
Precision Timed Infrastructure: Design Challenges
(Invited Paper)

David Broman⇤†, Michael Zimmer⇤, Yooseong Kim‡, Hokeun Kim⇤, Jian Cai‡,
Aviral Shrivastava‡, Stephen A. Edwards§, and Edward A. Lee⇤

⇤University of California, Berkeley, {broman, mzimmer, hokeunkim, eal}@eecs.berkeley.edu
†Linköping University, david.broman@liu.se

‡Arizona State University, {yooseong.kim, jian.cai, aviral.shrivastava}@asu.edu
§Columbia University, sedwards@cs.columbia.edu

Abstract—In general-purpose software applications, computa-

tion time is just a quality factor: faster is better. In cyber-physical

systems (CPS), however, computation time is a correctness factor:

missed deadlines for hard real-time applications, such as avionics

and automobiles, can result in devastating, life-threatening conse-

quences. Although many modern modeling languages for CPS in-

clude the notion of time, implementation languages such as C lack

any temporal semantics. Consequently, models and programs for

CPS are neither portable nor guaranteed to execute correctly on

the real system; timing is merely a side effect of the realization

of a software system on a specific hardware platform. In this

position paper, we present the research initiative for a precision

timed (PRET) infrastructure, consisting of languages, compilers,

and microarchitectures, where timing is a correctness factor. In

particular, the timing semantics in models and programs must

be preserved during compilation to ensure that the behavior of

real systems complies with models. We also outline new research

and design challenges present in such an infrastructure.

I. INTRODUCTION

In a cyber-physical system (CPS) [23], timing contributes to
correctness, not just performance. Better average-case per-
formance may improve the user experience, but consistently
meeting deadlines may be crucial to safe behavior. Yet most
programming languages, such as C or C++, provide no direct
control over timing. The execution time of software is a com-
plex, brittle function of the software itself and the hardware
and software environment in which it runs [35].

As a consequence, hard real-time systems are not portable.
Costly testing, verification, and certification must consider
the details of how software interacts with the hardware; any
change in the hardware or software can have unpredictable
effects on timing, forcing all this work to be repeated. For
example, a small change in a cache replacement policy could
lead to thrashing in an inner loop and much slower execution.

On typical hardware platforms, caches, branch predictors,
and complex pipeline interactions enable small code changes
to strongly affect global timing. And the change does not have
to occur at the source code level; changes in the compiler’s

This work was supported in part by the Center for Hybrid and Embedded
Software Systems (CHESS) at UC Berkeley, which receives support from
the National Science Foundation (NSF awards #0720882 (CSR-EHS: PRET),
#0931843 (CPS: Large: ActionWebs), and #1035672 (CPS: Medium: Ptides)),
the Naval Research Laboratory (NRL #N0013-12-1-G015), and the following
companies: Bosch, National Instruments, and Toyota. The first author was
funded by the Swedish Research Council #623-2011-955.

level of optimization, the linker, or the operating system’s
scheduling policy can all cause big changes in timing.

Modeling languages and environments for CPS have long
recognized the need to precisely model and control time. Mod-
elica [30], Simulink [28], and Ptolemy II [12] can precisely
model time in both physical and computational (cyber) parts.

Many of these modeling environments are even able to
compile models into C or similar low-level platform-dependent
code, but few execution platforms are able to guarantee the
timing behavior of the generated code. This is regrettable:
designers carefully specify and analyze the timing behavior of
their systems, yet existing implementation schemes essentially
discard this and force designers to re-validate the timing
behavior of their implementations through testing.

