attractive advantages, they also present new challenges
in the areas of static analysis, type systems, and debugging. This paper deals with specific
problems arising with EOO languages in two areas:

• Constraint checking of separately compiled components.

• Error detection and debugging.

1.1 Constraint Checking of Separately Compiled Components

A model in an EOO language is actually a system of equations describing the model’s
behavior. The existence of a single solution requires that the number of equations and
variables (unknowns) are equal1. If the number of equations is greater than unknowns,
the model is said to beover-constrained. Conversely, if the number of unknowns is greater
than equations, it isunder-constrained.

In an EOO model, variables and equations can be specified in different subcomponents
of the model. To find out if a model has the same number of equations as variables, the
model has traditionally been elaborated into a flat system of equations, where the number
of variables and equations can be counted. However, this simple counting approach is not
possible when one or more components in the model have been separately compiled.

Consider a simple model of a car, consisting of axis, gearbox, and an engine. In order
to find out if the car model has the same number of equations as unknowns, we have
to translate it into one large system of equations and count the number of variables and
equations in that system. This is almost equivalent to a total recompilation of the entire
car model and all its components. This in turn means that separate compilation of the
subcomponents would have been completely unnecessary.

1.2 Error Detection and Debugging

If a model intended for simulation has not the same number of equations as variables, it
is an error. This can be detected after compiling the model into a system of equations. To

1This means that the incidence matrix associated with the system of equations is square, which is a necessary
but not sufficient condition for the equation system to be structurally non-singular.
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locate and resolve the error, the system of equations must be inspected. Consider again
the car model from Section 1.1. When the model is compiled (translated into equations),
the user might be presented with an error message such as: “There are 20237 equations
and 20235 variables”. Debugging the car model with only this message and a listing of
equations and variables is extremely hard. There exist tools [24] and methods [13] that
help the user in this process, but they require information of the model’s whole system of
equations.

1.3 Contributions

The main contribution of this work is the novel concept ofstructural constraint delta, de-
notedC∆. Our approach makes use of static type checking and consists of a type inference
algorithm, which determines if a model is under- or over-constrained without elaborating
its subcomponents. This enables separate compilation of components in EOO languages.
Furthermore, the concept also allows detection of constraint-errors at the subcomponent
level and improves the possibilities of locating the source of the errors.

1.4 Outline

The remainder of this paper is structured as follows. Section 2 describes basic concepts
and objectives of object-oriented equation-based modeling. Section 3 gives an overview
of a Modelica compiler. Section 4 introduces a minimal EOO language called Feather-
weight Modelica (FM), its syntax and informal description of semantics and type system.
Section 5 defines the concept of structural constraint delta, the algorithms used for con-
straint checking and debugging, and how these concepts fit into the FM language’s type
system. Section 6 describes our prototype implementation, Section 7 discusses related
work, and Section 8 presents conclusions of this paper.
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2 Equation-Based Modeling in Modelica

In this section we illustrate several important concepts in modeling with EOO languages
using the Modelica language as an example.

The basic structuring element in Modelica is theclass. There are several restricted
class categories with specific keywords, such asmodel , record (a class without equa-
tions), andconnector (a record that can be used in connections). Just like in other
OO languages, a class contains variables, i.e., class attributes representing data. These
attributes are calledelementsof the class and can be instances of classes or built-in types.
If the element is an instance of amodel , this element is also called acomponent . The
main difference compared with traditional OO languages is that instead of methods, Mod-
elica primarily usesequationsto specify behavior. Equations can be written explicitly,
like a=b , or be inherited from other classes. Equations can also be specified by spe-
cial connect -equations, also calledconnections. For exampleconnect(v1, v2)
expresses coupling between elementsv1 andv2 . These elements are calledconnectors
(also known as ports) and belong to the connected objects. This gives a flexible way of
specifying the topology of a physical system.

2.1 Modelica Model of an Electric Circuit

As an introduction to Modelica, we present a model of an electrical circuit (Figure 1). A
composite class like theCircuit model specifies the system topology, i.e., the compo-
nents and the connections between the components. In the declaration of the resistorR1,
Resistor is the class reference,R1 is the component’s name, andR=10 sets the default
resistance,R, to 10 .

¨
model Circuit

Resistor R1(R=10);
Capacitor C(C=0.01);
Resistor R2(R=100);
Inductor L(L=0.1);
VsourceAC AC;
Ground G;

equation
connect (AC.p, R1.p);
connect (R1.n, C.p);
connect (C.n, AC.n);
connect (R1.p, R2.p);
connect (R2.n, L.p);
connect (L.n, C.n);
connect (AC.n, G.p);

end Circuit;
§ ¦

Figure 1: Modelica model of an electrical circuit.
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2.2 Connector Classes

A connector must contain all quantities needed to describe an interaction. For electrical
components we need the variables voltagev and currenti to define interaction via a wire
connection. A connector class is shown below:

connector Pin
Real v;
flow Real i;

end Pin;

A connect-equationconnect(R1.p,R2.p) with R1.p and R2.p being instances
of the connector classPin , connects the two pins so that they form one node. This
connect-equation generates two standard equality equations:R1.p.v = R2.p.v and
R1.p.i + R2.p.i = 0 . The first equation expresses that the voltage of the con-
nected wire ends are the same. The second equation corresponds to Kirchhoff’s current
law saying that the currents sum to zero at a node. The sum-to-zero equations are gener-
ated when the prefixflow is used. Similar laws apply to flow rates in a piping network
and to forces and torques in mechanical systems. If a model contains an unconnected
connector with a flow variable, the compiler will implicitly set this variable’s value to
zero.

2.3 Base Classes and Inheritance

A common property of many electrical components is that they have two pins. Thus it is
useful to define a “base”TwoPin component as follows:

model TwoPin "Superclass of components"
Pin p, n;
Voltage v;
Current i;

equation
v = p.v - n.v;
0 = p.i + n.i;
i = p.i;

end TwoPin;

This component has two pinsp andn, a quantityv , that defines the voltage drop across the
component and a quantityi that defines the current into the pinp, through the component
and out from pinn. To define a model for an electrical capacitor we can now extend
our base classTwoPin and add a declaration of a variable for the capacitance and the
equation governing the capacitor’s behaviour.

model Capacitor "Ideal electrical capacitor"
extends TwoPin;
Real C "Capacitance";

equation
C* der(v) = i;

end Capacitor;

The keywordextends denotes inheritance from one or more base classes. Elements
and equations are inherited from the parent.
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2.4 Modification and Redeclaration

When extending or declaring an element, we can addmodification equations. The sim-
plest form of modification is assigning a value to a variable:

Resistor R1(R=100);

It is also possible to alter the internal structure of a component when declaring or
extending it, using redeclarations. Theredeclare construct changes the class of the
component being replaced. There are two restrictions on this operation:

1. The component we are replacing must be declared asreplaceable .

2. The replacing class’s type must be a subtype of the type of the component being
replaced.

In this example, we create a modelB from modelA and at the same time change
resistorR1 to be aTempResistor .

model A
replaceable Resistor R1(R=100);

end model A;

model B
extends A( redeclare TempResistor R1);

end B;

2.5 Acausal Modeling and Dynamic Systems

Modelica uses acausal modeling, which means modeling based on equations. Equations
do not specify if a variable is used for input or output. In contrast, for assignment state-
ments, variables on the left-hand side are always outputs (results) and variables on the
right-hand side are always inputs. Thus, the causality of equations-based models is un-
specified and becomes fixed only when the corresponding equation systems are solved. In
practice, this means that when simulating a model, the user does not have to specify what
variable he is interested in. The simulation will produce results for all variables present
in the model.

Modelica is primarily used for modeling dynamic systems, where a model’s behaviour
evolves as a function of time. This means that all variables in a model have a value
for every time step for which the model has been simulated. In addition, since we are
working with DAEs, all derivatives of variables (denotedder(v) for the derivative ofv )
are derivatives with respect to time. An example of using the derivative function is shown
in theCapacitor model in Section 2.3.
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3 The Modelica Compiler

In order to understand the current problem involved in separate compilation of Modelica
models we must first explain how a typical Modelica compiler works. The structure of
a typical compiler is depicted in Figure 2. It is common to view a Modelica compiler
as consisting of two parts. The first part produces a system of equations and the second
part produces an executable that solves this system of equations. The first steps in the
compilation are scanning and parsing which transforms the Modelica source code into a
parse tree. This parse tree is thenelaboratedinto equations and variables.

3.1 Elaboration and Type Checking

First we need a few definitions; specific for this kind of language.

Definition 3.1 (Flat system of equations). A flat system of equations is a set of declared
variables of primitive types together with a set of equations referencing these variables.

Definition 3.2 (Elaboration). Elaboration is the task of producing a flat system of equa-
tions from the parse tree of a set of models.

We will show how elaboration of a model is done by an example. The task is to elaborate
modelA in Figure 3. This means that from the code in modelA, we should extract the
corresponding system of equations. Examining modelA, we find that itextends C .
Our action is then to simply copy the contents of modelC into our working copy of model

Figure 2: The structure of a Modelica compiler.
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¨
model B model C model A

Real y; Real z=10; extends C(z=5);
Real x; Real t; B b;

equation equation end A;
y=der(x); t=z * 2;

end B; end C;
§ ¦

Figure 3: Example models to elaborate and type check.

A. The modification equation to variablez in the extends clause replaces the modification
equation to variablez in C. All modifications are resolved as equations so the overriding
modificationz=5 is put in the equation section. The result so far is shown in modelA1
in Figure 4.

We do not have to do anything about declarations of variables with primitive types.
However, the componentb must be elaborated sinceB is not of primitive type. We in-
vestigate modelB and find that it contains the declarationsReal y andReal x . These
declarations and all equations in modelB will now be inserted in our working modelA
with the prefixb. as we have now entered the namespace of the componentb. The elab-
oration is now complete since there are only primitive types left in our working model.
The final result of the elaboration is shown asmodel A2 in Figure 4.

In this compilation strategy, type checking is completely interleaved with the elabora-
tion.

3.2 Symbolic Transformation and Code Generation

After elaboration, a number of operations are performed on the system of equations. Typ-
ically, the first step is to check that the number of equations and variables are equal. If
this criterion is fulfilled, the compiler can go on to perform symbolic transformation tasks,
such as BLT transformation [22, 23, 39, 40]. We will not go into detail of these operations

¨
model A1 model A2

Real z; Real z;
Real t; Real t;
B b; Real b.x;

equation Real b.y;
z=5; equation
t=z * 2; b.y=der(b.x);

end A1; z=5;
t=z * 2;

end A2;
§ ¦

Figure 4: Stepwise elaboration of modelA from Figure 3.
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as they are not necessary for the understanding of this paper.

The symbolic transformation module then generates a program, usually in C code.
The program uses a numerical solver such as DASSL [74] for solving the system of equa-
tions. The generated program can then be compiled with a C compiler which produces
the executable which in turn will produce the simulation results.

3.3 Separate Compilation

Separate compilation in Modelica would ideally work as depicted in Figure 5.

The problem with separate compilation in Modelica is that while components may be
separately compiled, it is hard to check if a model containing separately compiled com-
ponents is under- or over-constrained. It seems that we must look at the entire elaborated
model (flat system of equations) in order to determine this property.

We now return to the example of the car model mentioned in Section 1.1. Let us
assume that Engine, Gearbox, and Axis are very complex models consisting of more than
20000 equations developed by separate teams. It is clearly undesirable to recompile the
entire system in order to check how it is constrained. Instead, we only want to elaborate
the connect equations and to check the interfaces of the components.

Figure 5: Separate compilation in Modelica.
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3.4 Concluding Remarks

There are two deficiencies with the current practice in the Modelica compiler that we
would like to stress.

1. Complete elaboration of all elements in a model is required to determine if the
model is under- or over-constrained.

2. If the model turns out to be under- or over-constrained, it is very hard to find the
bug since the error is detected at the level of flat system of equations rather than on
a component/model level.
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4 Featherweight Modelica

Modelica is a large and complex language that includes many concepts such as discrete
simulation, algorithm sections, and functions, which are not central for our purpose. Con-
sequently, we have designed and extracted a subset of the Modelica language, which
models important aspects of the continuous and object-oriented parts of the language. We
call this language Featherweight Modelica (FM). This section will informally present the
language.

4.1 Syntax and Semantics

A model designed in FM can express continuous behavior by using Differential Algebraic
Equations (DAEs). Reuse is achieved by theextends andredeclare constructs.

In Figure 6 the syntax grammar of FM is listed using a variant of extended Backus-
Naur Form (EBNF). Alternatives are separated using the ’|’ symbol, optional arguments
are given using square brackets([· · · ]) and the curly brackets({· · · }) denote that the
enclosed elements can be repeated zero or more times. Terminals are highlighted in bold-
face.

The non-terminalroot gives the starting point of a model definition. The metavariable
M ranges over names of models andm over names of instances of models;C ranges over
names of connectors andc over names of instances of connectors;R ranges over names
of records andr over names of instances of records;x ranges over variable names of type
Real . Note that subscribed numbers are used to differentiate between meta variables.
All bold strings are keywords in the language except forReal , which is the built in type
for R.

The foundation of the language is theclassconcept, wheremodel , connector ,
and record are special forms of classes. By observing the grammar, we can see that
only models are allowed to have connections or contain elements that can be redeclared
or modified. Connectors are the only classes whose instances can be part of aconnect -
equation, whileReal types andrecord instances can be part of equations. Note that
this can be seen in the grammar by considering the meta variables.

There are two kinds of prefixes:accessandmodifiability. Access prefixes state if an
element in a model can be defined to bepublic or protected . The latter is only visi-
ble outside the model by a model extending from the class. The second prefix category is
modifiability, defining how an element can be modified. Declaring an element replaceable
makes it possible for a user to redeclare the element. Setting the prefix of an element to
final means that the element can neither be modified nor redeclared. Only models can
be redeclared and onlyReal s can be modified in FM.

4.2 Type-Equivalence and Subtyping

Modelica is using a so calledstructural type system[75], where the type of a class is de-
termined by the structure of its components. In contrast, other object-oriented languages,
such as Java, are using primarily anominal type system, where the name of the declared
class identifies the type.
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root ::= {model | connector | record}
model ::= model M1

{extends M2 [modification] ; }
{[access] [modifiability]

(M3 m [modification] |
C c | R r | Real x [= lnum]) ; }
[equation {equation; }]
end M1 ;

connector ::= connector C1 {extends C2 ; }
{[flow ] Real x ; }
end C1 ;

record ::= record R1 {extends R2 ; }
{(R3 r | Real x) ; }
end R1 ;

modification ::= ( modification′ {, modification′})
modification′ ::= redeclare M m [modification]

| x = lnum

access ::= public | protected

modifiability ::= replaceable | modifiable

| final

equation ::= connect( c1, c2) | e1 = e2

e ::= e1 + e2 | e1 - e2 | e1 * e2 | e1 / e2

| - e | ( e ) | lnum | der( x) | x | r
| time | sin( e)

Figure 6: Syntax of Featherweight Modelica.

The Modelica language specification [60] is informally describing the semantics and
type system of the language. From the specification, the following definition oftype
equivalencecan be extracted:

Definition 4.1 (Type Equivalence). Two types T and U are equivalent if T and U de-
note the same built-in type, or T and U are types of classes, T and U contain the same
public declaration elements (according to their names), and the elements’ types in T are
equivalent to the corresponding element types in U.

Note that aclassC is not the same as thetype of classC, since the type only represents
the interfaceof the class and not the privateimplementationor semanticpart, such as
equations.

Besides type equivalence, the Modelica language defines subtyping relationships be-
tween types of classes.
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Definition 4.2 (Subtyping). For any types S and C, S is a supertype of C and C is
a subtype of S if they are equivalent or if: every public declaration element of S also
exists in C (according to their names) and those element types in S are supertypes of the
corresponding element types in C.

In the following text, we will use the notation ofC <: S , meaning that the type of class
C is a subtype of classS’s type.

¨
model A model B model C

Real p; Real p; extends A;
Real c; Real c; Real q;

equation Real q; equation
c = 2; equation q = p* p;
der(p) = -c * p; c = 2; end C;

end A; der(p) = -c * p;
end B;

§ ¦

Figure 7: Three different Modelica models.

Now, consider the three models given in Figure 7. According to Definition 4.2, we can
see thatB <: A since the public elementsp andc that exist inA also exist inB. We can
see thatC extendsA, i.e.,C inherits all components and equations fromA. Furthermore,
C defines an elementq, which makesC <: A . In addition, since bothB and C hold
the same public elements, it can be concluded from Definition 4.1 thatB andC are type
equivalent.