We believe both software and hardware platforms must
fundamentally change for timing to be controlled as precisely
as logical functionality. This idea is not new. In 2007, Edwards
and Lee [10] proposed precision timed (PRET) machines—a
new era of processors where temporal behavior is as important
as logical functions. In this paper, however, we consider the
whole software and hardware stack, including modeling and
programming languages, compilers, and processors, where
time is first-class citizen. The overall problem is to automat-
ically compile or synthesize a model’s cyber parts, such that
the simulated model and the real system coincide. The key
challenge of this model fidelity problem is to guarantee correct
timing behavior [4]. We call a correct-by-construction solution
to this problem—where time is a correctness criterion—a
precision timed (PRET) infrastructure. Such an infrastructure
should include three key components:

• Precision timed languages, programming or modeling
languages where time is a first-class citizen—an integral
part of the language’s semantics. Specifically, we empha-
size the need for a precision timed intermediate language
that is independent of the source language. Such an in-
termediate language must hide low-level implementation
details (such as the memory hierarchy) but still expose
primitives for expressing timing (Section II).

• Precision timed hardware, physical components with
predictable timing behavior. Typical processors sacri-
fice predictability to improve average-case performance;
PRET processors and memory controllers attempt to

This is the author prepared accepted version. © 2013 IEEE. The published version is:
David Broman, Michael Zimmer, Yooseong Kim, Hokeun Kim, Jian Cai, Aviral Shrivastava, Stephen A. Edwards, and Edward A. Lee.
Precision Timed Infrastructure: Design Challenges. In Proceedings of the Electronic System Level Synthesis Conference (ESLsyn),
Austin, Texas, USA, May 31-June 1, IEEE, 2013. IEEE Xplore link: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=\&arnumber=6573221

© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

regain predictability while maintaining performance. The
PRET machine language specified by the instruction set
architecture (ISA) must also allow for greater control of
timing behavior (Section III).

• Precision timed compilers, which preserve timing seman-
tics as they translate from a PRET language to a PRET
machine language. The challenge for PRET compilation
is to guarantee the semantics of a high-level language and
the timing behavior of execution on a specific hardware
platform will coincide (Section IV).

II. PRECISION TIMED LANGUAGES

To enable portability and correctness-by-construction, lan-
guages for modeling or implementing CPS need to include
time as part of the programming model. In this section,
we discuss what abstractions such languages should include.
In particular, we motivate and discuss the need for timed
intermediate languages.

A. Language Hierarchy
Various modeling languages have different ways of expressing
computations and timing constraints [5]. For instance, Mod-
elica [30], Simulink [28], Giotto [17], Ptolemy II [12], and
Modelyze [6] all have different semantics for expressing time1.
Creating a new compiler for each such modeling language—
with precision time capabilities—is, however, impractical. We
propose instead to define a common intermediate language to
which various modeling languages may be compiled. Such an
intermediate language must have a well-defined semantics that
encompass both function and timing.

Figure 1 depicts how a timed intermediate language could
act as a language-independent layer between modeling and
programming languages and microarchitectures. The ovals at
the top of the figure exemplify various modeling languages,
and the arrows show compilation steps. Target languages for
compilation are either a low-level implementation language
(e.g., C extended with timing constructs2) or a low-level
precision timed intermediate language (PRETIL).

The purpose of a PRETIL is to expose timing primitives
to upper layers while abstracting away hardware details. In
particular, memory hierarchies (cache or scratchpad memo-
ries), specific instruction set architectures (ISA), and hard-
ware register allocation should be hidden from layers above
the intermediate language. Instead, the intermediate language
provides named variables, constructs for allocating memory,
and other ISA-independent instructions. All these abstractions
and constructs are common in standard intermediate represen-
tations (IR), such as LLVM’s [22] IR. The unique difference

1Ptolemy II (using directors) and Modelyze (using embedded domin-
specific languages) can express various models of computation, each with
different timing semantics.

2Note how a C language with timing constructs is here viewed as an
intermediate language and not as an implementation language. Today, this
is already very common; many modeling environments use C as their
target language for code generation. Existing timed C-based implementation
languages, such as Real-time concurrent C [15] or Real-time Euclid [20],
could potentially also be used in this infrastructure as long as they can compile
to PRETIL.

PRETIL

PRET Machines

Simulink/
Stateflow

Programming
Languages C with timing

constructs

Other Platforms

Modeling
Languages

Intermediate
Languages

Assembly
Languages

Modelica Ptolemy IIGiotto and
E machine Modelyze

PRET
Compilation

Hide machine dependent details

Expose timing constructs

Clock synchronization
and communication

PRET Machines Other Platforms

Fig. 1. Conceptual overview of translation steps between languages in a
PRET infrastructure. At the top, various modeling languages are compiled
into a precision timed intermediate language (PRETIL), potentially via a
timed C programming language. The compilation step between a PRETIL
(Section II) and PRET machines (Section III) is performed by the PRET
compiler (Section IV). Programs and models may ideally be compiled and
partitioned into several distributed platforms.

of a PRETIL is to include constructs for reasoning about time.
By time we mean real-time, that is, execution time expressed
at a certain precision, such as nanoseconds.

B. Mechanisms for Detecting Missed Deadlines

Embedded systems that interact with the physical environment
through sensors and actuators need to meet timed deadlines.
Relative deadlines are associated with tasks, functions, or
program fragments that need to be executed at a certain
time. A task may be classified according to the consequences
of missing a deadline [8]: missing a hard task’s deadline
is catastrophic; the result of a firm task is useless after its
deadline, but missing it is harmless; finally, the utility of the
result of a soft task merely drops if its deadline is missed.

A precision timed language should be able to handle all
three kinds of tasks. Figure 2 illustrates the three different sce-
narios. For soft tasks, a PRETIL language should provide late
miss detection that can indicate after a task completes whether
its deadline was missed and by how long. The program can use
this information to make runtime decisions of how to handle
missed deadlines. Example of soft tasks are tasks involved
in user interactions or system logging. Firm tasks should be
provided immediate miss detection that throws an exception
exactly when a task’s deadline expires. Firm tasks can be found
in multimedia and networking applications; missing a frame or
packet are less important than introducing latencies. Another
use for immediate miss detection is anytime algorithms; that
is, algorithms that produce better results the longer they are
executed and return a valid solution when interrupted. Finally,
hard tasks need early miss detection that indicate long before
the task runs whether it will miss its deadline. Hard tasks are
typically found in safety critical systems such as sensor data
acquisition systems, image processing, and control systems.
Late and immediate misses may be detected at runtime, but
early miss detection requires static analysis; an upper bound

2

TaskTask

Catastrophic
consequences

Hard Tasks

Time

Firm Tasks Soft Tasks

Missed
Deadline

Result has still
some utility

Result is useless,
but causes no damage

Early
miss detection

(static)

Immediate
miss detection

(dynamic)

Late
miss detection

(dynamic)

DeadlineStart time

Fig. 2. Relationship between types of tasks and deadline detection.

of the worst-case execution time (WCET) [35] must be less
or equal to the relative deadline. Languages that are part
of a precision timed infrastructure should—with a certain
precision—include semantics for handling all these kinds of
detection mechanisms.

C. Towards a PRET Intermediate Language

Our current work-in-progress is focusing on extending the
low level virtual machine (LLVM) [22] assembly language
with timing semantics. We call this precision timed extension
ptLLVM.

Timing constraints for hard real-time tasks, which require
early miss detection, can be expressed using a software con-
struct called meet the final deadline (MTFD), originally pro-
posed as a hardware instruction [7]. A code block is assigned
a deadline and the program will refuse to compile if it cannot
meet the deadline. As input the compiler needs, besides the
timed program, a specification of the target architecture. If the
target microarchitecture is a PRET machine (see bottom part
of Figure 1), verification of deadlines is significantly simplified
(see Section IV) compared to a standard general purpose
processor. A PRET intermediate language is not, however,
in principle required to be compiled to a PRET machines;
compilation could also be done for a standard embedded
platform with timer support—although the precision of time
may not be the same.

The following simple ptLLVM code shows how a program
can be given an upper and a lower time bound.
1 %t1 = gt i64 ; Get current time in ns

2 mt i64 10000 ; Takes at most 10us

3 ; ...computation...