Subtyping is a fundamental concept in many programming languages. Generally, it
means that if a typeS has all the properties of another typeT , thenS can be safely
used in all contexts where typeT is expected. This view of subtyping is often calledthe
principle of safe substitution[75]. Now the question arise if this is true for the type system
and examples described above. The main question is what we mean bysafe substitution
in the context of equation-based object-oriented languages. If we count the number of
variables and equations in each of the models in Figure 7, we can see that modelA has 2
variables and 2 equations, modelB has 3 variables and 2 equations and finally modelC
has 3 variables and 3 equations. In the current type system of Modelica, bothB andCare
said to be safe replacements ofA. However, in this case we know that replacingA with
C gives us a potentially solvable system with 3 variables and 3 equations, but replacing
A with B results in a under-constrained system with 3 variables and 2 equations, which
will not give a unique solution. Can we after these observation still regardB as a safe
replacement ofA? We think not, and will in the next subsections propose a solution.
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5 The Approach of Structural Constraint Delta

In this section, we will present an approach that addresses the problem of determining
under- and over-constrained components without performing elaboration. We start by
giving a definition:

Definition 5.1 (Structural Constraint Delta, C∆). Given an arbitrary class C, contain-
ing components, equations, and connections, the type of C has a defined integer attribute
called structural constraint delta,C∆. This attribute states, for C and all its subcompo-
nents, the integer difference between the total number of defined equations and variables.

The termstructural indicates that the equations and variables are counted as they are
declared in the model. For example, two linearly dependent equations in an equation
system will still be counted as two separate equations. Hence,C∆ = 0 for a system of
equations does not guarantee a unique solution, it will only indicate that a single solution
might exist. IfC∆ < 0, we have an under-constrained problem with more unknowns
than equations, which might give an infinite number of solutions. IfC∆ > 0, we have an
over-constrained system of equations, which most likely will not give a unique solution.
However, since the algorithm for computingC∆ does not check if equations are linearly
independent or not, a system withC∆ > 0 may be solvable. To be able to guarantee that
a system of equations has a unique solution, complete knowledge of the entire system of
equation must be available. Since this is obviously not possible when inspecting compo-
nents separately, the value ofC∆ only provides a good indication whether a system of
equations has a unique solution or not.

For example, ifC∆ is to be calculated for the types of the models given in Figure 7,
the difference between the number of equations and variables in the model gives the value
of C∆. In this case,C∆ = 0 for A andC, butC∆ = −1 for B. Since our models so far
only contain variables and equations, calculatingC∆ is straightforward. However, if a
model contains hundreds of subcomponents, using connections, connectors, and records,
the resulting flattened system might consist of thousands of equations. To be able to
formulate algorithms for calculatingC∆, we need another definition:

Definition 5.2 (Constraint Delta Effect, E∆). Let C be an arbitrary class containing
two elements c1 and c2 that are instances of classes C1 and C2, which contain only
elements and no equations or connections. Given an equation or connection E located
in C representing a relation between c1 and c2, the constraint delta effectE∆ is a type
attribute of both C1 and C2, which states the effect E has when computingC∆ of C.

Note thatC∆ is not the same asE∆. Simply stated, we say thatE∆ of two elements
represents the change of the current model’sC∆ when an equation or connection is in-
troduced between the two elements. For example, if we in modelB in Figure 7 introduce
a new equationq = 2 * p, this equation will have the effect of changing modelB’s
C∆ from −1 to 0. Therefore, involved variablesq andp, are said to haveE∆ = 1 (or
to be precise; the attributes to the types of the elements). However, we will soon see that
elements do not always haveE∆ = 1.
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5.1 Algorithms for Computing C∆ and E∆

In this section, we present algorithms for calculatingC∆ andE∆. Even if the algorithms
for calculating the type attributesC∆ andE∆ could be stated by using a formal type
system, we have chosen to illustrate the algorithm more informally using pseudo-code
algorithms. The main reasons for this are that the Modelica language itself has currently
no formal semantics or type system and the target audience of this paper is not only
computer scientists, but also engineers from the modeling and simulation community.

It is important to stress thatC∆ andE∆ are defined as attributes to thetypes of
the classes, and not for the classes themselves. This implies that when calculating the
value for a specific classC, we do not need to recursively calculateC∆ andE∆ for each
subelement, since they are already defined by the type of the elements. The process of
calculatingC∆ andE∆ is a form of type inference, i.e., the type attributes are inferred
from equations given in the class and types of the elements in the class.
The algorithm for computingC∆ is given in Algorithm 1. This algorithm uses a help
function defined in Algorithm 2. The algorithm for computingE∆ is listed in Algo-
rithm 3. Note that the indentation of the algorithms is significant and delimits blocks for
theforeach , if , andswitch statements.
To make the algorithms more easy to follow, the following help functions are defined:

• getAdjacencyConnectors(c) - the set of connectors that are directly connected toc by
connect-equations declared in the local class.

• getBaseClasses(C) - the set of types for the base classes toC.

• getConnectors(C) - the set of accessible connectors that are used by connections in classC.
All connectors are initially marked as unvisited.

• getDelta(t) - attributeC∆ part of typet.

• getElements(C) - the set of types for elements part of classC.

• getEquations(C) - the set of equations part of the local classC, excluding connect-equations
and equations from base classes. Each element in the set represents the type of the expres-
sions declared equal by the equation.

• getEffect(t) - the attributeE∆ part of typet.

• getModifiedElements(e) - the set of elements’ types ine, which is modified by modification
equations.

• getOutsideAdjustment(c) - an integer value representing adjustments to be made if connec-
tor c is part of a connector set that is connected to an outside connector. The integer value is
equal to the positive number of flow variables inside connectorc.

• getTypeOf(c) - the type of connectorc.

• hasDefualtValue(e) - TRUE if element typee has a defined default value.

• hasFlowPrefix(e) - TRUE if elemente is prefixed with keywordflow .

• isInherited(c) - TRUE if connectorc is inherited from a base class.

• isVisited(c) - TRUE if connectorc is marked as visited.

• isOutside(c) - TRUE if connectorc is seen as an outside connector in the local class.

• markAsVisited(c) - mark connectorc as visited.

• typeCheckingFailed() - terminates the type checking, since two outside or inherited con-
nectors are connected, or a connected connector is both outside and inherited.



70
Paper B Determining Over- and Under-Constrained Systems of

Equations using Structural Constraint Delta

Algorithm 1 : ComputeC∆ of a class
Input : An arbitraryClass
Output : C∆ of the class
C∆ ← 01

switchClass do2

casemodel3

foreache ∈ getElements(Class) do4

C∆ ← C∆+ getDelta(e)5

if hasDefaultValue(e) then6

C∆ ← C∆+ 17

foreachm ∈ getModifiedElements(e) do8

if not hasDefaultValue(m) then9

C∆ ← C∆+ 110

foreache ∈ getEquations(Class) do11

C∆ ← C∆+ getEffect(e)12

foreach c ∈ getConnectors(Class) do13

Poutside ← FALSE14

Pinherited ← FALSE15

if not isVisited(c) then16

traverseConnectorGraph(c)17

if Poutside then18

C∆ ← C∆+ getOutsideAdjustment(c)19

foreach b ∈ getBaseClasses(Class) do20

foreachm ∈ getModifiedElements(b) do21

if not hasDefaultValue(m) then22

C∆ ← C∆+ 123

C∆ ← C∆+getDelta(b)24

caserecord25

foreache ∈ getElements(Class) do26

C∆ ← C∆+ getDelta(e)27

foreach b ∈ getBaseClasses(Class) do28

C∆ ← C∆+ getDelta(b)29

caseconnector30

foreache ∈ getElements(Class) do31

if not hasFlowPrefix(e) then32

C∆ ← C∆+ getDelta(e)33

foreach b ∈ getBaseClasses(Class) do34

C∆ ← C∆+ getDelta(b)35

casevariable36

C∆ ← −137

end38
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Algorithm 2 : traverseConnectorGraph(c1)
Input : Connectorc1 from which graph traversal starts
Output : Global variablesPoutside, Pinherited, andC∆

if ((isOutside(c1) and isInherited(c1)) or ((isOutside(c1)1

or isInherited(c1)) and (Poutside or Pinherited)) then typeCheckingFailed()2

else3

markAsVisited(c1)4

Poutside ← Poutside or isOutside(c1)5

Pinherited ← Pinherited or isInherited(c1)6

foreach c2 ∈ getAdjacencyConnectors(c1) do7

if not isVisited(c2) then8

C∆ ← C∆+ getEffect(getTypeOf(c2))9

traverseConnectorGraph(c2)10

Algorithm 3 : ComputeE∆ of a class
Input : An arbitraryClass
Output : E∆ of the class
E∆ ← 01

switchClass do2

caserecord3

foreache ∈ getElements(Class) do4

E∆ ← E∆+ getEffect(e)5

foreach b ∈ getBaseClasses(Class) do6

E∆ ← E∆+ getEffect(b)7

caseconnector8

foreache ∈ getElements(Class) do9

if hasFlowPrefix(e) then10

E∆ ← E∆−getEffect(e)11

elseE∆ ← E∆+ getEffect(e)12

foreach b ∈ getBaseClasses(Class) do13

E∆ ← E∆+ getEffect(b)14

casevariable15

E∆ ← 116

end17



72
Paper B Determining Over- and Under-Constrained Systems of

Equations using Structural Constraint Delta

Computing C∆ - Equations, Inheritance, and Modification

We start by illustrating the algorithms using trivial examples, where the models only
contain equations, records, and variables. Consider the following FM listing:

record R C∆=-2 E∆=2
Real p; C∆=-1 E∆=1
Real q; C∆=-1 E∆=1

end R;

model A C∆=-3
R r1; C∆=-2 E∆=2
R r2; C∆=-2 E∆=2
Real p; C∆=-1 E∆=1

equation
r1 = r2;

end A;

model B C∆=0
Real y=10; C∆=0 E∆=1

end B;

model M C∆=-1
extends A(p=1); C∆=-2
B b1(y=20); C∆=0
B b2; C∆=0

equation
b1.y = p;

end M;

Model Mextends from modelA, which implies that all equations and elements inA will
be merged intoM. Model A contains two instances of recordR. If each of these models
were to be compiled separately, we would need to calculateC∆ for each of the models
without any knowledge of the internal semantics of the subcomponents, i.e., the equations.
CalculatedC∆ andE∆ for every class and element are given to the right in the listing.

Consider Algorithm 1, which takes an arbitrary class as input and calculates theC∆

value for this class. First, we can see that calculatingC∆ of a record simply adds the
C∆ value for each element (rows 26-27), which in the case of recordR givesC∆ = −2
sinceR holds 2 variables. In Algorithm 3, we can see that calculating the effect ofR
givesE∆ = 2. But what does this mean? Recall thatE∆, given in Definition 5.2, states
the effect onC∆ when connecting two elements. In modelA, an equationr1 = r2 is
given, which uses recordR. This equation will after elaboration generate two equations,
namelyr1.p = r2.p andr1.q = r2.q , which is whyE∆ for R is 2. The rest of the
procedure for computingC∆ of modelA should be pretty straightforward by following
Algorithm 1. Note that onlyC∆ and notE∆ is given for models, since models are not
allowed to be interconnected.

The more interesting aspects of calculatingC∆ in this example are shown in modelM.
First of all, we can see that modelMextends fromA, which results in thatC∆ of A is added
to C∆ of M(see rows 20-24 in Algorithm 1). Since variablep is modified withp=1 , we
see thatC∆ is increased byE∆ of the type ofp, i.e.,Real . Hence, theC∆ contribution
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from base classA is −2. TheC∆ value for modelB is 0. When instantiated to element
b1 in modelM, its elementy is modified withy=20 . However, this modification does not
effectC∆, sincey already has a default value (see rows 8-10 in Algorithm 1). Finally, we
can see that the total calculation ofMwill result in aC∆ value of−1.

Computing C∆ - Connectors, Connections, and Flow Variables

Consider the source code listing and graphical representation given in Figure 8. Model
Mcontains componentsa andb, which are instances of modelK. Each model consist of
several connector instance, all instances of a connector classC.

The semantics of the Modelica language distinguish betweenoutside connectorsand
inside connectors, where the former are connector instances denoting the border of a
model, e.g.,oc1 andoc2 , and the latter represents connectors available in local com-
ponents, e.g.,a.ic1 , a.ic2 , b.ic1 , andb.ic2 . Note that a connector instance can
be seen as both an outside and an inside connector, depending which model is being
processed. In this example we are looking at modelM.

CalculatingC∆ of connectorC can be achieved by using rows 30-35 in Algorithm 1.
On row 32, we can see thatC∆ is only added if the variable has not got a flow prefix. The
reason for this is that an unconnected flow variable has always a defined default equation,
setting its value to 0. Hence, introducing a flow variable gives one extra variable and one
equation, i.e.,C∆ = 0. Further inspection of the algorithm, yieldsC∆ = −2 for model
K.

¨
model K

C ic1;
C ic2;

end K;

connector C
flow Real x;
Real y;

end C;

model M
K a;
K b;
C oc1;
C oc2;

equation
connect (a.ic1, oc1);
connect (a.ic2, b.ic1);
connect (b.ic2, oc2);

end M;
§ ¦

Figure 8: Model Mwith inside connectors (e.g.a.ic1 andb.ic2 ) and outside
connectors (oc1 andoc2 ).
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CalculatingC∆ of Mis more complicated. On row 13 in Algorithm 1 it is stated that
we iterate over all involved connectors, in this casea.ic1 , a.ic2 , b.ic1 , b.ic2 ,
oc1 , andoc2 . VariablePoutside becomes TRUE if the algorithm has passed an outside
connector, andPinherited becomes TRUE if it has passed an inherited element. The latter
case will not be illustrated in this example. The first thing to notice is that the connector
graph is traversed by using the recursive function traverseConnectorGraph(), listed in
Algorithm 2. The algorithm performs adepth-first searchvisiting each connector (vertex)
only once, by marking it as visited. Note that function traverseConnectorGraph() has side
effects and updates the variablesPoutside, Pinherited, andC∆. Each connect-equation
(edge) in the graph contribute to theC∆ of the class being computed, by addingE∆ of a
connector in the connection (see row 9 in Algorithm 2). Since all connectors traversed in
one iteration of the foreach loop are connected (row 13-19 in Algorithm 1), all types of
the connectors hold the same value ofE∆.

By using Algorithm 3, rows 9-12, we can see thatE∆ = 0 for connectorC. Con-
sequently, all the connections in modelMwill not change the value ofC∆. Why is this
the case? We know that connecting non-flow variables will always result in an extra
equation, i.e., for non-flow variables,E∆ must be 1. However, when connecting two
flow variables, one equation is added, but two default equations are removed. For ex-
ample inconnect(a.ic2, b.ic1); , the two default equationsa.ic2.x=0 and
b.ic1.x=0 are removed and replaced with the sum-to-zero equation:

a.ic2.x + b.ic1.x = 0

Hence, the effect of connecting two flow variables isE∆ = −1.
There are several aspects covered by the algorithms, which we will not be able to ex-

plain in detail in this paper, due to space limitations. The following items briefly describe
some of these issues:

• If cycles appear in the connector graph, there exists a redundant connect-equation
which does not contribute to the value ofC∆. For example, if connections
connect(oc1,b.ic1) andconnect(a.ic1,a.ic2) would be introduced
in M, one connection would be redundant. This issue is handled by making sure that
connectors are only visited once (see rows 7-10 in Algorithm 2.)

• Connecting an inside connector to an outside connector does not give the same
effect onC∆ as connecting inside to inside. For example, when connectingoc1
to a local connector insideM, the default variableoc1.x=0 will not be removed.
This default equation will only be removed whenoc1 is connected outside model
M, i.e., when another model is usingMas a component. This issue is managed on
rows 18-19 in Algorithm 1.

• The algorithm does not allow direct or indirect connections between outside con-
nectors. For example a connectionconnect(oc1,b.ic2) would generate a
type checking error (see row 1-2 in Algorithm 2). The same semantics hold for
connections between connectors inherited from base classes. We use this conserva-
tive approach since without it, the type of a class must be extended with information
regarding the connectors that are connected.
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5.2 Extending the Type System with C∆

The latter sections described how we can calculateC∆ andE∆ of classes, resulting in
value attributes for types in the language. However, this is of no use if we do not apply
this new information to the type system. A new extended version of the Featherweight
Modelica language, denoted FM∆, is defined by extending Definition 4.1 and Defini-
tion 4.2 for type-equivalence and subtyping with the following definitions:

Definition 5.3 (Type-equivalence andC∆). For any types T and U to be type-equivalent,
Definition 4.1 must hold and theC∆-value of T and U must be equal.

Definition 5.4 (Subtyping andC∆). For any types S and C, S is a supertype of C and C
is a subtype of S if Definition 4.2 holds and theC∆-value of S is equal to that of C.

Hence, the extended language FM∆ guarantees that the difference between declared vari-
ables and equations does not change when using the rule of subsumption. If we recall
the models listed in Figure 7, we can now see that modelC is a subtype of modelA, but
modelB is not.



76
Paper B Determining Over- and Under-Constrained Systems of

Equations using Structural Constraint Delta

6 Prototype Implementation

To validate and verify our algorithms, a prototype Featherweight Modelica Compiler
(fmc ) was implemented consisting of a type-checker for FM∆, whereC∆ andE∆ au-
tomatically are inferred and represented as attribute to the types. The prototype compiler
was implemented as a batch-program, which takes a FM∆ .mo -file (containing FM∆

models) as input and returning to standard output the pretty-printed type of the last model
defined in the.mo -file.

To validate the correctness of our solution, the following procedure has been used:

1. Create relevant models in FM∆.

2. Run the prototype compiler for FM∆ on the models. The output is the listed type
of the model includingC∆ information.

3. Elaborate the model and manually inspect the flat Modelica code generated by the
compilers Dymola version 6 [24] and OpenModelica version 1.4.1 [32].

We will now analyze, by using a simple circuit example, how the concept of struc-
tural constraint delta attacks the problems of constraint checking with separately com-
piled components, and error detection and debugging. In the examples,fmc and Dymola
version 6 are used when testing the models.

6.1 Constraint Checking of Separately Compiled Components

Consider the following listing, stating the modelResistor , a connectorPin and a base
classTwoPin :

model TwoPin connector Pin
Pin p; Real v;
Pin n; flow Real i;
Real v; end Pin;
Real i;

equation model Resistor
v = p.v - n.v; extends TwoPin;
0 = p.i + n.i; Real R = 100;
i = p.i; equation

end TwoPin; R * i = v;
end Resistor;

When usingfmc , each of these models are separately type checked. For example,
when typechecking modelResistor , modelTwoPin and connectorPin are not elabo-
rated. Instead, only the types ofTwoPin andPin are used. This information is available
after these classes are compiled.

Below the output generated byfmc is listed, with some pretty printing added for
readability:
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model classtype C∆=0
public final connector objtype C∆=-1 E∆=0

nonflow Real objtype v;
flow Real objtype i;

end p;
public final connector objtype C∆=-1 E∆=0

nonflow Real objtype v;
flow Real objtype i;

end n;
public modifiable Real objtype v;
public modifiable Real objtype i;
public modifiable Real objtype * R;

end

The lines above represent the type of modelResistor . Note the difference made be-
tweenclass type(the type of a class that can be instantiated), and aobjtype (the type
of an object that has been instantiated by a class). The type’s of elementsp andn have
C∆ = −1 andE∆ = 0. The latter indicates that when theResistor model is used
by connectingp or n, C∆ will not change. Finally, we can see that thatC∆ = 0 for the
whole type ofResistor .

Now, if the following code is added to our.mo -file, we have a complete model named
Circuit that we can simulate.

model Ground model VsourceAC
Pin p; extends TwoPin;

equation Real VA = 220;
p.v = 0; Real f = 50;

end Ground; Real PI = 3.1416;
equation

v = VA* sin(2 * PI * f * time);
end VsourceAC;

model Inductor model Circuit
Pin p; protected
Pin n; replaceable Resistor R1(R=10);
Real v; replaceable Inductor L(L=0.1);
Real i; VsourceAC AC;
Real L = 1; Ground G;

equation equation
L* der(i) = v; connect (AC.p, R1.p);

end Inductor; connect (R1.n, L.p);
connect (L.n, AC.n);
connect (AC.n, G.p);

end Circuit;

Trying to simulate the above modelCircuit in the commercial Modelica environment
Dymola, the error feedback states that it is not possible to simulate it because there are 22
equations and 25 variables in the flattened equation system.

Executing the model infmc , we get the response that modelcircuit hasC∆ = −3,
which corresponds to the message Dymola reported. Note that Dymola had to elaborate
all the models to a flattened system of equation to get to this result.fmc on the other
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hand could use the separately type checked components and just use the types of these
components to get the same result. Hence, this example illustrates how our approach can
be used to enable separate compilation of components.

6.2 Error Detection and Debugging

Now the following question arise: How can we know where the problem is located? The
user needs to either analyse the model code or to inspect the flat system of equations. In
both cases, this problem seems hard to manage.

If we run this model infmc , we get the following type information for modelCircuit
(for readability, parts of the type are replaced by a dotted line):

model classtype C∆=-3
protected replaceable model objtype C∆=0

...
end R1;
protected replaceable model objtype C∆=-3

...
end L;
protected modifiable model objtype C∆=0

...
end AC;
protected modifiable model objtype C∆=0

...
end G;

end

Analyzing the type information, it indicates that it is componentL, which is an in-
stance ofInductor that probably causes the under-constrained system. After a closer
look, we notice thatInductor is not extending fromTwoPin , as it should. After re-
placing the oldInductor model with

model Inductor
extends TwoPin;
Real L = 1;

equation
L* der(i) = v;

end Inductor;

it is possible to simulate the model.
Now, let us assume that we want to build a larger model having modelCircuit as a

subcomponent. However, this time we do not want to use aResistor in Circuit . In-
stead, the goal is to redeclareRwith a temperature dependent resistor calledTempResistor .
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Consider the following models:

model TempResistor
extends TwoPin;
Real R; // Resistance at. reference temp.
Real RT=0; // Temp. dependent resistance
Real Tref=20; // Reference temperature
Real Temp; // Actual temperature

equation
v = i * (R + RT * (Temp-Tref));

end TempResistor;

model Circuit2
extends Circuit( redeclare TempResistor R1(R=35));

end Circuit2;

Trying to simulate this model in Dymola results in a flattened model with 28 variables and
27 equations, which cannot be simulated. By elaborating all components and analyzing
the system of equations, Dymola hints that R1 is structurally singular.

However, usingfmc , this model does not even pass the type checker. The compiler
reports thatC∆ for the original type is 0 (Resistor ), but the redeclaring model’s type
is -1 (TempResistor ). Hence, the subtyping rule is not legal and the redeclaration
is incorrect. The following listing shows a correct redeclaration, where the temperature
parameterTemphas been assigned a value.

model Circuit3
extends Circuit

( redeclare TempResistor R1(R=35, Temp=20));
end Circuit3;

Consequently, our approach finds the incorrect model at an early stage during type check-
ing. Furthermore, since the type checking was performed on precompiled models, there
is no need for elaborating the model’s subcomponents. Hence, this approach is not only
useful for separate compilation, but also for users when locating errors in models.
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7 Related Work

We have used the Modelica language as an example to explain the problems associated
with over- and under-constrained systems. These problems arise in languages using hi-
erarchical modeling with components, where the component semantics contain DAEs.
While it is trivial to count equations in a simple model, we have seen that the complexity
increases when introducing connect semantics, existing in e.g. theχ [28] language. Both
flow variables, used in e.g. VHDL-AMS [18] (calledthrough ) and inheritance part of
e.g. gPROMS [68], complicate matters further.

The Modelica language includes all these concepts, and there exist methods for lo-
cating errors at the level of flat system of equations [13]. The Modelica tool Dymola
[24] detects constraint-errors at the flat system of equations, and can sometimes also pin-
point the errors. One downside with these approaches is that the entire model must be
elaborated, making separate compilation difficult.

An attractive simplification related to theC∆ concept would be to require all sepa-
rately compiled models to have the same number of equations as unknowns, i.e.,C∆ = 0.
However, it is an open question if this approach is not too conservative for expressing
models in the general case.

To the best of our knowledge, no solution has previously been presented for any ap-
plicable language that determines if a model is under- or over-constrained, without elab-
orating the model.

8 Conclusions

We have presented the concept of structural constraint delta (C∆) for equation-based
object-oriented modeling languages. Algorithms for computingC∆ were given, and it
was shown howC∆ is used to determine if a model is under- or over-constrainedwith-
out having to elaborate a model’s components. We have also illustrated how the concept
of C∆ allows the user to detect and pinpoint some model errors. The concept has been
implemented for a subset of the Modelica language and successfully tested on several
models.

Acknowledgments

Thanks to Peter Bunus, John Wilander, Thomas Schön, and Åsa Broman for many useful
comments. This research work was funded by CUGS (the National Graduate School
in Computer Science), SSF in the Visimod-II project, MathCore Engineering, and by
Vinnova in the NETPROG Safe & Secure Modeling and the GridModelica projects.



Paper C

Abstract Syntax Can Make the
Definition of Modelica Less Abstract

Authors: David Broman and Peter Fritzson

Edited version of paper originally published inProceedings of the 1st International Work-
shop on Equation-Based Object-Oriented Languages and Tools (EOOLT’07), pages 111-
126, Berlin, Germany. Linköping University Electronic Press, 2007.

81





Abstract Syntax Can Make the Definition of
Modelica Less Abstract

David Broman and Peter Fritzson

Department of Computer and Information Science
Linköping University

SE–581 83 Linköping, Sweden
E-mail: {davbr,petfr}@ida.liu.se

Abstract

Modelica is an open standardized language used for modeling and simulation
of complex physical systems. The language specification defines a formal
concrete syntax, but the semantics is informally described using natural lan-
guage. The latter makes the language hard to interpret, maintain and reason
about, which affect both tool development and language evolution. Even if
a completely formal semantics of the Modelica language can be seen as a
natural goal, it is a well-known fact that defining understandable and concise
formal semantics specifications for large and complex languages is a very
hard problem. In this paper, we will discuss different aspects of formulat-
ing a Modelica specification; both in terms ofwhat should be specified and
how it can be done. Moreover, we will further argue that a "middle-way"
strategy can make the specification both clearer and easier to reason about.
A proposal is outlined, where the current informally specified semantics is
complemented with several grammars, specifying intermediate representa-
tions of abstract syntax. We believe that this kind of evolutionary strategy
is easier to gain acceptance for, and is more realistic in the short-term, than
a revolutionary approach of using a fully formal semantics definition of the
language.
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1 Introduction

Modelica is an open standard language aimed primarily at modeling and simulation of
complex physical systems. The first language specification 1.0 [59] was released in Sep-
tember 1997. Since then, the current specification 2.2[60] has evolved to be large and
complex with many constructs.

During these past ten years, the user community has grown fairly large and the Mod-
elica Standard Library has evolved to include several physical domains. The dominating
Modelica tool has for a long time been the commercial tool Dymola [24]. However, during
recent years, alternative tools have emerged; both open source (OpenModelica [33, 69])
and commercial environments (e.g., MathModelica System Designer [52], MOSILAB
[27], and SimulationX[43]).

The rapidly growing user community and increasing number of tool vendors aug-
ment the demand of the language specification being precise so that different tools will be
compatible. Hence, the Modelica Association, who is responsible for the language speci-
fication, has defined the goals for the next language version both to make the specification
clearer and to simplify the language itself.

1.1 Specification of the Modelica Simulation process

Modelica’s compilation and simulation process can be divided into several stages or sub-
processes. Consider Figure 1, where a Modelica model iselaborated1 into a Hybrid
Differential Algebraic Equation (Hybrid DAE) and then transformed into an executable,
which after execution produces a simulation result.

Figure 1: Overview of a typical Modelica compilation and simulation process.

The syntax and semantic analysis take place at compile time and the generation of simu-
lation output is produced at run-time.

In the current specification 2.2 [60], the concrete syntax is stated formally using Ex-
tended Backus-Naur From (EBNF), but only the semantics of the first part of the process

1In this paper, we call this processelaboration. In the Modelica specification 2.2, this process is called
instantiation. Sometimes, this transformation is also referred to as theflatteningphase, since it creates a flat
system of equations. However, we think that both these terms are misleading. The former, since it is performed
at compile time and is not allocating memory analogous to instance creating in standard programming languages.
The latter, since the final equation system does not need to be flat - it can still be represented in a hierarchical
structure.
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is informally described using natural language backed up with concrete source code ex-
amples.

Due to the fact that output of this process is not precisely defined, and that the seman-
tics is described informally using natural language, the current specification is to a high
degree open for interpretation.

1.2 Unambiguous and Understandable Language Specification

The natural goal of a language specification is to beunambiguous, so that tool implemen-
tors interpret the specification in exactly the same way. At the same time, it is important
that the specification iseasy to understandfor the intended audience. Unfortunately, it is
not that easy to meet both of these goals when describing a large and complex modeling
language such as Modelica. There are several specification approaches with different pros
and cons. Hence, the overall problem is to find an approach that satisfies the specification
goals in the best possible way.

If the language is described usingformal semantics, e.g., structured operational se-
mantics [76], the language semantics is precise and can in some cases be proved to have
certain properties, such as type safety [75, 90]. However, to understand and interpret a
formal language specification require a rigorous theoretical computer science knowledge.
Furthermore, even if great effort has been spent during the last decades in formalizing
mainstream programing languages, only a few, e.g., Standard ML [57], are actually fully
formally specified. Accordingly, it turns out to be a very hard task to specify an under-
standable and concise formal specification of an existing complex language.

Alternatively, if the language semantics is described usingnatural languages, e.g.,
plain English text describing the semantics, it might be easy for software engineers to
understand the specification. Many languages are described in this way, for example Java
[36], C++ [42], and Modelica [60]. However, ease of understanding does not imply that
different individuals interpret the specification in the same way. It is a well known fact
that it is very hard to write unambiguous natural language specifications, and perhaps
even harder to verify their consistency.

1.3 Previous Specification Attempts

Several previous attempts have been made to formalize and improve the specification of
the Modelica language. The most obvious one is the further development of the official
language specification itself, conducted by the Modelica Association. The work on the
next language specification includes substantial restructuring and a more detailed descrip-
tion of the semantics of the language. However, it is not planned to include any formal
descriptions, apart from an appendix containing one possible definition of Modelica ab-
stract syntax.
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Natural Semantics

Already in 1998 Kågedal and Fritzson [47, 48], created a formal specification for a subset
of the Modelica language, influenced by the language specification examples described
in the 1997 version of [31]. The specification was usingNatural Semantics[45] and
the executable specification language Relational Meta Language (RML) [73]. This work
influenced the design of the language and the official Modelica specification. The exe-
cutable specification has gradually evolved and is now the code basis for the OpenMod-
elica project[69]. In 2006, the code base was converted from RML to Meta-Modelica[34]
with the purpose of making it more accessible for software engineers in the Modelica
community. Hence, today the project is more intended to be a complete implementation
of the language than a specification itself. One lesson learned from this specification
project was that for an almost complete specification of an early Modelica language ver-
sion, the formal specification became hard to get an overview of, since it grew to be very
large.

Elaboration

Jakob Mauss has made several contributions to formally describe the elaboration process
(calledinstance creationin his work) of a subset of Modelica, i.e., the translation process
from a Modelica model into a system of equations. The published work [54] describes an
algorithmic specification approach, which focuses on Modelica’s complex lookup rules
and modification semantics; including redeclaration of classes and components. Seman-
tics for describing restrictions on validity of a model, such as types, restricted classes, and
most prefixes are not considered. It exists also a refined version of this work, which uses
a more compact notation. However, this work is still unpublished.

Modelica Types

In our previous work on types in the Modelica language[11], we concluded that the type
concept is only implicitly defined in the Modelica language specification. In that work,
we proposed a concrete syntax of specifying Modelica types and gave a suggestion for
constraining information of element prefixes in the types. Furthermore, it was empha-
sized that Modelica has astructural type system, which implies that aclassand atypeare
two separate language concepts. In this paper, we will not cover types, even though parts
of a specification can also be described using type rules.