4 %t2 = add i64 %t1, 5000
5 du i64 %t2 ; Takes at least 5us

6 fd

The example illustrates four new timing instructions3, shown
in bold. On line 1, instruction gt (get time) returns a 64-
bit integer value (i64) representing number of nanoseconds
elapsed since system boot time. The returned value is stored
in the local variable %t1. The MTFD construct is divided into
two separate instructions; mt (line 2) specifying the beginning

3The timing instructions are here shown, for brevity, as native LLVM
instructions, but are in our current work-in-progress defined as intrinsic
functions.

of the timing constrained block and fd (line 6) specifying the
end. The MTFD block states that all code between mt and
fd must execute within 10µs. As a consequence, this MTFD
block gives a static upper bound of the execution time. The
software toolchain must check such timing instructions and
provide guarantees, which is further discussed in Section IV.
Variable %t2 is assigned an incremented value, which is used
by the du (delay until) instruction (line 6) to express an
lower bound of 5 µs. Consequently, the execution time of
the computation task (line 3) is bound to be between 5 µs
and 10 µs: an explicit time constraint.

Although not shown in the above example, one more
instruction is needed to cover all different variants of deadline
miss detection. To perform immediate miss detection, we
introduce an instruction called ee (exception on expire). The
purpose of this instruction to specify a timed exception that is
raised exactly when a specified deadline is missed.

D. PRET Language Design Challenges
A number of questions arise while designing a language
hierarchy with a ubiquitous notion of time:

• What is the minimal set of timing constructs of an
intermediate language for expressing real-time semantics
of arbitrary modeling languages? In our current work, this
set consists of the “get time,” “delay until,” “exception
on expire,” and “meet the final deadline” instructions.
We believe this is enough in a single threaded setting;
comprehensive studies showing how to compile several
modeling languages could help to confirm this.

• How should the precision of time be expressed? Most
modeling languages simply assume perfect clocks and
timing. However, it matters whether the implementation
platform can deliver millisecond- or nanosecond-level
precision. The behavior of the realized system may sub-
stantially differ depending on the precision.

• How should concurrency be expressed in a timed inter-
mediate languages? In several formalisms and languages,
such as Kahn process networks [19] or synchronous
languages [3], concurrency is an inherent property. The
target platform may be parallel, having multiple cores,
hardware threads, or both. Yet most implementation lan-
guages (e.g., C) and intermediate assembly representa-
tions (e.g., LLVM) do not provide explicit concurrency
constructs. The challenge is to provide both constructs
for expressing concurrency and to provide predictable
communication mechanisms.

• What is the role of a real-time operating system (RTOS)
for a precision timed infrastructure? Should scheduling of
tasks be part of a RTOS (designed for PRET languages)
or should the system be bare metal and scheduling be
part of the compilation process?

• How can timed intermediate languages be compiled in a
distributed setting? If the modeling language is based on a
distributed model of computation, such as PTIDES [36],
we would like the infrastructure to partition the imple-
mentation into distributed pieces.

3

III. PRECISION TIMED HARDWARE

Modern computer architectures focus on increasing overall ap-
plication performance, often at the expense of the performance
and predictability of individual operations. Deep pipelines with
branch predictors and caches improve average-case perfor-
mance when high-penalty “misses” are seldom. Unfortunately,
the same principle that improves average-case performance—
using execution history to predict future operation—is a main
source of unpredictability.

Predictability is easy to achieve by itself—most micropro-
cessors from the 1970s and 80s were completely predictable
because they were simple and fairly low-performance as
a result; the real challenge is making a high-performance
predictable processor. In part due to our proposal for preci-
sion times (PRET) machines [10], we and others have been
developing predictable hardware platforms [1], [27], [33].

A. Pipelines
A technique to maintain performance without branch predic-
tion is to use a thread-interleaved pipeline [24], as done in our
previous work [9], [26], [27]. Each pipeline stage contains an
instruction from a different hardware thread. Branches are re-
solved before a thread’s next instruction starts, so no prediction
is required and the pipeline stays full. Each hardware thread
has a lower throughput, but the processor is more predictable
and has higher overall throughput.

Processor cycles are wasted, however, if limited concur-
rency within the system results in not all hardware threads
being utilized. We are currently developing a more flexible
PRET processor to improve performance and maintain timing
predictability for varying concurrency by using a predictable,
software-controlled, thread interleaving scheduler. Cycles that
would otherwise be wasted can be used by a different hardware
thread, but dependencies between instructions are reintroduced
and require forwarding or stalling to prevent hazards.