A common dominator for all these isolated formal specification attempts is that they have
been conducted in parallel with the official language specification. Even if a proposed
alternative specification covers large portions of the language, it will not be used as a
specification by the community if it is not replacing the official specification. If there
are two specifications of the same concept, how do we then know which one is valid if
they are not consistent? Nevertheless, these formal specification attempts are still very
important to promote understanding and discussion about the informal semantics. It is of
great importance that these works gradually find their way into the official specification.
The question is how to make this possible in practice, since all attempts so far only model
subsets of the real language.
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1.4 Abstract Syntax as a Middle-Way Strategy

Improving the natural language description of the Modelica specification is an obvious
way of increasing the understandability and removing ambiguity. However, since this
process is tedious and error prone, it is very hard to ensure that the ambiguity decreases.
Moreover, previous work on formalization of the complete semantics of subsets of the
language has shown to be complex and resulting in very large specifications. Hence,
there is a concrete and practical need to find a "middle-way" strategy to improve the
clarity of the complete language, not just subsets. This strategy must be simple enough to
not require in depth theoretical computer science knowledge of the reader, but still precise
enough to avoid ambiguities.

When a compiler parses a model, the result is normally stored internally as anAbstract
Syntax Tree (AST). Hence, one particular model results in a specific AST, which can
be seen as an instance of the language’s abstract syntax. The abstract syntax can be
specified using acontext-free grammar, and an AST can also have a corresponding textual
representation.

The internal representation of an AST is often seen as a tool implementation issue,
and not as something that is defined in a language specification. Nevertheless, in this
paper we propose that the intermediate representations between the transformation steps
(recall Figure 1) should be described by specifying its abstract syntax.

However, specifying different forms of abstract syntaxcannotreplace the semantic
specification need in the transformation process, since the syntax only describes thestruc-
ture of a model, while the semantics states themeaningof it. Hence, in the short term,
this specificationcomplementsthe current informal specification, by clarifying exactly
what both the input and the output structure of a transformation are.

By following this evolutionarystrategy, the semantic description may then be grad-
ually more described using techniques such as Syntax-Directed Translation Schemes
(SDT)[2] or different forms of operational semantics. However, as earlier described, this
is not straight forward when considering the whole Modelica language. The main pur-
poses of including abstract syntax definitions in the specification can be summarized to
be:

1. Specifying Valid Input. Increase the clarity of what valid Modelica actually is, i.e, to
make sure that different tools reject the same models.

2. Specifying Expected Output.Remove confusion of what the actual outcome of exe-
cuting a Modelica model is.

3. Promoting Language Simplification. The Modelica language has been identified to
be sometimes more complicated than necessary (e.g., relations between the gen-
eral class and restricted classes). An abstract syntax formulation can be used as a
guidance tool for identifying the most useful reformulations needed.

Part of the first item is already specified using the concrete grammar. To increase the level
of details that can be specified of the abstract syntax, we will later in the paper suggest
an informal approach to include context-sensitive information in the abstract grammar
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specification. This rules out parts of the informal semantics used for rejecting invalid
models. However, great parts of the rejecting semantics must still be described using
another semantic specification form.

In the following sections, we will gradually introduce more motivations and descrip-
tions of the abstract syntax approach. Section 2 gives an overview of different aspects
of specifying a language specification in the context of Modelica. The discussion on dif-
ferent specification alternatives and aspects forms the basis for Section 3, which more
concretely elaborates on our proposal. Finally, in Section 4 concluding remarks are stated
and future work is outlined.
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2 Specifying the Modelica Specification

Defining a new language from scratch with an unambiguous and understandable language
specification is a difficult and time consuming task. Developing and enhancing a language
over many years and still being able to keep the language backwards compatible and the
specification clear, is perhaps an even more challenging mission. In the previous section,
we described this problem with the current specification, motivated the need for improve-
ment, and briefly introduced a proposed strategy. In the beginning of this section, we will
focus on the questionwhat should actually be specified in the Modelica specification. At
the end of the section, we will discusshow this specification can be achieved by survey-
ing some different specification approaches and compare how they relate to the abstract
syntax approach.

At a high level, the syntax and semantics of Modelica can be divided into two main
aspects:

• Transformation, i.e., the process of transforming a Modelica source code model
into a well defined result. Depending on the purpose, the result can either be an
intermediate form of a Hybrid Differential Algebraic Equations (Hybrid DAE), or
the final simulation result.

• Rejection, i.e., rules describing what a valid Modelica model actually is. These
rules should unambiguously describe when a tool should reject the input model as
invalid.

Both these aspects are important for a clear-cut result, so that tool vendors can create
compatible tools.

2.1 Transformation Aspects - What is Actually the Result of an
Execution?

In the introduction section of the Modelica specification 2.2 [60], it is stated that the scope
of the specification is to define the semantics of the translation to a flat Hybrid DAE and
that it does not define the result of a simulation. A mathematical notation of the hybrid
DAE is given, but no precise and complete output is defined.

However, many constructs given in the specification are not handled during this trans-
lation to a Hybrid DAE. Hence, the semantics of these constructs (e.g., when-equations,
algorithm sections), are implicitly defined, even if the specification states that this should
not be the case.

So, the questions arise: what is actually the transformation process? What is the
expected result of the execution? We would argue that the answer to these questions would
differ depending on who you ask, since the current specification is open for interpretation.
In this subsection, we give our view of a typical Modelica transformation process.

Recall Figure 1, where the high-level view of a typical Modelica compilation and
simulation process is outlined. The translation process is divided into three sub-processes,
each having an artifact as input and output.
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Elaboration

Theelaborationprocess (also calledinstantiationand sometimesflattening) takes as input
a source code Modelica model and transforms it into a Hybrid DAE. This is the main part
described in the Modelica specification, which includes among other things parsing, type
checking, redeclarations, connection elaboration, and generation of equations. The output
is the Hybrid DAE, which includes items such as equations, function calls, algorithm
sections, declaration of variables etc.

Equation Transformation and Code Generation

The Hybrid DAE is simplified and transformed (index reduction, generation of Block
Lower Triangular form (BLT)). Finally, target code is generated (typically C-code), which
is linked together with a numerical solver, such as DASSL[74].

Simulation

The final transformation step is basically running the executable, where the actual simu-
lation takes place. During this step, numerical integration of the continuous system and
discrete event handling occurs.

Static vs. Dynamic.

In the example above, it was assumed that the process wascompiledand notinterpreted.
This is not a specification requirement, even if it is common that tools are implemented as
compilers. The definitions of static and dynamic semantics are often confusing in relation
to compile-time and simulation-time. Some people will argue that the dynamic semantics
is only the simulation sub-process and that the elaboration and equation transformation as
well as the code generation phases are the static semantics. If the tool is implemented as
an interpreter, the distinction becomes less clear. In such a case, it is natural to view all
three processes as the dynamic semantics. Even if this is only a matter of definitions, it
becomes significantly important when reasoning about type checking and separate com-
pilation.

From the discussion above, it is clear that we need to have a precise definition of the input
and the output of the elaboration process. Whether the two last sub-processes should be
part of the specification is an open design issue, but it is obviously important that the
decision is made if it should be completely included or removed.

2.2 Rejection Aspects - What is actually a Valid Modelica Model?

In the current specification, it is hard to interpret what valid Modelica input is, i.e., it is
difficult for a tool implementor to know which models that should be rejected as invalid
Modelica. A restrictive abstract syntax definition can help clarifying several issues.

Besides specifying the translation semantics of a model, a language specification typ-
ically describes which models that should be treated as valid, and which should not. By
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an invalid modelwe mean an transformation that should result in an error report by the
tool. In order for different tool vendors to be able to state that exactly the same models
are invalid,whenandhow to detect model faults must be clearly and precisely described
in the language specification. Unfortunately, this is not as easy as it might seem.

Basically, rules in a specification for stating a valid model can be specified by using
one of the following strategies, or a combination of both:

• Specify rules that indicate valid models. All models that do not fit to these rules are
assumed to be invalid.

• Assume that all models are valid. Explicitly state exceptions where models arenot
valid.

The current Modelica specification mostly follows the latter approach. Here the concrete
syntax constrains the set of legal models at a syntactic level. Then, informal rules given
in natural language together with concrete examples state when a model can be legal or
illegal.

The problem with this approach is that it is very hard for a tool vendor to be sure that
it is compliant with the specification.

Time of checking.

Detecting that a model is invalid can take place at different points in time during the
compilation and simulation phase. Even if this can be regarded as a tool issue and not
a language specification detail, the checking time have great implications on the tools
ability to guarantee detection of invalid models.

Figure 2 outlines a simplified view of the earlier described compilation and simulation
process, where sub-processes of equation-transformation, code generation and simulation
are combined into one transformation step.

Figure 2: Possible checking-time during the process

The figure shows five (T1 - T5) conceptual points in time where the checking and re-
jection of models can take place. Starting from the end,T5 illustrates the final step of
checking that the simulation result data is correct according to some requirements. This
checking can normally not be conducted by a tool, but only by humans who have the
domain knowledge.

The checking at pointT4 takes place during simulation of the model. This is what
many would refer to asdynamic checking, since it is performed during runtime. Errors
which can occur here are for example numerical singularities after events or array out-
of-bound errors. Since Modelica does not have an exception handling mechanism, it
is implicitly assumed that the tool exits with an error statement. Checking pointT3 is
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performed after the elaboration phase. This can for example concern the control that the
number of equations equals the number of unknowns.

Even if it is not stated in the Modelica specification,T2 is our interpretation of the
specification where the type checking takes place. Here, the naming of this kind of check-
ing is often a source of confusion. If the elaboration phase is regarded as thestatic se-
mantics, some people call thisstatic type checking. However, since the elaboration phase
is the major part of the semantics described in the specification, and it involves complex
transformation semantics, this can be viewed as something dynamic from an interpretive
semantics point of view, or as something static from a translational semantics point of
view. Using an interpretive semantics style,T2 would involvedynamic type checking.

Following this argumentation, thenT1 would representstatic type checking, i.e., the
types in the language are checkedbefore elaboration. This reasoning is analogous to
dynamic checking in languages such as PHP and Common LISP, compared to static type
checking in Haskell, Standard ML, or Java. Even if the Modelica specification does not
currently support this kind of static checking, it has a major impact on the ability to detect
and isolate for example over- and under-constrained systems of equations[12] or to enable
separate compilation.

2.3 Specification Approaches - How can we state what it’s all
about?

When it is clearwhat to specify, the next obvious question ishow to specify it. There are
several specification approaches, and we have briefly mentioned some of them earlier in
this paper.

As evaluation criteria, it is natural to use the specification goals ofunderstandability2

and unambiguity. Furthermore, it is also of interest to estimate theexpressivenessof
the approach, i.e., how much of the intended specification task can be covered by the
approach.

In the following table, a number of possible specification approaches are listed, with
our judgements of the evaluation criteria.

Approach Understandability Expressiveness Unambiguous
Natural language description High-Medium High Low
Formal semantics Low Medium High
Abstract Syntax Grammar Medium Medium High
Concrete Syntax Grammar Medium Low High
Test suite High High Low
Reference Implementation Low High High

Table 1: Possible specification approaches with estimated evaluation criteria.

A natural language specification can be understandable and expressive, depending on the

2Understandability is of course a very subjective measurement. In this context, we have chosen to also
include the level of needed knowledge to understand the concept, i.e., a concept requiring an extensive computer
science or mathematical background results in lower understandability rating.
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size and quality of the text, but easily leads as we have discussed earlier to ambiguous
specifications. Using a formal type system together with formal semantics [75] is here
seen as having low understandability, since it requires high technical training. It is how-
ever very precise and fairly expressive.

The expressiveness of the abstract syntax is stated as higher than the concrete syn-
tax, since we can introduce context dependent information in the grammar using meta-
variables. An example of this will be given in the next section.
We have also, for the sake of completeness, included related approaches such as the use
of a test suite and reference implementation. The approach to use a test suite as a specifi-
cation can be an interesting complement to abstract syntax and informal semantics. How-
ever, it is very important to state which description that has precedence if ambiguities are
discovered. Finally, a reference implementation can also be seen as a specification, even
if it is hard to get an good overview and reason about it.
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3 An Abstract Syntax Specification Approach

In the following section we will go into more details about the proposal to use abstract
syntax as part of the Modelica specification. Initially, the different abstract syntax repre-
sentations are outlined in relation to the transformation process described in Section 2.1,
followed by a discussion about the specification and representation of the syntax. Finally
a small example of abstract syntax grammar is given and discussed.

3.1 Specifying the Elaboration Process

An Abstract Syntax Tree(AST) can be seen as a specific instance of an abstract syntax.
Transformation processes inside an compiler can be defined as transformations from one
intermediate representation to another. ASTs are a natural form of intermediate represen-
tation.

Consider Figure 3, where the elaboration process is shown with surrounding ASTs.
The first step in the process is the ordinary scanning and parsing step, which is formally
defined in the specification using lexical definitions and concrete syntax definitions using
Extended BNF.

Complete AST (C-AST)

This step transforms into the first tree calledComplete AST (C-AST), which is a direct
mapping of the concrete syntax. Although this is a natural step in a compiler implemen-
tation, it is of minor interest from a specification perspective.

Simplified AST (S-AST)

From the C-AST, a simplification transformation translates the C-AST into a simplified
form calledSimplified AST (S-AST). This transformation’s goals are:

• Desugaring: The process of removing so calledsyntactic sugar, which is a conve-
nient syntactic extension for the modeling engineer, but with no direct implication
on the semantics. Example of such desugaring of a model is to collect all equation
sections into one list, since the Modelica syntax allows several algorithm and equa-
tion sections to be defined in a model.

Figure 3: Modelica’s compilation process divided into intermediate representations
in the form of abstract syntax trees (ASTs).
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• Canonical TransformationsMinor transformations and operations that help the S-
AST to be a canonical form which is more suitable as input to the elaboration
process. For example assigning correct prefixes to subelements (e.g., Section 3.2.2.1
in [60]).

• Checking model validity.One of the purposes with S-AST is that it is more re-
strictive than the C-AST. Hence, some C-AST are not valid S-AST. This restriction
gives the possibility to ensure certain model properties, which in the current Model-
ica specification is described using informal natural languages. For example, which
kind of restricted classes is the record class allowed to contain as its elements?

The S-AST can be seen as a simplified internal language analogously to thebarelanguage
of Standard ML[57]. However, initially, we do not see a similar short and precise way
of specifying the transformation from C-AST to S-AST, as the transformation rules are
given in the Standard ML specification.

Hybrid DAE AST (HDAE-AST)

Besides S-AST, the output of the elaboration phase called Hybrid DAE AST (HDAE-
AST) is proposed to be specified formally in the specification. The HDAE-AST must not
just be a high-level mathematical description of an Hybrid DAE, but an explicit syntax
description describing a complete specification of what the actual output of the elaboration
phase is. This does not only include equations and variables, but function definitions,
algorithm sections, when-equations and when-statements. Even if this information is
possible to derive from the current specification, it would be a great help for the reader to
actually know what the output is, not just assume it.

Note that our approach suggests that the language specification should initially include
a precise description of the possiblestructuresof the ASTs; specifying input and output
to the transformation process. The semantics of the transformation must still be described
using another approach.

3.2 Specifying the Abstract Syntax

The specification of the syntax must be described using some kind ofgrammar, or data
type construct in a language such as in Haskell, Standard ML, or MetaModelica [34].

The syntax can be specified using acontext-freegrammar, e.g. in Backus-Naur Form
(BNF). However, we propose a more abstract definition of a grammar, where certainmeta-
variablesrange over names and identifiers. The notation has to some extent similarities
to and is inspired by the abstract syntax definition of Featherweight Java[41].

For example, by stating that a meta variableRr ranges overnames(identifiers with
possible dot-notation) referencing arecord , we have introduced a contextual depen-
dency in the grammar. The grammar declaratively states the requirement that this name
must after lookup be a record, without statinghow the name lookup should be performed.
The latter must of course also be described in the specification, but in this way the differ-
ent issues are separated. Consequently, this grammar is not intended to be used directly



96 Paper C Abstract Syntax Can Make the Definition of Modelica Less Abstract

by a parser generator tool such as Yacc, but as a high-level specification which is less
open for interpretation.

3.3 The Structure of an Abstract Syntax

Depending on the purpose and language for an abstract syntax, the structure of the syntax
itself can be very different.

When specifying a simple functional languages, it is common that the grammar of
the abstract syntax only has one non-terminal, namely aterm [75]. Hence, all evaluation
semantics is performed on this node type only, and all terms can be nested into each other.
This gives a very expressive language, but the constraining rules ensuring the validity of
an input program must be given in another form. This form is normally a formaltype
system, describing allowed terms.

Another method is to describe the abstract syntax with many non-terminals; more
than needed for a production compiler. In for example the Modelica case, the different
restricted classes:model , block , connector , package , andrecord would not
be represented as one non-terminalclass, but as different non-terminals. This structure
would be more verbose, but also give the possibility of more precisely describing relations
between restricted classes.

Somewhere inbetween those two extremes is for example theSCODErepresentation
used in the earlier RML specification[47] and the current OpenModelica implementation.
For the specification purpose, we suggest to use the most verbose alternative, i.e. the
second alternative using many non-terminals. The rational for this choice is basically that
this more restrictive form gives more information about what the actual input and output
of the elaboration processes are.

3.4 A Connector S-AST Example with Meta-Variables

To give a concrete example where a grammar for S-AST can improve the clarity com-
pared to the current informal specification, we take the restricted classconnector as
an example. In the Modelica specification it is stated that for a connector"No equa-
tions are allowed in the definition or in any of its components". What does this mean?
That no equations are allowed at all? Are declaration equations allowed, for example
Real x = 4 ? Obviously, it is not allowed to have instances of models that contain
equations, but is it allowed to have models that do not contain equations? Is it only al-
lowed to have connectors inside connectors, or can we also have records in connectors,
since these are not allowed to have equations either? These questions are not easy to
answer with the current specification, because it is open for interpretation.

Consider Figure 4, where an example of the non-terminal for aconnector is listed
using a variant of Extended BNF3. As usual, alternatives are seprated using the ’|’ symbol,
and curly brackets({. . . }) denote that the enclosing elements can be repeated zero or
more times.

The grammar is extended with a more abstract notation ofmetavariables, which range
over names or identifiers. MetavariablesCd andRd range over identifiers declaring a

3The following example grammar is not intended to exactly describe the current Modelica specification. The
aim is only to outline the principle of such grammar in order to describe the abstract syntax approach.



3 An Abstract Syntax Specification Approach 97

connector ::= Connector(

{Extends( Cr conModification) }
{DeclCon( modifiability outinner Cd connector) }
{DeclRec( modifiability outinner Rd record) }
{CompCon(conconstraint Cr cd conModification) }
{CompRec(conconstraint Rr rd recModification) }
{CompInt( conconstraint xd) }
{CompReal( conconstraint flowprefix yd) }
)

access ::= Public | Protected

modifiability ::= Replaceable | Final

outinner ::= Outer | Inner | OuterInner | NotOuterInner

conconstraint ::= Input | Output | InputOutput

flowprefix ::= Flow | NonFlow

Figure 4: Example of a grammar for the connector non-terminal.

new connector respectively record;Cr andRr range over connector and record names
referencing an already declared connector or record. Metavariablescd, rd, xd, andyd
range overcomponentidentifiers having the type of connector, record, Integer, and Real.
All bold strings denote a node in the AST. If the AST is given in a concrete textual
representation, these keywords are used when performing a pre-order traversal of the tree.

In the example,connectorcan hold zero or manyextends nodes, referencing the
meta-variableCr, denoting all names that reference a declared connector. Hence, using
this meta-variable notation, this rule states that a connector is only allowed to inherit from
another connector.

Furthermore, the example shows that a connector is allowed to have two kinds of
local classes: Connector and Record (nodesDeclCon andDeclRec ). CompConand
CompRecstate that a connector can have both connector and record components.

For each of the different kinds of elements, it is stated exactly which prefixes that are
allowed. This description is more restrictive than the concrete syntax, which basically
allows any prefix. In the current specification these restrictions are stated in natural lan-
guages, spread out over the specification. For example, on one page it is stated"Variables
declared with the flow type prefix shall be a subtype of Real". Such a text is superfluous
when the grammar for S-AST is specified (note thatflowprefix is only available in the
CompReal node).

3.5 What can and should be specified by the abstract syntax?

In the previous sections we have briefly outlined how an abstract syntax grammar can
specify the structure of input and output of a transformation, but also as a method for
specifying context-dependent information about rejection of illegal models. The question
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then arise: what should be specified using this grammar approach, and what should be
addressed with other semantic rules?

The proposed grammar approach with meta-variables is declarative in the sense that it
does not state information about how the rejecting rules should be implemented. Hence,
it is less formal compared to e.g. a formal type system. However, it is still more precise
than giving the rules using natural languages.

We believe that as long as the alternative semantic description is using natural lan-
guages, the abstract syntax approach can both be easier to understand and less ambiguous.
Furthermore, if it can be complemented with aspects which are more precisely described,
e.g. the lookup-process, it can clarify the specification even more. However, several parts
of the rejection aspect, e.g. subtyping rules, cannot be described with the abstract syntax
grammar. The other aspect of transformation semantics can of course not be specified
with this approach.

The concept is still at a very early stage, and further investigations need to be per-
formed, to see if this approach can cover the current Modelica language.

4 Conclusion

In this paper we have given an overview of different aspects of defining a modeling lan-
guage; using the Modelica language’s syntax and semantics.

Furthermore, we have argued that an approach which usesabstract syntaxto describe
both the input to Modelica’s elaboration process (S-AST) as well as its output (HDAE-
AST) can both clarify the transformation process as well as the rejection of invalid mod-
els. Furthermore, while developing the language, this approach promotes the focus on
semantic issues, to avoid getting trapped in the common syntax pitfall.

The obvious next step for future work would be to design and implement the S-AST
and HDAE-AST, and to verify that the ASTs meets most of the current code base publicly
available.

We have described this as an evolutionary approach, which is intended to be practical
in the short-term. However, in the long term, we still think that it is important that a
formal semantics is given for the Modelica language.
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Abstract

Modeling and simulation often require different tools for specialized pur-
poses, which increase the motivation to use co-simulation. Since physical
models often are describing enterprises’ primary know-how, there is a need
for a sound approach to securely perform modeling and simulation. This pa-
per discusses different possibilities from a security perspective, with focus
on secure distributed co-simulation over wide area networks (WANs), using
transmission line modeling (TLM). An approach is outlined and performance
is evaluated both in a simulated WAN environment, and for a real encrypted
co-simulation between Sweden and Australia. It is concluded that several pa-
rameters affect the total simulation time, where especially the network delay
(latency) has a significant impact.

Keywords: Modeling, Co-Simulation, Transmission Line Modeling, Security, Data com-
munication.
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1 Introduction

The interest for modeling and simulation of complex physical systems, such as aircrafts
and trains, has dramatically increased during the last decades. There exist both com-
mercial modeling and simulation environments for specific domains, such as Adams [81]
for mechanical systems, and specialized environments for certain application areas, e.g.,
SKF’s BEAST [82, 83] dedicated for bearing simulations. Moreover, new standardized
acausal modeling languages for mixed-domains, e.g., Modelica [61] and VHDL-AMS
[37], are gaining popularity in various applications, leading to a wide variety of models
and specialized tool environments within an enterprise. These models and components
are often dependent on each other and commonly need to be simulated together.

One technique that has proven to be both stable and efficient for simulating existing
models isco-simulation, where sub-models are coupled together usingtransmission line
modeling (TLM) [29, 49, 50, 62]. The technique makes use of physically motivated
time delays, enabling both numerically robust simulations and better performance using
parallel processing.

Since modeling and simulation is becoming a common activity within enterprises,
large amount of money and knowledge are invested into such models. Hence, models are
becoming critical business assets describing primary know-how.

Within larger enterprises, different departments can be spread out over of the world,
have special modeling competencies, and model different parts of systems. Usually, there
are defined confidentiality levels within an organization, requiring models to be protected
against unauthorized disclosure. Furthermore, models need to be protected from modifi-
cation by mistake and still being available for large scale reuse. Even if confidentiality
issues with sub-contractors are today normally regulated by contracts, the need to protect
and keep control of critical business assets is still vital.

Hence, in a co-simulation environment, it is important to have a sound approach for
secure modeling and simulation, i.e., to create, modify, distribute, and simulate models in
an acceptable manner according to the enterprise’s security policy.

1.1 Approaches to Secure Modeling and Simulation

Information security can be divided into three aspects1:

• Confidentiality: protection against unauthorized disclosure of information.

• Integrity: protection against unauthorized creation, modification, or deletion of in-
formation.

• Availability : the assurance that authorized entities have access to correct informa-
tion when needed.

The importance of these three areas for secure modeling and simulation will be out-
lined in the following section.

1Even if most practitioners in the field of information security recognize these three aspects as fundamental,
there is no exact border between e.g., robustness and availability. Here we treat robustness of the system as
being part of the availability of simulation and model information.
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The obvious first phase in modeling and co-simulation is the modeling phase, which can
be divided into three steps, each requiring different expertise [62, 78]:

• Modeling of sub-models in specialized environments, e.g., Adams and BEAST
models.

• Encapsulate sub-models and define interfaces.

• Design ameta-model, where the different sub-models are integrated and connected
to each other.

It is of great importance to perform these steps in a secure manner. However, in this
paper we have chosen to focus on how the models aresecurely distributed and simulated,
leaving secure modeling as future research.

We have identified two general possible approaches for secure distribution and simu-
lation:

• Centralized simulation with secure model exchange.The models are centralized
and simulated at one location. The models must be encrypted to avoid unauthorized
disclosure of the model content.

• Secure distributed co-simulation.The models are kept within their departments/-
companies and simulated locally. Simulation data is exchanged between the loca-
tions during simulation, making use of co-simulation technologies.

Both these approaches raise several questions regarding security aspects of confiden-
tiality, integrity and availability, as well as practical simulation feasibility.

The former centralized approach uses traditional simulation techniques, where all
models are locally available. To provide confidentiality and avoid disclosure of model
content, the models need to be encrypted. This sounds initially as a sound approach, but
even if the model was encrypted when sent to the other locations, it still needs to be de-
crypted at the centralized location. This means that the simulation environment needs to
know the encryption key. Hence, the information is onlypractically confidential, i.e., it
might be hard to get the model in clear text, but not theoretically impossible2.

A second alternative to model encryption can bemodel obfuscating, i.e., to rearrange
the models structure making it unreadable, without changing the model’s behavior. An-
other variant is to distribute the models in another format, e.g., as binary executables.

A certain level of integrity protection, e.g., to achieve need-to-know access (least
privilege), can be used by applying message authentication codes (MAC) on the models.
However, the same problematic issues regarding keys are unfortunately applicable here
as well. Moreover, the centralized approach cannot control the number of times a model
is used or that it is not illegally redistributed.

Figure 1 outlines a scenario of the second approach of distributed co-simulation,
where a car model is simulated at a location in the USA and the bearing model is simu-
lated in Sweden. To make this scenario possible, a co-simulation technique such as the

2In cryptography, it is never impossible to decrypt data without a key, but it can becomputationally very
hard. E.g., using a brute-force approach, it might take hundreds of years to decrypt a specific model.
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Figure 1: A scenario of secure distributed co-simulation distributed over long dis-
tances.

one based on Transmission Line Modeling (TLM) can be used. Models are not sent be-
tween the different locations. Instead data describing states of the models’ interfaces are
exchanged between the locations during simulation, using a wide area network (WAN),
e.g., the Internet. This scenario leads to several security observations:

• Confidentiality:The models are never exchanged between the parties and are there-
fore never exposed to the other party, i.e., confidentiality is kept using a black-box
view of the model. If the TLM data sent between the simulation nodes is encrypted,
unauthorized disclosure of the traffic is avoided from third parties. Furthermore, the
permission to reuse models for simulation can be controlled, since the models never
leave the original location.

• Integrity: Unauthorized modification or changes by mistake of models are avoided
due to the fact that models are never sent between the locations. Note however
that the meta-model needs to be defined and maintained at one location. Integrity
protection of simulation traffic can be protected using standard MAC technique.

• Availability: Co-simulation using TLM has been shown to provide numerically ro-
bust results. However, if the data communication link is not robust or is too slow,
and data is not delivered in time, the simulation can be slowed down or terminated.
Hence, performance, robustness, and total simulation time are critical factors con-
cerning distributed co-simulation.
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Both approaches have pros and cons. A centralized approach raises several prob-
lematic issues regarding true confidentiality and integrity of models. On the other hand,
centralization can guarantee better communication networks and may therefore result in
better performance.

The distributed approach is appealing due to the fact that the black-box characteris-
tics give both better integrity and confidentiality properties of models. In this approach,
computational resources from different locations can also be shared and used in a dis-
tributed manner. However, the extra overhead needed for protection of data sent during
simulation and the cost of transmitting data traffic over large distances can naturally affect
performance of the total simulation time.

1.2 Challenges and Contributions

We have chosen to focus on the second approach ofsecure distributed co-simulation, due
to its promising properties of confidentiality and integrity. Hence, this paper will primarily
deal with aspects of performance and robustness, with the following questions:

• Is it even practically possible to co-simulate stiff bearing models in Sweden together
with other mechanical models, which are simulated as far away as the USA or
Australia?

• If it is possible, how much longer time does it take to simulate?

• Which parameters and factors affect the total simulation time? Which dependencies
exist between these parameters? Are they linear or are there certain breakpoints?

The main contribution of this work is the described approach of secure distributed co-
simulation together with conclusion draw from analysis of an experimental simulation
test.

1.3 Paper Outline

The paper is structured as follows. Section 2 introduces the fundamental theory of Trans-
mission Line Modeling (TLM) for co-simulation and the basic concepts of data commu-
nication. Parameters and factors that may affect the total simulation time are discussed.
Section 3 outlines the experimental setup used for generating simulation data from a
model reflecting the scenario described in the introduction. The physical model, simu-
lation framework, deployment structure, and simulation tools are described. Section 4
presents the results from the experiment followed by analysis of how different parameters
affect the duration of the total simulation time. Finally, section 5 states conclusions of the
work.
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2 Parameters Affecting the Total Simulation Time

In a distributed co-simulation environment, several parameters and factors can affect the
total simulation time. First, we will consider the equations stating transmission line mod-
eling. Second, different factors of the data communication link will be discussed.

2.1 Transmission Line Modeling

The theory of transmission line modeling (TLM) has evolved from the telegraph equa-
tions, which concern transmission of electrical signals over long wires.

The TLM method can also be used in other domains, such as mechanical systems
where force and velocity are affecting a system. The main motivation to use TLM in such
a system is that it describes physically relevant time delays. These delays allow different
parts of the system, which are separated by TLM interfaces, to be simulated independently
of each other’s time steps. Hence, this technique enables the subsystems to be simulated in
parallel. Moreover, since exchange of data is needed only between welldefined interfaces,
it is also possible to co-simulate between different simulation environments and tools. The
latter fact is used in SKF’s co-simulation framework [62, 78, 79].

Figure 2 outlines the main variables involved in a transmission line in a mechanical
context. The velocity and reaction forces on each side of the line affect the wave variables
c1 andc2.

The equations involved in the TLM connection are as follows [49, 62]:

c1(t) = F2(t− TTLM ) + Zcv2(t− TTLM )
c2(t) = F1(t− TTLM ) + Zcv1(t− TTLM )
F1(t) = Zcv1(t) + c1(t)
F2(t) = Zcv2(t) + c2(t)

Herec1 andc2 denote the force waves,F1 andF2 reaction forces andv1 andv2 velocities.
There are two parameters specified in the model:TTLM indicating the delay time through
the line andZc that is the characteristic impedance. These parameters must be assigned
values, which are within physically acceptable boundaries. See [49, 50, 62] for a more
detailed discussions about the physical aspects of the model.

c2

c1

v1

F1

v2

F2

Figure 2: Delay line with wave variablesc1, c2, velocityv1, v2, and reaction forces
F1, F2.
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From the equations above, we can clearly see that only old values ofF2 is needed to
calculateF1, and only old values ofF1 is needed to calculateF2. The allowed length
of this delay depends on the parameterTTLM . Larger values ofTTLM , will allow the
simulations to take larger time steps, which may result in shorter simulation time. Hence,
TTLM is an important parameter affecting the total simulation time.

2.2 Data communication

During the co-simulation a continuous flow of data packages containing TLM information
are transmitted between the computation nodes. Before the data is transmitted over the
WAN, it is being encrypted and message authentication codes (MAC) are created for
integrity checks. When the data packet is received at the other node, it is being decrypted
and forwarded to the simulation software.

There are two fundamental measurable characteristics of network performance [72].

• Bandwidth– the number of bits that can be transmitted over the network during a
specific period of time. Normal measurement is in Bits/s.

• Delay (or latency)– the time period it takes for a very small message to be sent
over the network. Delay is measured strictly in time, e.g., number of milliseconds.

A network always has these two characteristics, even though they can change over time,
depending on routing and traffic load. This variation can lead to another important phe-
nomenon calledjitter, which is the variation of the delay for different network packets in
a data stream. In the rest of the paperBWAN denotes the band-width for the simulation
environment andTWAN the delay between the nodes.