B. Memory
Caches can greatly reduce average memory latency, but pre-
dicting whether a memory access will hit or miss requires
knowledge of the current cache state. In our previous work,
we use scratchpad memories (SPM) [2] instead of caches.
For programs that cannot fit in the scratchpad memory, a
predictable DRAM controller [32] may be used for accessing
a larger main memory. In a SPM, explicit instructions are
required to move data from slower, main memory into the
faster, local scratchpad memory; this is typically done as a
DMA transfer from DRAM to SPM.

But much work remains to be done. Main memory (DRAM)
latency, which can be hundreds of cycles in today’s technology,
is a fundamental stumbling block. Any reasonably high-
performance processor must store frequently accessed data in
a smaller memory such as a cache or a scratchpad, yet caches
greatly increase the amount of architectural state that must be
tracked to predict the execution time of sequences of code.

Software control of a memory hierarchy seems necessary
for reasonable performance and predictability, yet doing so

using classical techniques such as DMA transfers is likely
to add significant performance overheads because it would
add management code to the software’s critical path. While
some mixed alternatives have been proposed, such as Whitham
and Audsley’s scratchpad memory management unit [34], the
problem is hardly considered solved.

C. Instruction Set Architecture
Time cannot be explicitly controlled in modern instruction
set architectures (ISA), only indirectly controlled with soft-
ware and available hardware, such as tick counters. Conse-
quently, the timing behavior of a binary program is platform-
dependent: it depends on available hardware and its configu-
ration.

Previous work [25] extends an ISA to provide direct control
over timing. A real-time clock accessible to software with
dedicated instructions, as opposed to software interacting with
a tick counter, enables timing behavior to both be specified in a
binary program and have higher precision with less overhead.
In future work, the clock could also be synchronized to other
platforms or a more accurate clock source using a clock
synchronization method, such as IEEE 1588 [11].

D. PRET Hardware Challenges
Below are a few of the questions we foresee arising in the
development of PRET hardware.

• How best should software manage the memory hierarchy?
Current cache-based architectures almost entirely hide
such management, improving programmability at the ex-
pense of predictability. In effect, a very complicated cache
management “program” is always running in parallel with
user code; understanding the temporal behavior of the pair
require detailed knowledge of both and how they interact.
PRET hardware is likely to both change and expose the
memory management system, but what, exactly, should
this look like? One extreme is for the programmer to
control all DMA transfers, such as is done in the CELL
processor [18], but such an architecture is difficult to
program. A satisfactory solution to this problem may be
key to a practical PRET architecture.

• How should the pipelines be structured? Purely thread-
interleaved pipelines guarantees non-interference at the
expense of latency. The behavior of aggressive best-
effort pipelines is complex and depend strongly on
the interaction of nearby instructions. Is there a happy
medium in which non-interacting instructions from the
same thread could proceed more quickly through a multi-
stage pipeline without sacrificing predictability? Should
each thread be provided different performance and pre-
dictability guarantees, as in a mixed-criticality system?

• How should timing specification and control be added to
the ISA? Direct access to a real-time clock and the ability
to react to it “instantly” seems like a bare minimum, but
should the ISA provide more control over, say, instruction
scheduling? Should it prescribe instruction-level timing
that the microarchitecture must obey?

4

IV. PRECISION TIMED COMPILATION

In addition to the traditional roles of expressing the application
in terms of machine instructions and improving overall per-
formance, the goal of a precision timed compiler is to ensure
that the hard timing constraints imposed by MTFD constructs
are met. Traditionally, compilation and verification of timing
constraints have been completely separate tasks. The design
process in such an approach is a repeated loop of compilation
and testing until timing constraints are met or considered
infeasible. The compilation process has no timing models for
execution, even though the compiler has a significant impact
on an application’s execution time. This complex design loop
can be performed in a much more intelligent and integrated
fashion by adding the timing analysis capabilities inside the
compiler. We call such a compiler a PRET compiler.