Note that in this paper we will discuss two different time scales. The first one is the
simulated time corresponding to the modeled physical process. Integration time steps,
time stamps sent within the TLM framework, and theTTLM parameter correspond to
this time scale. The second time scale belongs to the real-time of the computation of the
simulation result. The total simulation time and delays in the network, i.e.,TWAN belong
to this scale.

When measuring delays in a system, the time is often referred to as the round-trip-
time (RTT), which is the time it takes for the packet to travel to the destination and back.
The delay of the system can be approximated to RTT/2.
Another central concept is thedelay× bandwidth product, depicted in Figure 3. The
formula is as follows:

Delay

Bandwidth

Figure 3: The delay× bandwidth productP
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P = BWAN × TWAN

The bandwidth can be seen as the diameter of a pipe, and the delay as the length of the
pipe. Hence,P represents the maximal natural queue of data located in the network.

Besides the TLM equations and the delay / bandwidth discussion above, there are of
course several other factors that can affect the outcome. One such important factor is the
load and balanced computation power among the nodes. Another factor is the integration
step size / tolerance level used on the simulation nodes. Other potential requirements,
such as encryption protocols and algorithms used, can both affectTWAN andBWAN . If
the bandwidth is critical, lossless data compression techniques can be used to increase the
bandwidth [7]. However, note that delay cannot be improved by data compression.
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3 Experimental Setup

This section provides a detailed description of the environments surrounding the experi-
ment, the simulation framework, and software used in the experiment.

3.1 Meta-Models and Components

A componentis a model instance created in a specialized modeling and simulation tool
(e.g., Adams or BEAST). Ameta-modeldefines the interconnections between two or
more components.

The objective of the experiment is to measure how secure communication over large
distances will affect the meta-model simulation in terms of total simulation time. To
model the scenario described in Figure 1, a highly simplified model is used instead of
a real car model. We are interested in how the data communication factors,TWAN (the
delay) andBWAN (the band-width), together with the TLM delayTTLM affect the sim-
ulation time.

The meta-model used in the experiment is a double pendulum. As shown in Figure 4,
the pendulum is constructed from three different components, two shafts, which both have
TLM connection to a bearing.

In terms of simulation time and resources, the two shaft components represent the less
demanding components in our meta-model.

Pendelum

fixed

Shafts
Bearing

Figure 4: The bearing-shaft model to be simulated.
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Figure 5: SKF’s TLM system framework.

3.2 Simulation Framework

To conduct the experiment, we have used a centralized TLM co-simulation application
referred to as the TLM manager. Figure 5 presents an overview of the TLM co-simulation
framework.

The TLM manager reads a meta-model specification defining the simulation compo-
nents and the TLM interfaces in the meta-model.

The simulation components are simulated in a specialized simulation environment,
such as Adams, BEAST, or Modelica. In order to make the framework functional, the
specialized simulation environments need to be incorporated into the framework. The
TLM manager and the specialized environment communicate through TLM plug-ins, as
depicted in Figure 5.

During simulation, the simulated components interact by sending time-stamped data
and delayed position and orientation data. The TLM data is transmitted to relevant node
via the TLM manager. For a more detailed description of the framework, see [62].
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Figure 6: The deployment structure of the static structure of the system.

3.3 Deployment Structure

The static deployment structure is depicted in Figure 6. Two Linux workstations and a
computer cluster are used for simulation of the components. The simulation is started
from the workstation labeledLinux Workstation 1; this is also where the TLM-Manager
and WAN simulator are instantiated.

In order to evaluate what impact delay and bandwidth in the WAN environment have
on the simulation it is desirable to have full control of these parameters. This control
is obtained through the WAN simulator. The WAN simulator is a software service that
intercepts all data sent between the cluster and Linux Workstation 1. It will then apply
the desired data communication factors and pass on the data to the correct destination. A
more detailed overview of the WAN simulator will be given in the end of this section.

The shaft components are simulated using BEAST. These simulations are run on the
workstation labeled Linux Workstation 2. The bearing component is simulated on the
cluster using BEAST as well. The two tunnels are ensuring secure communication be-
tween the TLM manager and Linux Workstation 2 and between the TLM manager and
the cluster. In the experimental setup SSH version 2 (SSHv2) [51] is used to create the
secure tunnels. Another strategy would be to incorporate the security layer within the
application. With such an approach the transport layer security (TLS) protocol [21] may
be a sound alterative.
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Figure 7: Sequence diagram showing basic information flow in the co-simulation
environment.

3.4 Dynamic System Behavior

This section describes the interaction between the simulation components and the TLM
manager. The sequence diagram in Figure 7 can be described as follows:

1. There are five different objects involved in the interaction during the simulation.
To the right, there are the three simulation components,BEAST Shaft1, BEAST
Shaft2, andBEAST bearing. TheTLM manageris handling the data exchange be-
tween the components. Finally, theWAN simulator is intercepting and forwarding
all calls between the bearing simulation component and the TLM manager.

2. The meta-model simulation is initiated by a script. The script will start the TLM
manager on the local machine. It will also start the specialized simulation environ-
ments of all the simulation components.

3. Each simulation component has to register itself to the TLM manager. The compo-
nent will also register all of its TLM interfaces. Once this has been accepted by the
manager the simulation component will send a check model request to the manager.
This is a request asking if the entire meta-model is ready to be simulated.

4. Once all simulation components and TLM interfaces are accounted for, the man-
ager will reply to the simulation components that the meta-model is ready to be
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simulated. At this point the actual simulation will begin.

5. The simulation components will regularly send data for its TLM interfaces to the
manager. The manager will then pass the data to the appropriate destinations. At
the bottom of the diagram we can see how the bearing component through the TLM
manager sends some TLM data directed to the shaft1 component. The WAN sim-
ulator intercepts this data, holds it for a while, and then forwards it to the TLM
manager. The manager forwards the data to the shaft1 component that after some
simulation time sends new data to the manager. This communication is not inter-
cepted by the WAN simulator since the data is not passing through our simulated
WAN environment. The manager will receive the new data from shaft1 and for-
ward it to the bearing component. This message, from the manager to the bearing,
will once again be intercepted by the WAN simulator, and then forwarded to the
bearing component. This type of data exchange will continue until the simulation
has finished.

For a more detailed specification of the interaction in the communication protocol, see
[62].

3.5 WAN Simulator

The WAN simulator is a specific application designed for this experiment with the purpose
of controlling the data communication (TWAN andBWAN ) between the bearing simu-
lation component and the TLM manager. The simulator captures all data sent between
the TLM manager and the bearing component. The simulator consists of two queues,
as depicted in Figure 8. One queue holds the data sent from the simulation component
to the manager and one queue holds the data sent from the manager to the simulation
component. The WAN simulator reads and writes data in the queues concurrently.

To control the delay, the WAN simulator will, when capturing a data message, put a
timestamp on it, before it is added to the queue. This data message will not be released
from the queue until it has been held for the entire duration of the delay time.
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Figure 8: Conceptual outline of the WAN simulator.
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For example, the simulation component sends some data to the TLM manager. The
WAN simulator captures it and stamps it with the time of the capture. The message
together with the timestamp is added to the last position in the queue of data waiting to
be forwarded to the TLM manager. When the data reaches the first position in the queue
it is next in line to be forwarded to the manager. The WAN simulator will then perform a
check of the timestamp on the data. If the condition

TWAN ≤ (currentT ime− timestamp)

is true, the data will be released from the queue and forwarded to the TLM manager.
Else, the data will be held until enough time has passed to fulfill the condition. The second
queue is working in the same way, but in the opposite direction.

Bandwidth may be controlled with the aid of the delay× bandwidth product,P ,
described in Section 2. The queues may hold up toP bits of data at any given time
without risk of exceeding the desired bandwidth restrictions in respective communication
direction. When a queue is filled, further data that wish to pass the WAN simulator will be
delayed until data has been released from the queue and space has been made available.
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4 Experiment Results and Analysis

In the following section we will present the experimental results produced by performing
several test simulations in the experimental setup. The result is followed up by discussions
and analysis of how different parameters affect the overall simulation time.

4.1 Experiment Results

The experiment was divided into two parts, where the first part used the experimental
setup with WAN simulator according to Section 3. In the second part, co-simulation was
performed over the Internet between Sweden and Australia.

Part 1 of the experiment was implemented by performing four different test sequences,
where the data communication delayTWAN was varied for each sequence. Figure 9
shows the four sequences for different values ofTTLM .

In the first three sequences, 3 computation nodes in the cluster (see Figure 6) were
used, while the fourth sequence used only 2 nodes (denoted 3N and 2N in the figure). In
addition to the values shown in this diagram, simulations were performed forTWAN =
500 ms andTWAN = 1000 ms for some of the sequences. These values are not shown in
the diagram due to illustration reasons, but will be used in the analysis in the next section.
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Figure 9: Plot of total simulation time in relation to the network delayTWAN .
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Part 2 of the experiment was performed without the WAN simulator, i.e., the same
setup as depicted in Figure 6 was used, except that the TLM manager communicates
directly to the cluster via an encrypted tunnel. Three computation nodes were used in the
cluster for these experiments. The results are given in Table 1.

Type of simulation TTLM =
2.5e− 6

TTLM =
5e− 6

TTLM =
10e− 6

LAN, No Encryption 120 min 62 min 31 min
LAN, Encryption 160 min 82 min 41 min
Increased time due to encryption 33% 32% 32%
Round-trip simulation to Univer-
sity of Queensland, Australia

495 min 277 min 133 min

Increased time due to delays to
Australia (round-trip)

312% 344% 332%

Table 1: Simulation time when executed at the local area network (LAN) in Sweden,
both with and without SSH tunnel encryption enabled. Round-trip simulation to and
from Australia, including SSH encryption.

The table shows the increased time needed in percent using an encryption tunnel (SSH)
compared to performing the simulation without it.

When executing the simulation via Australia, both the shafts and the bearing were
simulated in Sweden, but the traffic between the cluster and the TLM manager was trans-
mitted via a tunnel from Sweden to Australia and then back again. Hence, the experiment
is actually performed for a distance twice as long as Australia-Sweden. Note also that the
simulation time for just one way cannot be calculated simply by dividing in half.

While performing the simulations, the data throughput in the WAN simulator was
being monitored and measured. Since the WAN simulator captures all data between
the TLM manager and the bearing simulation component, it was measured that the data
throughput did not normally exceed 35 Kbit/s during the TLM data exchange. However,
when the simulations were initiated, a small peak in throughput of about 140 Kbit/s was
noticed.

In the simulations performed in this experiment, no major robustness problems were
discovered and all started simulation jobs were finished without unexpected termination.

All in all, the simulation experiment results presented in this section required approx-
imately 250 hours of simulation time.
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4.2 Discussion and Analysis

The main purpose of this work is to investigate if it is possible to co-simulate over long
distances and which parameters that affect the total simulation time. In Table 1 it was
shown that the simulation was indeed possible to perform, even for very long distances.
We will now analyze and discuss the affected parameters and then finally compare the
experimental data obtained using the WAN simulator with the simulation times resulting
from the simulation via Australia.

Recall the diagram given in Figure 9 in the previous section. For small values of
TWAN , a non-linear behavior can be seen, while for larger values the curves have a more
linear characteristic.

Consider Figure 10, where the values are plotted forTTLM = 5e − 6 andTTLM =
10e− 6, whereTWAN ≤ 250 ms.

Linear regression using the least square method is used to adjust a line forTWAN ≥
80 ms. Both measured values and the adjusted curves are plotted in the diagram. Note that
all measured values above 80 ms are used for finding the curve, including measurements
500 ms and 1000 ms.

In both curves, we can imagine a smooth breakpoint somewhere around 75 ms, where
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Figure 10: Simulation time with linear regression estimations.TTLM = 5e− 6 (the
upper curve).TTLM = 10e−6 (the lower curve). Both sequences are using 3 cluster
nodes.
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f2.5e−6,3N (t) = 7964.4 + 46.8t (1)

f5e−6,3N (t) = 3735.5 + 30.0t (2)

f10e−6,3N (t) = 1845.1 + 15.7t (3)

f10e−6,2N (t) = 2911.0 + 15.9t (4)

Figure 11: Linear approximations after using the least square method on measured
simulation data.f(t) states simulation time in seconds andt representsTWAN in
ms.

the derivative becomes fixed. What can cause this breakpoint? One reasonable cause is
that to the right of the breakpoint, one of the computation nodes is idle for some time
while waiting on TLM data input, i.e., the delay causes the bottleneck of the system to
be switched from one of the computation nodes to the delay value in the communication
link. For this reason, we call this breakpoint the bottleneck breakpoint, denotedTBBP .
Hence, from the data shown so far, we clearly see thatTWAN , affects the simulation
time significantly, especially aboveTBBP . The approximated formulas for all experiment
sequences are given in Figure 11.

All formulas in Figure 11 were approximated forTWAN larger or equal to 80ms,
except for the last case whereTWAN ≥ 110 ms, since the linear characteristic started at
larger values. One interesting observation is that changing the computational power for
the bearing calculation changes the total simulation time, but not the derivative for the
linear part of the curve (15.7 ≈ 15.9).

Another important parameter in data communication is the bandwidth in the commu-
nication link. Does the limitations of the bandwidth affect the total simulation time? The
WAN simulator tool has the capability to simulate a smaller bandwidth. However, for this
model, we noted that only a small bandwidth of about 35 Kbit/s was needed. Since leased
lines normally have the capacity of several MBit/s, this throughput requirement can be
negligible. However, for larger models with many TLM-interfaces, the bandwidth factor
may be important. To draw any further conclusions about how larger models affect the
bandwidth, more experiments must be conducted, which is suggested as future research.

There are of course several other factors that may affect the total simulation time,
which we have not measured in this experiment. One such parameter is the time step or
tolerance level of the numerical integration routine for the simulation.

In the experiments, SSH was used to protect the TLM data between the nodes. The
encryption and hash computations do indeed affect the delay in the system. As we can see
in Table 1, the effect is not negligible (around 32% increased simulation time). We have
not made any comparisons in this experiment what the effect would be when applying
different encryption algorithms, even if there could be expected to be differences. Note
however that if the co-simulation is performed on a trusted WAN, e.g., leased private
lines, it might be acceptable to disable data encryption to improve performance.

To be able to compare the simulated delays ofTWAN with delays in real world net-
works, a number of measurements were performed over the Internet using the standard
ping application. The tests were performed both using a connection at Linköping Uni-
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versity (LIU), and a best effort connection from Stockholm, Sweden. Since we know
that the simulation time grows linear toTWAN , we can approximate the simulation time
for different cities. The measured delays and estimated simulation times are presented in
Table 2.

For values belowTBBP ≈ 75 ms, estimations are taken from measured data and
not the linear approximation. However, can we really expect that these approximations
correspond to real distributed simulation? Since the experiments with the WAN simulator
were made in an idealized environment, it can be expected that these results are optimistic.

University, Location TWAN (ms)
Linköping

TWAN (ms)
Stockholm

Simulation
Time (min)

University of Trier, Germany 21 20 85
University of Cambridge, UK 19 19 85
MIT, Massachusetts, USA 57 56 96
Stanford, California, USA 96 87 108
University of Tokyo, Japan 142 143 134
University of Queensland, Aus-
tralia

170 178 149

Table 2: Measured communication delays between Sweden and different locations
all over the world. The optimistic approximated simulation times, using formula (2)
in Figure 11, are given forTTLM = 5e− 6.

In the second part of the experiment, as given in Table 1, a real simulation via Australia
was performed. A comparison between measured and approximated results is depicted in
Table 3.

TWAN TTLM =
2.5e− 6

TTLM =
5e− 6

TTLM =
10e− 6

Ping RTT 348 ms 404 min 236 min 122 min
Max, RTT, SSH 470 ms 499 min 297 min 154 min
Min, RTT, SSH 340 ms 398 min 232 min 120 min
Mean, RTT, SSH 405 ms 473 min 265 min 137 min
Measured, Australia - 495 min 277 min 133 min
Difference Measured to
Ping RTT

- -18.3% -14.7% -8.4%

Difference Measured to
Mean, RTT, SSH

- -4.5% -4.4% 2.8%

Table 3: A comparison between approximated simulation time and real measured
simulation time.
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Note that all times are round-trip-times and not one-way delays. Simulation times given
in italic indicate an approximated value, using (1)-(4) in Figure 11. Row 5 corresponds to
the experiment in Table 1.

It was discovered that the actual delay during the simulation varied from 340 ms to
470 ms (row 2 and 3), indicating a certain jitter in the communication3.