A. Compiling for Parameterized Microarchitectures
A major change that PRET compilation introduces is that
compilation is targeting a specific microarchitecture for an ISA
rather than the purely functional ISA itself. This is because
the execution time of an application depends strongly on
the processor microarchitecture and far less on the ISA. Un-
fortunately, dependency on the microarchitecture reduces the
portability of object code. To resolve this portability challenge,
PRET compilers need to operate on parameterized processor
architectures, represented by, for example, an architecture
description language (ADL), such as EXPRESSION [29]. In
such a case, all the timing parameters must be described in the
ADL, which are used to estimate the timing of applications.

B. Worst-Case Execution Time Analysis
Static verification of MTFD constraints means computing a
safe upper bound on WCET and comparing it to constraints.
Traditionally, the main challenge of WCET analysis [35] is to
compute a tight upper bound, which includes both loop bound
detection [21], infeasible path detection [16], and low level
machine timing analysis [14]. More recent work on WCET-
aware compilation [13] utilizes compiler optimization phases
to minimize WCET instead of the average case execution
time. We propose a compiler that attempts to minimize the
average execution time of blocks that are not constrained.
That is, we view the compiler optimization problem as a
traditional compiler problem with constraints on the MTFD
blocks. Hence, the challenge is not to minimize WCET, but
to make WCET bounds tight and close to MTFD constraints.

An alternative is to delay the MTFD constraint verification
to load time. Such an approach would resemble Necula’s
proof carrying code [31], where the verification process is
divided into an offline certification stage followed by an online
validation stage.

Another major challenge of WCET analysis for non-PRET
architectures is interference due to resource sharing. Conse-
quently, temporal isolation or bounding interference are im-
portant requirements for WCET analysis. Temporal isolation
is also important for composability—a necessary property for
scalability.

C. Scratchpad Memory Allocation

Although the exposed timing abstractions of the intermediate
language make it easier for various modeling languages to
be compiled with precision time, the intermediate language
would be only marginally useful if it also exposed all details
of the PRET machines. In particular, scratchpad allocation
schemes must be abstracted away, yet static or dynamic mem-
ory management decisions have a profound effect on WCET
analysis and thus also for MTFD constraints. It follows that
a key challenge for the PRET infrastructure is to design the
toolchain such that MTFD constraints are guaranteed to hold,
average case performance of non-MTFD blocks are optimized,
and limited memory resources are utilized efficiently.

By using scratchpad memories, the compiler has substantial
control over timing, but also the extremely challenging task of
meeting all, potentially competing, timing constraints. There-
fore, key challenges are to develop techniques for managing
code and data on SPMs, computing safe bounds of WCET
for different management schemes, and selecting code and
data management schemes that meet and balance timing
constraints.

D. PRET Compiler Challenges

The questions that arise in the development of a PRET
compiler chain depend, in large part, on decisions made during
the design of the source languages and target hardware.

• How microarchitecture-aware must a PRET compiler be?
Does it need full information about the details of the
pipeline, or is there a way to instead have the compiler
dictate, say, scheduling information through the ISA that
the microarchitecture would then obey? Modern proces-
sors have rendered existing ISAs fictional models of the
underlying microarchitectures. Should a PRET compiler
target a different, timing-aware, fiction, or should it be
presented with an ISA that hides nothing?

• What balance should we strike between ahead-of-time
and just-in-time compilation? Should a PRET executable
be characterized by a simple clock-rate constraint (i.e.,
that ensures timing behavior provided the underlying
processor has a sufficiently fast clock)? Should the plat-
form validation operation be much more detailed, e.g.,
mimicking Necula’s proof-carrying code [31]? Or should
it take a just-in-time compilation approach in which the
compiler actually adapts an executable to a particular
platform? As usual, the question is a choice of which
abstractions the ISA should present.