In the table we can see that the ping RTT gives an optimistic value, resulting in an
18% to 8% too short simulation time. However, if we calculate the mean (row 4), a closer
approximation is achieved.

Using formula (2) in Figure 11, together with the measured simulation time of the
round-trip simu-lation in Table 1, we can compute the total simulation time it would take
to simulate the shafts in Australia and the bearing in Sweden, i.e., use the delay instead of
the RTT. ForTWAN = 5e − 6, an approximated simulation time is≈ 170 min; a 174%
increase in time compared to an unencrypted local simulation that took 62 minutes.

3Note that these delays show the RTT for the TCP packets of the SSH tunnel, which does not include the
delay of the actual encryption/decryption.
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5 Conclusions

We have in this paper discussed different aspects of secure modeling and simulation. Fo-
cus was put on secure distribution and simulation and both a centralized and a decentral-
ized approach were discussed and compared from a security perspective. The decentral-
ized approach was argued to have benefits regarding confidentiality and integrity, while
giving open questions about performance and robustness.

An experiment was performed where a simple double pendulum with a bearing was
co-simulated between Sweden and Australia. No robustness issue was discovered during
simulation, and the simulation time was increased from approximately 62 min to 170 min
(≈ 174% time increase), compared to a local simulation without encryption of data traffic.

To investigate which parameters that affect the total simulation-time, four series of
tests were performed using a simulated environment of the wide area network (WAN).
The main findings can be summarized as follows:

• Thenetwork bandwidthbetween simulation nodes has little effect, since through-
put of TLM data is small.

• Thenetwork delay (latency)between simulation nodes has great impact on the total
simulation time. The growth is linear after a certain breakpoint. Consideration must
be taken tojitter (delay variations over time).

• TheTLM delay of the model affects the simulation time significantly. Larger delay
gives shorter simulation time, since the solver is allowed to take longer time steps.

Finally, we would like to conclude that secure co-simulation over long distances seems to
be both a practical and possible solution for secure distribution and simulation of models
within, and potentially between, enterprises.
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Abstract

One of the most fundamental language constructs of equation-based object-
oriented languages is the possibility to state acausal connections, where both
potential variables and flow variables exist. Several of the state-of-the art lan-
guages in this category are informally specified using natural language. This
can make the languages hard to interpret, reason about, and disable the possi-
bility to guarantee the absence of certain errors. In this work, we construct a
formal operational small-step semantics based on the lambda-calculus. The
calculus is then extended with more convenient modeling capabilities. Ex-
amples are given that demonstrate the expressiveness of the language, and
some tests are made to verify the correctness of the semantics.
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1 Introduction

Modeling and simulation have been an important application area for several success-
ful programming languages, e.g., Simula [20] and C++ [85]. These languages and other
general-purpose languages can be used efficiently for discrete time/event-based simula-
tion, but for continuous-time simulation, other specialized tools such as Simulink [53] are
commonly used in industry. The latter supports causal block-oriented modeling, where
each block has defined input(s) and output(s). However, during the last decades, a new
kind of language has emerged, where differential algebraic equations (DAEs) can describe
the continuous-time behaviour of a system. These languages enable modeling of complex
physical systems by combining different domains, such as electrical, mechanical, and hy-
draulic. Examples of such a languages are Modelica [61], Omola [4], gPROMS [6, 68],
VHDL-AMS [18], andχ (Chi) [28, 88]. Several of these languages (e.g., Modelica and
Omola) support object-oriented concepts, where physical models can be composed and
reused. One of the fundamental concepts enabling this composition, is the use of acausal
connections between model instances, with the use ofpotentialandflow variables. These
kinds of variables are common in most physical domains and describe the preservation
of energy in a system. For example, in the electrical domain, potential variables denote
voltage potential and flow variables denote electric current, which obey Kirchhoff’s cur-
rent law, i.e., that the current should sum to zero in a node. As another example, in the
rotational mechanical domain, angles are expressed using potential variables and torque
is represented using flow variables.

1.1 Motivation and Contribution

Languages of this sort have been developed from an engineering perspective with the fo-
cus on numerical solution strategies and run-time semantics for handling mixed discrete
/ continuous-time (hybrid) systems. Several of these languages have grown to be large
and are informally specified using natural language. This can make the languages hard to
interpret, maintain, and reason about, which affects both tool development and language
evolution. Moreover, the need for static detection and isolation of certain modeling er-
rors is essential for productive modeling and simulation. Such errors can concern over-
and under-constrained systems of equations, and consistency checking of physical units
and dimensions. Even if current tools support checking for these kind of errors, a for-
mal semantics of the language is needed to be able to develop checking algorithms that
guaranteethe absence of faults.

Hence, there is a concrete need to be able to express the core concepts of such
equation-based object-oriented (EOO) languages using formal semantics. We have in
this paper developed a novel small-step operational semantics that captures the essential
constructs in such languages, including acausal connections, potential and flow-variables,
and model abstraction. The semantics is built on the untypedλ-calculus, which is ex-
tended with semantics for handling flow-connections.
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1.2 Outline

The remainder of this paper is structured as follows. Section 2 gives an informal introduc-
tion to acausal physical modeling using the concept of higher-order models and functional
abstraction. An example of a simple circuit is modeled and the concept for model reuse
and specialization is outlined. Section 3 states the formal abstract syntax and operational
semantics of the untyped flowλ-calculus (writteñλ). This syntax and semantics forms
the basis of the modeling kernel language (MKL), which is presented in Section 4. The
additional formal syntax and formal semantic rules are given and syntactic derived forms
are described. The language presented in this section is the one used in the modeling ex-
amples in Section 2. Section 5 describes the prototype implementation and gives a short
evaluation of the language semantics and Section 6 presents related work. Finally, Section
7 states concluding remarks.

2 Informal Language Syntax and Semantics

In this section, an informal introduction to an experimental language called Modeling
Kernel Language (MKL) is outlined. The language is not intended to be a full fledged
modeling language, but to demonstrate the fundamental modeling possibilities when a
equation-based modeling language is based on the lambda calculus.

2.1 A Simple Electrical Circuit

To illustrate the basic modeling capabilities, the simple circuit shown in Figure 1 is to be
modeled and simulated.

Figure 1: Graphical outline of a simple electrical circuit.
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The model is described by the following source code:

def Circuit = model ()
{

def w1 = Wire();
def w2 = Wire();
def w3 = Wire();
def w4 = Wire();
Resistor(w1,w2,10);
Capacitor(w2,w4,0.01);
Resistor(w1,w3,100);
Inductor(w3,w4,0.1);
VSourceAC(w1,w4,220);
Ground(w4);

};

The code shows the definition of a new model calledCircuit . The model takes zero
formal parameters, given by the empty tuple to the right of the model keyword,model() .
The content of the model is given within curly braces. The first four statements define four
newwires, e.g., connection points from which the different components (model instances)
can be connected.

The six components defined in this circuit correspond to the layout given in Figure 1.
Consider the first resistor instantiated using the following:

Resistor(w1,w2,10);

The two first arguments state that wiresw1 andw2 will be connected to this resistor. The
last argument expresses that the resistance for this instance will be 10 Ohm. Wirew2 is
also given as argument to the capacitor, stating that the first resistor and the capacitor are
connected using wirew2.

2.2 Connections, Variables, and Flow Nodes

The concept of wire is not built into the language. Instead, it is defined as follows:

def Wire = func (){( var (), flow ())};

Here, a function calledWire is defined by using the anonymous function constructfunc .
The definition states that function takes an empty tuple() as argument and returns the
expression within curly braces. In this case, a tuple(var(),flow()) with two ele-
ments is returned. A tuple is expressed as a sequence of terms separated by commas and
enclosed in parentheses.

The first element of the defined tuple expresses the creation of a new unknown continuous-
time variable using the syntaxvar() . The variable could have been given an initial value,
which is used as a start value when solving the differential equation system. For example,
creating a variable with initial value 10 can be written using the expressionvar(10) .
Variables defined usingvar() correspond topotentialvariables, i.e., the voltage in this
example.

The second part of the tuple expresses the current in the wire by using the construct
flow() , which creates a new flow-node. This construct is the essential part in the se-
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mantics presented in coming sections. In this informal introduction, we just accept the
fact that Kirchhoff’s current law with sum to zero at nodes is managed in a correct way.

In the circuit definition we used the syntaxWire() , which means that the empty tuple
() is supplied as a tuple argument to the functionWire . The function call will return
the tuple(var(),flow()) . Hence, theWire definition is used for encapsulating the
tuple, allowing the definition to be reused without the need to to restate its definition over
and over again.

2.3 Models and Equation Systems

The main model in this example is already given as theCircuit model. This model con-
tains instances of other models, such as theResistor . These models are also defined
using model definitions. Consider the following two models:

def TwoPin = model ((pv,pi),(nv,ni),v)
{

v = pv - nv;
0 = pi + ni;

};

def Resistor = model (p,n,R)
{

def (_,pi) = p;
def v = var ();
TwoPin(p,n,v);
R* pi=v;

};

Models are defined anonymously using the keywordmodel followed by a formal para-
meter and the model’s content stated within curly braces. The formal parameter can be a
pattern andpattern matchingis used for decomposing arguments. Inside the body of the
model, definitions, components, and equations can be stated in any order within the same
scope.

The general modelTwoPin is used for defining common behavior of a model with
two connection points.Twopin is defined using an anonymous model, which here takes
one formal parameter. This parameter specifies that the argument must be a 3-tuple with
the specified structure, wherepv , pi , nv , ni , andv are pattern variables. Herepv means
positive voltage, andni negative current. Since the illustrated language is untyped, illegal
patterns will be discovered first during run-time.

Both models contain new definitions and equations. The equationv = pv - nv;
in TwoPin states the voltage drop over a component that is an instance ofTwoPin .
The definition of the voltagev is given as a formal parameter toTwoPin . Note that the
direction of the causality of this formal parameter is not defined at modeling time.

The resistor is defined in a similar manner, where the third elementR of the input
parameter is the resistance. The first linedef (_,pi) = p; is an alternative way of
pattern matching where the currentpi is extracted fromp. The pattern_ states that the
matched value is ignored. The second row defines a new variablev for the voltage. This
variable is used both as an argument to the instantiation ofTwoPin and as part of the
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equationR* pi=v; stating Ohm’s law. Note that the wiresp andn are connected directly
to theTwoPin instance.

The capacitor and inductor models are defined as follows:

def Capacitor = model (p,n,C)
{

def (_,pi) = p;
def v = var (0);
TwoPin(p,n,v);
C* der (v) = pi;

};

def Inductor = model (p,n,L)
{

def (_,pi) = p;
def v = var (0);
TwoPin(p,n,v);
L* der (pi) = v;

};

It should be noted here that each of these models contains a differential equation. For
example in equationL* der(pi) = v; , thepi variable is differentiated with respect
to time using the built-inder operation.

Finally, to make the example complete, the voltage source and the ground are defined
as follows:

def VSourceAC = model (p,n,VA)
{

def v = var (0);
TwoPin(p,n,v);
def f = 50;
def PI = 3.14;
v = VA* sin (2 * PI * f * time);

};

def Ground = model ((pv,_))
{

pv = 0;
};

An instance of theCircuit model can be created in the top-level scope using the fol-
lowing code:

Circuit();

The resulting simulation result is shown in Figure 2.

2.4 Reuse and Expressiveness using Higher-Order Models

Models are very closely related to anonymous functions. We will see later that the models
are in fact encoded as lambda abstractions, with special care taken to flow connections.
Since models are first class citizens, reuse and expressive modeling can make use of
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Figure 2: Plot of simulation result of the simple circuit. The largest curve shows the
voltage source, the second largest the voltage drop over the inductor, and the smallest
one the voltage drop over the capacitor.

higher-order models, i.e., models and functions can take models as arguments and return
new models.

For example, let us assume that we want to create a new model, which connects two
Resistors in parallel. This model can be defined as follows, with resistance values 10 and
100:

def ParallelResistor = model (p,n)
{

Resistor(p,n,10);
Resistor(p,n,100);

};

This simple definition defines a new model namedParallelResistor , which
composes two resistor instances. Hence, a new model can be defined by reusing other
models in an hierarchical structure.

However, can we not generalize this and create a generic way for composing models?
Assume that we want to create a model based on composing a few existing models in
series. However, we do not want to do it from scratch, e.g., create a model where two
resistors are composed in series and then yet another model for an inductor and a capacitor
in series. Consider the following function, which takes two modelsM1andM2as input,
plus an attribute value for the model, such as the resistance or the inductance.

def makeSerial = func (M1,val1,M2,val2){
model (pin,pout){

def w = Wire();
M1(pin,w,val1);
M2(w,pout,val2);

}
};
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The functionmakeSerial creates instances of the modelsM1andM2, and connects
them together using the wirew. The left side ofM1 is connected to the new anonymous
model’s portpin , and the second port ofM2is connected topout . The generic function
then returns this new model.

An example where this function is used is given in the following circuit:

def Circuit2 = model ()
{

def w1 = Wire();
def w2 = Wire();
def ResInd = makeSerial(Resistor, 100, Inductor, 0.1);
def CapRes = makeSerial(Capacitor, 0.01, Resistor, 200);
ResInd(w1,w2);
CapRes(w1,w2);
Ground(w2);
VSourceAC(w1,w2,5);

};

Here,makeSerial defines a new model calledResInd , by composing aResistor
and anInductor . In the same way modelCapRes is defined, by composing aCapacitor
and anotherResistor .

Note that models can also be parameterized and specialized using traditional concepts
in functional programming, e.g., by using currying.

3 Flow Lambda Calculus

In this section, the new connection semantics of flow variables is presented, by extending
the untyped lambda calculus with a number of terms, values, and rules. We call this
extended version of the lambda-calculus forflow lambda-calculus, denoted̃λ-calculus.

3.1 Abstract Syntax

Consider the abstract syntax of theλ̃-calculus listed in Figure 3. Besides the standard
terms lambda abstraction, application, and identifier, a number of terms have been added.

The equation termt1=t2 expresses a differential or algebraic equation. The conjunc-
tion termt1 ∧ t2 is used for composing equations into a tree, forming an equation system.

The termvar( t) constructs a newvariable location(potential variable) in thevari-
able store, σ. The creation of flow variables in this store is described in Section 3.2. The
store consists of a mapping from avariable store locationl to a value,σ : VLoc →fin

Value. When creating models with systems of equations, variables are often unknown
before simulation. An unknown variable is a mapping from a variable store locationl to
the unknown termε.

The most essential part in this calculus is the definition and treatment of flow nodes
together with the flow store. During evaluation, the flow nodes are combined into a tree,
which is stored in the flow storeφ. This tree controls the sum to zero equations that
are going to be part of the equation system. The flow store is a finite map from aflow
store location, f , to a specific node in the tree. Nodes in the tree can be colored to be
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r ∈ R Real number
x ∈ Ident Identifier
l ∈ VLoc Variable Store location
f ∈ FLoc Flow Store location
σ ∈ VStore= VLoc→fin Value Variable Store
φ ∈ FStore= FLoc→fin FNode Flow Store

n ∈ FNode Flow nodes
n ::=

NB(t, n) Black node
| NW(t, n) White node
| NE Empty node

t ∈ Term Terms
t ::=

λx.t Lambda abstraction
| t1t2 Application
| r Real number
| x Identifier
| t1=t2 Equation
| t1 ∧ t2 Conjunction
| var( t) Variable constructor
| flow() Flow node constructor
| fork( t) Fork connection
| l Variable Store location
| f Flow Store location
| ε Unknown

v ∈ Value Values
v ::=

λx.t | r | v1=v2

| v1 ∧ v2 | l | f | ε

Figure 3: Abstract Syntax for̃λ–calculus.

either black or white, which is represented in the abstract syntax by terminalsNB(t, n)
andNW(t, n). After evaluation, the black nodes represent the sum to zero equations.
The white nodes are used during the construct of the tree, but are not representing any
equations. Variables, sometimes referred to asflow variables, which are used in the sum
to zero equations, are created in the variable storeσ, and referred to in the flow nodes
located in the flow storeφ.

New nodes are added to the flow store by evaluation of the termflow() . Recall
the definition ofWire in Section 2, which consisted of a tuple with termsvar( t) and
flow() as elements. A new flow node is created when this tuple is evaluated.

The last new term isfork( t) . This is the essential term used for flow connections.
It is an internal term, which does not need to be created explicitly by the user of the lan-
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guage. Instead, this term can be hidden and created implicitly by other more convenient
constructs. Section 4 describes in more detail how this simplification transformation is
performed.

The described̃λ-calculus is defined using call-by-value evaluation order. Hence, the
set Value⊆ Term, is used for determining when a term has been evaluated to a value.

3.2 Operational Semantics

The computation rules for the operational semantics are stated in Figure 4, and the con-
gruence rules in Figure 6. The syntax and semantics of the rules are according to standard
small-step operational-semantics with premises above the line and the conclusion below.
Each rule contains triples, where each triple consist of three elements, separated by bars
’|’, where the first element is the term, the second the variable storeσ, and the last one the
flow store,φ.

To avoid misinterpretation of the semantics, some notations need clarification. Capture-
avoiding substitution is expressed using syntax[x 7→ t1]t2, meaning the term obtained by
replacing all free occurrences of identifierx in t2 by t1. Similar syntax is also used for
store updates, where the notation[f 7→ n]φ means the resulting flow store that mapsf
to n together with all other mappings from location to flow node inφ. Flow stores are
extended using the notation(φ, l 7→ n), meaning the flow storeφ extended with the map-
ping from l to n, wherel /∈ dom(φ). Updates in variable stores are expressed with the
corresponding notation, i.e.,(σ, l 7→ v). Moreover, in the usual way, rules with more spe-

(λx.t)v | σ | φ −→ [x 7→ v]t | σ | φ (E-APPABS)

l /∈ dom(σ)

var( v) | σ | φ −→ l | (σ, l 7→ v) | φ
(E-VAR-CON)

f /∈ dom(φ)

flow() | σ | φ −→ f | σ | (φ, f 7→ NB(0,NE))
(E-FLOW-CON)

NB(t1, n2) = φ(f)
l′ /∈ dom(σ) f ′ /∈ dom(φ)

φ′ = ([f 7→ NB(t1,NW(l′, n2))]φ, (f ′ 7→ NW(l′,NE)))
fork( f ) | σ | φ −→ f ′ | (σ, l′ 7→ ε) | φ′ (E-FORK-BLACK)

NW(t1, _) = φ(f)
l′ /∈ dom(σ) f ′ /∈ dom(φ)

φ′ = ([f 7→ NB(t1,NW(l′,NE))]φ, (f ′ 7→ NW(l′,NE)))
fork( f ) | σ | φ −→ f | (σ, l′ 7→ ε) | φ′ (E-FORK-WHITE)

v /∈ FLoc
fork( v) | σ | φ −→ v | σ | φ (E-FORK-RM)

Figure 4: Computation rules of the operational semantics for theλ̃–calculus.
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cific terms in patterns are selected first, e.g., for a termt1t2, wheret1 ∈ Value⊆ Term,
rule (E-APP2) in Figure 6 is selected in favor of (E-APP1).

The most interesting rules which differ from standard untyped lambda-calculus are
the last four rules in Figure 4. An example of the application of these rules is given in
Figure 5. At the first step, aflow() term is evaluated using rule (E-FLOW-CON). This
rule creates an unused flow location in the flow store (f /∈ dom(φ)), maps the location
to a new black node, extends the flow storeφ with this mapping, and returns the new
flow store location. The left element in the new black node is a zero value of type real.
Figure 5 shows the graph representation of the flow tree. The dashed arrow states that the
input flow is zero to the black node. This node corresponds to a sum to zero equation,
which has not yet any outgoing flow variables (represented by edges). In the third column
in Figure 5, the current state of the flow-store is shown after evaluation of the term in
column one. The fact that the black node does not have any outgoing edges is shown with
the empty nodeNE in the second element.

Term Graph Representation Flow Store Var Store

flow()
−→ f0

0 f0

(f0 7→ NB(0,NE))

fork( f0)
−→ f1

f1

0 f0
l1

(f0 7→ NB(0,NW(l1,NE)))
(f1 7→ NW(l1,NE)) (l1 7→ ε)

fork( f0)
−→ f2

f1

0 f0
l1

l2
f2 (f0 7→ NB(0,NW(l2,NW(l1,NE))))

(f1 7→ NW(l1,NE))
(f2 7→ NW(l2,NE))

(l1 7→ ε)
(l2 7→ ε)

fork( f1)
−→ f3

f1

0 f0
l1

l2
f2

f3
l3 (f0 7→ NB(0,NW(l2,NW(l1,NE))))

(f1 7→ NB(l1,NW(l3,NE)))
(f2 7→ NW(l2,NE))
(f3 7→ NW(l3,NE))

(l1 7→ ε)
(l2 7→ ε)
(l3 7→ ε)

Figure 5: Example of the fork command and respresentations in the flow store and
the variable store.



136 Paper E Flow Lambda Calculus for Declarative Physical Connection Semantics

At the second step in the example, nodef0 is forked using rule (E-FORK-BLACK).
This rule is chosen in favor of (E-FORK-WHITE), sinceφ(f0) represents in this case a
black node. The second and third premise in this rule create both a new variable location
(a flow variable) and a new flow store location. As illustrated in the graph representation,
a new white node is created. In the forth premise, a newφ′ is bound, representing the
store where locationf0 is updated and a new mapping fromf1 to the new white node is
added.

In the third step,f0 is forked again. In this case another white node is created and an
edge is assigned between the black node and the new white node.

Finally, step four forks the node located byf1. Since this node is a white-node (before
evaluation offork( f1) ), rule (E-FORK-WHITE) applies. The main difference in this
rule compared to (E-FORK-BLACK) is that the color of the node pointed to byf1 is
changed from white to black. This means that this fork operation both generated a new
sum to zero equation (the black node) and added a flow variablel3.

After evaluation of the given example, the flow store contain four mappings, where
two of them maps to black nodes, and two maps to white ones. All locations pointing
to a black node will generate a sum to zero equation. The equation is generated by let-

t1 | σ | φ −→ t′1 | σ′ | φ′
t1t2 | σ | φ −→ t′1t2 | σ′ | φ′

(E-APP1)

t2 | σ | φ −→ t′2 | σ′ | φ′
v1t2 | σ | φ −→ v1t

′
2 | σ′ | φ′

(E-APP2)

t | σ | φ −→ t′ | σ′ | φ′
var( t) | σ | φ −→ var( t′) | σ′ | φ′

(E-VAR)

t1 | σ | φ −→ t′1 | σ′ | φ′
t1=t2 | σ | φ −→ t′1=t2 | σ′ | φ′

(E-EQ1)

t2 | σ | φ −→ t′2 | σ′ | φ′
v1=t2 | σ | φ −→ v1=t′2 | σ′ | φ′

(E-EQ2)

t1 | σ | φ −→ t′1 | σ′ | φ′
t1 ∧ t2 | σ | φ −→ t′1 ∧ t2 | σ′ | φ′

(E-CONJ1)

t2 | σ | φ −→ t′2 | σ′ | φ′
v1 ∧ t2 | σ | φ −→ v1 ∧ t′2 | σ′ | φ′

(E-CONJ2)

t | σ | φ −→ t′ | σ′ | φ′
fork( t) | σ | φ −→ fork( t′) | σ′ | φ′

(E-FORK)

Figure 6: Congruence rules of the operational semantics for theλ̃–calculus.



4 Modeling Kernel Language 137

ting the left side of the equation be the first element of the black node, e.g., in node
NB(0,NW(l1,NE)), zero will be on the left hand side of the equation. The right hand
side consist of the sum of white nodes term values given in element two of the black node.
In the example given in Figure 5, the sum to zero equations for the final value of the flow
store would be:

0 = l2 + l1 (1)

l1 = l3 (2)

Implicit dereferencing of locations is assumed in the above equations. These equations
together with resulting equations after evaluation forms the final equation system. The
variables in the equation system correspond to all locations created in the variable store.
Note that this store now contains both potential variables created using the termvar( t)
and flow variables generated due to forking both black and white nodes.

The congruence rules in Figure 6 are less interesting, but equally important to the
semantics. We have chosen to write out all the rules explicitly for completeness, even if
there exist simpler and more compact ways of describing these kinds of rules. It should
be noted that the congruence rules for equations (E-EQ1) and (E-EQ2), and the rules for
conjunction (E-CONJ1) and (E-CONJ2) are stated with two terms to show the evaluation
order.

We choose to describe the semantics with small-step-semantics, since it has been
shown to exist efficient ways of proving type safety of a language using the progress
and preservation theorems [90], if the language is extended with a static type system.

4 Modeling Kernel Language

To enable realistic modeling capabilities, theλ̃-calculus needs to be extended with more
convenient constructs for modeling. The language presented in this section, called mod-
eling kernel language (MKL) is then used for demonstrating modeling capabilities in
Section 2.

4.1 Abstract Syntax

The extra terms and syntactic categories for constructs of the extended language, are listed
in Figure 7.

Several of the introduced terms are used for making the language more expressive.
For example, a new syntactic category ofpatternsis introduced. The current minimal
language supports identifier and tuple patterns, but the language could easily be enriched
with other constructs such as records and variants.

Another term for functional abstraction,func p { t} has been added to distinguish
it from the lambda abstraction given in thẽλ-calculus. The main difference is that
func p { t} includes a pattern as its formal parameter, while the lambda absractionλx.t
used an identifier as formal parameter.

The most important term in the MKL is themodel -term. The purpose with this term
is to create an abstraction mechanism for equation-systems using a functional modeling
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bop ∈ Bop = {+,−, ∗, /} Binary operations

p ∈ Pattern Pattern
p ::=

x Identifier pattern
| ( pi

i∈1..n) Tuple pattern

t ∈ Term Terms
t ::=

( ti
i∈1..n) Tuple

| func p { t} Function abstraction with pattern
| model p { t} Model abstraction with pattern
| t1 bop t2 Binary operations
| - t Uniary negation
| der( t) Derivative
| sin( t) Sine
| cos( t) Cosine
| time Global simulation time

v ∈ Value Values
v ::=

( vi
i∈1..n) | func p { t}

| - v | der( v) | sin( v)
| cos( v) | v1 bop v2 | time

Figure 7: Abstract syntax of the kernel language MKL, which represents extensions
to the syntax given in Figure 3.

style, and at the same time hide the existence of the fork semantics, which is needed for
correct flow semantics.

The other terms, e.g., binary operations, time derivative operation, Sine function etc.,
are needed to be able to create relevant models. Some of these terms could also have been
implemented as library functions (e.g., Sine and Cosine), but are here part of the language
for presentation purpose.

4.2 Operational Semantics

The new evaluation rules for MKL are given in Figure 8. Besides these semantic rules,
some syntactic sugar is also added. For example, thedef construct is transformed into a
combination of lambda abstraction and application terms. We will not discuss this syntac-
tic transformation any further, since it is not important in regards to the flow connection
semantics.

The functional application rule (E-APPABS-MATCH) states ordinary function appli-
cation, but with pattern matching. The matching rules are expressed with a separate set
of inference rules, where (M-IDENT) is used for identifier patterns and (M-TUPLE) for
tuple patterns.
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New evaluation rules:

(func p { t} )v | σ | φ −→ match(p, v)t | σ | φ (E-APPABS-MATCH)

(model p { t} )v | σ | φ −→ (func p { t} )(fork( v) ) | σ | φ (E-APPMODEL)

fork(( ti∈1..n)) | σ | φ −→ (fork( ti)
i∈1..n) | σ | φ (E-FORKTUPLE)

tj | σ | φ −→ t′j | σ′ | φ′
ttmp = ( vi

i∈1..j−1, t′j , tk
k∈j+1..n)

( vi
i∈1..j−1, tj , tk

k∈j+1..n) | σ | φ −→ ttmp | σ′ | φ′
(E-TUPLE)

Matching rules:

match(x, v) = [x 7→ v] (M-IDENT)

for eachi match(pi, vi) = ρi

match(( pi
i∈1..n) , ( vi

i∈1..n) ) = ρ1 ◦ · · · ◦ ρn
(M-TUPLE)

Figure 8: Additional semantic rules for the kernel language.

The most important rule of the new rules is (E-APPMODEL), which matches an ap-
plication, where the first term is a model. From the definition ofmodel p { t} , we can
see that it is almost the same as a functional abstraction, but if we take a closer look at
rule (E-APPMODEL), we note that the model is transformed into a function abstraction
(a lambda abstraction with pattern), together with afork( v) term on the second part of
the application term. This construct is the key element of hiding thefork construct from
the user. The intuition is that each time a connection should be stated between model
instances, the wires (connections) need to be forked to form correct flow trees.

Finally, there is one rule (E-FORKTUPLE), which propagates the fork term into a
tuple’s elements, and a new congruence rule for evaluating a tuple’s elements.

5 Prototype Implementation and Evaluation

To evaluate the described language semantics, a prototype implementation was constructed,
where the semantic rules were directly translation into OCaml source code. The imple-
mentation is not intended for performance evaluation, but to verify the correctness of the
given rules.

There are certain properties of the given semantics that we want to prove correct, but
this is left to future research. However, it is not obvious how we can prove that it actually
models certain properties physically correct in a domain. One alternative would be to
prove properties relating to e.g., Modelica and theλ̃-calculus. However, since there does
not exist any formal semantics of Modelica, which is small enough to reason about, we
see this as a difficult strategy to follow.
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Instead, the prototype implementation is used for verifying that relevant physical mod-
els can indeed be simulated and that they generate approximately the same simulation
result. In this prototype implementation, the elaboration procedure transforms a model
definition (e.g., the circuit in Section 2) to a flat set of equations. This latter representa-
tion can be converted to a flat Modelica file, which we are using for simulating the system.
A number of test models were created in both Modelica and in MKL and the simulation
result was compared. The purposes of these verification tests are:

• To verify that the prototype can generate equation systems that are solvable.

• To verify that the simulation result correspond to the simulation of equivalent Mod-
elica model.

Tests have been performed on a number of models with positive result. However, it should
be noted that the correctness of the current semantics is not verified comprehensively
enough. Furthermore, certain proves of correctness must also be conducted in future
work.

6 Related Work

The most closely related work to our flow connection semantics is the connection seman-
tics described in the specification of the Modelica language [61]. In Modelica, connec-
tions between components (model instances) are declared by usingconnect -equations.
For example, consider the following Modelica source code, which expresses the same
modelCircuit , as described in Section 2.

model Circuit
Resistor R1(R=10);
Capacitor C(C=0.01);
Resistor R2(R=100);
Inductor L(L=0.1);
VsourceAC AC;
Ground G;

equation
connect (AC.p, R1.p);
connect (R1.n, C.p);
connect (C.n, AC.n);
connect (R1.p, R2.p);
connect (R2.n, L.p);
connect (L.n, C.n);
connect (AC.n, G.p);

end Circuit;

From a modeling perspective, connections between components are in Modelica ex-
pressed by stating oneconnect -equation between each connector (port). On the con-
trary, in MKL, a wire is declared, which is then connected by using the name of the wire
to express the connection. From a modeling point of view, different users may have dif-
ferent preferences and options on what is simpler and more clear than the other. There
are differences regarding modeling capabilities, but it need further analysis to conclude



7 Conclusions 141

anything about clarity and expressiveness. However, we believe that theλ̃-calculus se-
mantics is cleaner due to its declarative nature, which enables better ability to reason
about the semantics.

Currently, it does not exist any clean small formal semantics of the Modelica language.
There exist specification attempts to specify the whole language using natural semantics
[47, 48]. However, this resulted in a very large formal specification, which was very hard
to reason about.

Other hybrid languages, such asχ has formal operational semantics defined [88].
However, until this date, theχ language do not yet support the concept of flow connec-
tions.

A similar idea of using functional abstraction for modeling of acausal physical models
were outlined by Nilsson et. al. [64]. This paradigm, which they callfunctional hybrid
modeling (FHM)introduces the concept offirst-class relations on signals and switch con-
structs. The signal relationssigrel used in the examples in the article have similarities
with our model notation, but since the work by Nilsson et.al [64] does not contain any
formal semantics, it is hard to analyze the exact similarities. One major difference is
that Nilssons et. al.’s work does not incorporate the flow connection semantics into the
semantic framework.

To the best of our knowledge, there are no previous published work of a formal se-
mantics of encoding the flow connection semantics in the lambda calculus.

7 Conclusions

We have in this paper described a novel approach of encoding the physical flow connec-
tion semantics into the untyped lambda-calculus, using small-step operational semantics.
A minimal calculus, calledflow lambda calculus, denoted̃λ-calculus was defined. Based
on this calculus, the syntax and semantics was extended to give better modeling capabil-
ities. This language, called modeling kernel language (MKL), was demonstrated with a
couple of examples. A prototype implementation of the language was implemented as an
interpreter, and some models were simulated and compared with models created in the
Modelica language.
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