• How platform-aware must the compiler be? Few existing
compilers take into account, say, a platform’s cache con-
figuration, but this may be desired in a PRET compiler.
By contrast, existing compilers are always mindful (at
some point in their operation) of the number and character
of ISA-visible registers. A PRET just-in-time compiler
may want to start with a very abstract model of the
computation to be performed and tailor it to the details
of the platform on which it will be executed, much like

5

how (stack-based) Java bytecodes are typically compiled
onto register machines.

• How can optimization phases of the PRET compiler be
aware of MTFD constraints? Must worst-case execution
time analysis and compiler optimization be two different
phases (potentially connected in a feedback loop), or can
optimization and WCET analysis be combined into one
integrated phase?

V. CONCLUSIONS

In this paper, we present a research initiative in which the no-
tion of time is an integral part of the programming model. Our
previous work focused on the hardware—PRET machines—
whereas this work-in-progress considers the whole software
stack, including precision-timed languages and compilers. Our
proposed solution necessarily crosscuts multiple disciplines,
especially the border between software and hardware; we
contend that such multi-discipline system design is vital to
achieve the final goal of an infrastructure with ubiquitous
notion of time.

REFERENCES

[1] S. Andalam, P. Roop, and A. Girault. Predictable multithreading of
embedded applications using PRET-C. In Proc. MEMOCODE, pages
159–168, 2010.

[2] R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan, and P. Marwedel.
Scratchpad memory: design alternative for cache on-chip memory in
embedded systems. In Proc. CODES, pages 73–78, 2002.

[3] A. Benveniste and G. Berry. The Synchronous Approach to Reactive
and Real-Time Systems. Proceedings of the IEEE, 79(9):1270–1282,
1991.

[4] D. Broman. High-confidence cyber-physical co-design. In Proceedings
of the Work-in-Progress (WiP) session of the 33rd IEEE Real-Time
Systems Symposium (RTSS 2012), page 12, 2012.

[5] D. Broman, E. A. Lee, S. Tripakis, and M. Törngren. Viewpoints,
formalisms, languages, and tools for cyber-physical systems. In Pro-
ceedings of the 6th International Workshop on Multi-Paradigm Modeling
(to appear), 2012.

[6] D. Broman and J. G. Siek. Modelyze: a gradually typed host language
for embedding equation-based modeling languages. Technical Report
UCB/EECS-2012-173, EECS Department, University of California,
Berkeley, June 2012.

[7] D. Bui, E. A. Lee, I. Liu, H. D. Patel, and J. Reineke. Temporal isolation
on multiprocessing architectures. In Proc. Design Automation Conf., San
Diego, CA, 2011.

[8] G. C. Buttazzo. Hard real-time computing systems: predictable schedul-
ing algorithms and applications. Springer, third edition, 2011.

[9] S. A. Edwards, S. Kim, E. A. Lee, I. Liu, H. D. Patel, and M. Schoeberl.
A disruptive computer design idea: Architectures with repeatable timing.
In Proc. ICCD, pages 54–59, Oct. 2009.

[10] S. A. Edwards and E. A. Lee. The case for the precision timed (PRET)
machine. In Proc. Design Automation Conf., pages 264–265, June 2007.

[11] J. C. Eidson. Measurement, Control, and Communication Using IEEE
1588. Springer, 2006.

[12] J. Eker, J. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Sachs, and
Y. Xiong. Taming heterogeneity—the Ptolemy approach. Proceedings
of the IEEE, 91(1):127–144, January 2003.

[13] H. Falk and P. Lokuciejewski. A compiler framework for the reduction
of worst-case execution times. Real-Time Systems, 46(2):251–300, 2010.

[14] C. Ferdinand and R. Wilhelm. Efficient and precise cache behavior
prediction for real-time systems. Real-Time Systems, 17(2):131–181,
1999.

[15] N. Gehani and K. Ramamritham. Real-time concurrent C: A language
for programming dynamic real-time systems. Real-Time Systems,
3(4):377–405, 1991.

[16] J. Gustafsson, A. Ermedahl, C. Sandberg, and B. Lisper. Automatic
derivation of loop bounds and infeasible paths for WCET analysis using
abstract execution. In Proceedings of the 27th IEEE International Real-
Time Systems Symposium (RTSS’06), pages 57–66. IEEE, 2006.

[17] T. Henzinger, B. Horowitz, and C. Kirsch. Giotto: A time-triggered lan-
guage for embedded programming. Proceedings of the IEEE, 91(1):84–
99, 2003.

[18] IBM. Cell Broadband Engine Architecture, Oct. 2007. Version 1.02.
[19] G. Kahn. The semantics of a simple language for parallel programming.

Information Processing, 1974.
[20] E. Kligerman and A. D. Stoyenko. Real-time Euclid: A language for

reliable real-time systems. Software Engineering, IEEE Transactions on,
12(9):941–949, 1986.

[21] J. Knoop, L. Kovcs, and J. Zwirchmayr. Symbolic Loop Bound
Computation for WCET Analysis. In E. Clarke, I. Virbitskaite, and
A. Voronkov, editors, Perspectives of Systems Informatics, volume 7162
of LNCS, pages 227–242. Springer, 2012.

[22] C. Lattner and V. Adve. LLVM: A Compilation Framework for Lifelong
Program Analysis & Transformation. In Proceedings of the International
Symposium on Code Generation and Optimization (CGO’04). IEEE,
2004.

[23] E. A. Lee. Cyber physical systems: Design challenges. In Intl. Symp.
Object/Component/Service-Oriented Real-Time Distributed Computing
(ISORC), pages 363–369, 2008.

[24] E. E. Lee and D. Messerschmitt. Pipeline interleaved programmable
DSP’s: Architecture. Acoustics, Speech, and Signal Processing [see
also IEEE Transactions on Signal Processing], IEEE Transactions on,
35(9):1320–1333, 1987.

[25] I. Liu. Precision Timed Machines. PhD thesis, EECS Department,
University of California, Berkeley, May 2012.

[26] I. Liu, J. Reineke, D. Broman, M. Zimmer, and E. A. Lee. A pret mi-
croarchitecture implementation with repeatable timing and competitive
performance. In To appear in Proceedings of International Conference
on Computer Design (ICCD), October 2012.

[27] I. Liu, J. Reineke, and E. A. Lee. A PRET architecture supporting
concurrent programs with composable timing properties. In Asilomar
Conf. on Signals, Systems, and Computers, November 2010.

[28] MathWorks. The Mathworks - Simulink - Simulation and Model-Based
Design. http://www.mathworks.com/products/simulink/ [Last accessed:
May 8, 2013].

[29] P. Mishra, A. Shrivastava, and N. Dutt. Architecture description language
(ADL)-driven software toolkit generation for architectural exploration
of programmable SOCs. ACM Transactions on Design Automation of
Electronic Systems, 11(3):626–658, 2006.

[30] Modelica—A Unified Object-Oriented Language for Physical Systems
Modeling—Language Specification, 2012. http://www.modelica.org.

[31] G. C. Necula. Proof-carrying code. In Proc. Principles of Programming
Languages, pages 106–119, New York, USA, 1997.

[32] J. Reineke, I. Liu, H. D. Patel, S. Kim, and E. A. Lee. PRET DRAM
controller: Bank privatization for predictability and temporal isolation.
In CODES+ISSS, pages 99–108. ACM, October 2011.

[33] M. Schoeberl. A Java processor architecture for embedded real-time
systems. Journal of Systems Architecture, 54(1–2):265–286, 2008.

[34] J. Whitham and N. Audsley. Implementing time-predictable load and
store operations. In Proc. Embedded Software (Emsoft), pages 265–274,
Grenoble, France, Oct. 2009.

[35] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whal-
ley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller,
I. Puaut, P. Puschner, J. Staschulat, and P. Stenström. The Worst-
Case Execution-Time Problem - Overview of Methods and Survey of
Tools. ACM Transactions on Embedded Computing Systems, 7:36:1–
36:53, May 2008.

[36] Y. Zhao, J. Liu, and E. Lee. A programming model for time-
synchronized distributed real-time systems. In Real Time and Embedded
Technology and Applications Symposium, 2007. RTAS’07. 13th IEEE,
pages 259–268. IEEE, 2007.

6

